
Required for: MATH40002 Analysis I
Based on the lectures of Richard Thomas and Steven Sivek, Imperial College London

1 Logic

Logic features heavily in the analysis module and you should be able to write proofs that use fluent, unambiguous
and correct logic.

2 Numbers

2.1 Rational Numbers

2.1.1 Definitions

N : = {0, 1, 2, 3, ...}
Z : = {...,−3,−2,−1, 0, 1, 2, 3, ...}
Q : = {cl(p, q) | (p, q) ∈ Z× N}

where cl(p, q) = {(r, s) | (p, q) ∼ (r, s)} by the equivalence relation (p, q) ∼ (r, s) ⇐⇒ ps = qr.

2.1.2 Definition

Write cl(p, q) as p
q . The class contains a distinguished element (p0, q0) which is “in lowest terms” such that

∀n > 1, n - p0 ∨ n - q0.

2.1.3 Definitions

p

q
+
r

s
:=

ps+ qr

qs
.

p

q
− r

s
:=

ps− qr
qs

.

p

q
· r
s

:=
pr

qs
.

p

q
/
r

s
:=

ps

qr
, r 6= 0.

p

q
≤ r

s
⇐⇒ ps ≤ qr (since q, s ∈ N).

2.1.4 Axioms

The definitions above satisfy all the following properties.

A1 ∀x, y ∈ Q, x+ y = y + x (commutativity of addition).

A2 ∀x, y, z ∈ Q, (x+ y) + z = x+ (y + z) (associativity of addition).

A3 ∃ 0 ∈ Q such that x+ 0 = x ∀x ∈ Q (additive identity).

A4 ∀x ∈ Q, ∃−x ∈ Q such that x+ (−x) = 0 (additive inverse).

M1 ∀x, y ∈ Q, x · y = y · x (commutativity of multiplication).

M2 ∀x, y, z ∈ Q, (x · y) · z = x · (y · z) (associativity of multiplication).
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M3 ∃ 1 ∈ Q such that x · 1 = x ∀x ∈ Q (multiplicative identity).

M4 ∀x ∈ Q, ∃x−1 ∈ Q such that x · x−1 = 1 (multiplicative inverse).

D ∀x, y, z ∈ Q, (x+ y) · z = x · y + x · z (distributivity).

O1 ∀x ∈ Q, x > 0 ∨ x = 0 ∨ x > 0 (trichotomy axiom).

O2 ∀x, y ∈ Q, x > 0 ∧ y > 0 =⇒ x+ y > 0.

O3 ∀x, y ∈ Q, x > 0 ∧ y > 0 =⇒ xy > 0.

O4 ∀x ∈ Q, ∃n ∈ N, n > x (Archimedean property).

2.2 Decimals

2.2.1 Definition

We define the finite decimal

a0.a1a2...ai := a0 +
a1
10

+
a2
100

+ ...+
ai
10i
∈ Q

where a0 ∈ N and an>0 ∈ {0, ..., 9}.

2.2.2 Definition

We define the eventually periodic decimal

a0.a1a2...aiai+1ai+2...aj := a0 +
a1
10

+
a2
100

+ ...+
ai
10i

+
(ai+1ai+2...aj

10j

)( 1

1− 10i−j

)
where a0 ∈ N and an>0 ∈ {0, ..., 9}.

2.2.3 Theorem

There is an eventually periodic decimal expansion x = a0.a1a2...aiai+1ai+2...aj for every x ∈ Q (a0 ∈ N and
an>0 ∈ {0, ..., 9}).

2.2.4 First Definition for R: Decimals

We now have a definition for R, which is

R :=
{
a0.a1a2... | a0 ∈ Z, an>0 ∈ {0, ..., 9}, ∀N ∃ i ≥ N, ai 6= 9

}
. (1)

2.2.5 Theorem

∀x, y ∈ Q,

1. ∃ z ∈ Q, x < z < y.

2. ∃ z ∈ R \Q, x < z < y.

2.3 Countability

2.3.1 Definition

A set S is countable ⇐⇒ ∃ a bijection S −→ N.

2.3.2 Theorem

S ⊂ N is infinite =⇒ S is countable.

2.3.3 Theorem

Z is countable.
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2.3.4 Theorem

Q is countable.

2.3.5 Theorem

R is not countable (uncountable).

2.4 The Completeness Axiom

2.4.1 Definition

S ⊂ R (S 6= ∅) is bounded above if ∃M ∈ R, s ≤M ∀ s ∈ S.
S ⊂ R (S 6= ∅) is bounded below if ∃M ∈ R, s ≥M ∀ s ∈ S.
S is bounded if it is bounded above and below.

2.4.2 Definition

For a set S ⊂ R which is bounded above, the supremum (least upper bound) of S, supS, is an upper bound
such that M < supS =⇒ M is not an upper bound.

For a set S ⊂ R which is bounded below, the infimum (greatest lower bound) of S, inf S, is a lower bound such
that M > inf S =⇒ M is not a lower bound.

2.4.3 Second Definition for R: The Completeness Axiom

The axioms of the rational numbers, together with the axiom below, gives a second definition for R.

For a set S ⊂ R (S 6= ∅) which is bounded above, supS exists and is in R. (2)

The completeness axiom can either be used as a construction of R, or proved to be a property of another
construction, for example definition (1) on the previous page, or a third definition given below.

2.5 Dedekind Cuts

2.5.1 Definition

A set S ⊂ Q is a Dedekind cut if

i S is bounded above but has no maximum.

ii s ∈ S ∧ s > t ∈ Q =⇒ t ∈ S (S is a left semi-infinite interval).

We can think of Dedekind cuts as assigning every real number r ∈ R to a semi-infinite subset of Q,

Sr := (−∞, r) ∩Q

(note that Sr contains no real numbers).

2.5.2 Third Definition for R: Dedekind Cuts

R :=
{

Dedekind cuts ⊂ Q
}

(3)

2.6 Triangle Inequalities

2.6.1 Theorem

∀ a, b, c ∈ R,

1. |a+ b| ≤ |a|+ |b|.

2. |a+ b| ≥ |a| − |b|.

3. |a+ b| ≥ |b| − |a|.

4. |a− b| ≥
∣∣|a| − |b|∣∣.

5. |a| ≤ |b|+ |a− b|.

6. |a| ≥ |b| − |a− b|.

7. |a− b| ≤ |a− c|+ |b− c|.
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3 Sequences

3.0.1 Definition

A sequence is a function a : N −→ R.
We will let an denote a(n) and (an)n≥1 or simply (an) denote the sequence.

3.1 Convergence of Sequences

3.1.1 Definition: Convergence and Divergence

(an) converges ⇐⇒ ∃ a ∈ R, an → a as n→∞ ⇐⇒

∀ ε > 0, ∃N ∈ N such that n ≥ N =⇒ |an − a| < ε.

(an) diverges ⇐⇒ @ such a ⇐⇒

∀ a ∈ R, ∃ ε > 0 such that ∀N ∈ N, ∃n ≥ N such that |an − a| ≥ ε.

3.1.2 Definition

an →∞ ⇐⇒
∀A > 0, ∃N ∈ N such that n ≥ N =⇒ an > A.

3.1.3 Note

an → a ∈ C ⇐⇒ Re an → Re a and Im an → Im a.

3.1.4 Theorem

an → a and an → b =⇒ a = b.

3.1.5 Theorem

(an) is convergent =⇒ (an) is bounded.

3.1.6 Theorem

If an → a and bn → b,

1. an + bn → a+ b.

2. anbn → ab.

3. an
bn
→ a

b (if b 6= 0).

3.1.7 Theorem

If (an) is bounded above and monotonically increasing then an → sup{ai | i ∈ N} := a, written an ↑ a.

3.1.8 Theorem

an → a and bn → b and an ≤ bn ∀n =⇒ a ≤ b.

3.1.9 Theorem∣∣∣an+1

an

∣∣∣→ L < 1 =⇒ an → 0.

3.2 Cauchy Sequences

3.2.1 Definition

(an) is a Cauchy sequence ⇐⇒

∀ ε > 0, ∃N ∈ N such that m,n ≥ N =⇒ |am − an| < ε.
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3.2.2 Theorem

(an) ⊂ R is Cauchy ⇐⇒ (an) is convergent.

3.3 Subsequences

3.3.1 Definition

A subsequence of (an) is a sequence (an(i)) where n : N −→ N is strictly increasing (n(i) < n(i+ 1) ∀ i).

3.3.2 Theorem: Bolzano-Weierstrass

Every bounded sequence of real numbers has a convergent subsequence.

3.3.3 Theorem

an → a =⇒ all subsequences an(i) → a.

4 Series

4.0.1 Definition

For a sequence (an)n≥1, there is a sequence of partial sums (Sn)n≥1 where

Sn =

n∑
i=1

ai = a1 + a2 + a3 + ...

and the infinite series is written
∞∑
n=1

an.

4.1 Convergence of Series

A series is convergent (to A ∈ R) if and only if the sequence of partial sums converges to A:

∞∑
n=1

an = A ⇐⇒ Sn → A.

(and divergent if @ such A).

4.1.1 Theorem
∞∑
n=1

an is convergent =⇒ an → 0.

4.1.2 Theorem

For a sequence (an)n≥1 where an ≥ 0 ∀n ⇐⇒ Sn is monotonically non-decreasing:

1.
∑∞
n=1 an is convergent ⇐⇒ (Sn) are bounded above.

2.
∑∞
n=1 an is divergent (to ∞) ⇐⇒ (Sn) are unbounded.

4.1.3 Corollary: Comparison Test

Suppose 0 ≤ an ≤ bn ∀n

1.
∑∞
n=1 bn is convergent =⇒

∑∞
n=1 an is convergent (and 0 ≤

∑∞
n=1 an ≤

∑∞
n=1 bn).

2.
∑∞
n=1 an is divergent to ∞ =⇒

∑∞
n=1 bn is divergent to ∞.

4.1.4 Theorem: Algebra of Series Limits∑
an and

∑
bn converge =⇒

∞∑
n=1

(λan + µbn) = λ

∞∑
n=1

an + µ

∞∑
n=1

bn.
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4.2 Absolute Convergence

4.2.1 Definition

For a sequence (an)n≥1 ∈ C,
∑∞
n=1 an is absolutely convergent ⇐⇒

∑∞
n=1 |an| is convergent.

4.2.2 Theorem

For a sequence (an)n≥1 ∈ C,
∑
an is absolutely convergent =⇒

∑
an is convergent.

4.3 Further Tests for Convergence

4.3.1 Theorem: Comparison Test II

an ≤ bn ≤ cn ∀n and
∑
an and

∑
cn are both convergent ⇐⇒

∑
bn is convergent.

4.3.2 Lemma∑
n≥1 an is convergent ⇐⇒

∑
n≥N an is convergent for any N .

4.3.3 Theorem: Comparison Test III

an
bn
→ L ∈ R and

∑
bn is absolutely convergent =⇒

∑
an is convergent.

4.3.4 Definition

(an)n≥1 is alternating if a2n ≥ 0 and a2n+1 ≤ 0 (or vice versa).

4.3.5 Theorem: Alternating Series Test

(an)n≥1 is alternating and |an| → 0 =⇒
∑
an converges.

4.3.6 Theorem: Ratio Test

For a sequence (an)n≥1,
∣∣∣an+1

an

∣∣∣→ r < 1 =⇒
∑
an is absolutely convergent.

4.3.7 Theorem: Root Test

For a sequence (an)n≥1, |an|
1
n → r < 1 =⇒

∑
an is absolutely convergent.

4.4 Rearrangement of Series

4.4.1 Definition

Given a bijection n : N −→ N and a sequence (an)n≥1, the sequence of bi := an(i), (bn)n≥1 is a reordering of
(an).

4.4.2 Theorem ∑
an is absolutely convergent

⇐⇒
∞∑

an≥0

an = A+ and

∞∑
an<0

an = A−

=⇒
∑

an = A+ +A− =
∑

bn

where (bn) is any reordering of (an).

4.5 Power Series

4.5.1 Theorem: Radius of Convergence

For the series
∑
anz

n where (an) is a sequence and z, an ∈ C ∀n, ∃R ∈ [0,∞) ∪ {∞} such that

1. |z| < R =⇒
∑
anz

n is absolutely convergent.

2. |z| > R =⇒
∑
anz

n is divergent.
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4.5.2 Corollary

Suppose, for a sequence (an), that
∣∣∣an+1

an

∣∣∣ → L ∈ [0,∞) ∪ {∞} as n → ∞. The radius of convergence of the

power series
∑
anz

n is 1
L .

4.5.3 Definition

The Cauchy Product of the series
∑
an and

∑
bn is

∑
cn where cn :=

∑n
i=0 an−ibi.

4.5.4 Theorem∑
an and

∑
bn are absolutely convergent =⇒

∑
|cn| →

(∑
an
)(∑

bn
)
.

4.5.5 Corollary∑
anz

n and
∑
bnz

n have radii of convergence Ra and Rb =⇒
∑
cnz

n has radius of convergence Rc ≥
min{Ra, Rb}.

4.6 Exponential Power Series

4.6.1 Definition: Exponential Series

Where z ∈ C, define

E(z) :=

∞∑
n=0

zn

n!
.

4.6.2 Lemma

E(z) is absolutely convergent ∀ z ∈ C.

4.6.3 Theorem

E(z)E(w) = E(z + w).

4.6.4 Corollary

1
E(z) = E(−z).

4.6.5 Corollary

E(0) = 1.

4.6.6 Definition

e := E(1).

4.6.7 Theorem

E(n) = en for n ∈ N.

4.6.8 Theorem

E(q) = eq for q ∈ Q.

4.6.9 Theorem

x −→ E(x) is a bijection R −→ (0,∞).

4.6.10 Definition

log : (0,∞) −→ R
x 7−→ log x

where log x is such that E(log x) = x (log is the inverse of E).
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4.6.11 Theorem

Properties of log such as log xy = log x+log y (which follows from 4.6.3) follow from the corresponding properties
of E.

4.6.12 Definition

ax := E(x log a)

for x ∈ R, a ∈ (0,∞).

4.6.13 Definition

cos θ := ReE(iθ), sin θ := ImE(iθ).

5 Continuity

5.1 Prerequisite: Limits

For a countable sequence (an) (a function N −→ R), 3.1.1 defines limn→∞ an. For a function f : R −→ R, can
we define limx→a f(x)?

5.1.1 Definition

For a function f , limx→a f(x) = l ⇐⇒ f(x)→ l as x→ a ⇐⇒

∀ ε > 0, ∃ δ > 0 such that |x− a| < δ =⇒ |f(x)− l| < ε.

5.1.2 Theorem

f(x)→ b and f(x)→ c as x→ a =⇒ b = c (provided the unique limit exists).

5.2 Continuity

5.2.1 Definition

A function f : S −→ R is continuous at a ⇐⇒ limx→a f(x) = f(a) ⇐⇒

∀ ε > 0, ∃ δ > 0 such that |x− a| < δ =⇒ |f(x)− f(a)| < ε.

f is (pointwise) continuous on S ⊆ R ⇐⇒ it is continuous at all a ∈ S, and we may write ‘f is continuous’.

5.2.2 Theorem

E : C −→ C

z 7−→
∞∑
n=0

zn

n!

is continuous on C.

5.2.3 Theorem

f : R −→ R is continuous at a ∈ R ⇐⇒ f(an)→ f(a) ∀ sequences where an → a.

5.2.4 Theorem

f : R −→ R is continuous at a and g : R −→ R is continuous at f(a) =⇒ g ◦ f : R −→ R is continuous at a.

5.3 The Intermediate Value Theorem

5.3.1 Theorem: Intermediate Value Theorem

f : [a, b] −→ R is continuous =⇒ ∀ d ∈ [f(a), f(b)] ∃ c ∈ [a, b] such that d = f(c).
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5.3.2 Corollary (Application)

Let p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 where n ≥ 1, an 6= 0. n is odd =⇒ p(x) has a root.

5.3.3 Corollary (Application)

f : [0, 1] −→ [0, 1] is continuous =⇒ f has a fixed point (∃x ∈ [0, 1], f(x) = x).

5.4 The Extreme Value Theorem

5.4.1 Definition

For a function f : S −→ R (S ⊂ R),
f is bounded above ⇐⇒ ∃M ∈ R, f(x) ≤M ∀x ∈ S.
f is bounded below ⇐⇒ ∃M ∈ R, f(x) ≥M ∀x ∈ S.
f is bounded if it is bounded above and below.

5.4.2 Theorem

f : [a, b] −→ R is continuous =⇒ f is bounded.

5.4.3 Theorem: Extreme Value Theorem

Any continuous f : [a, b] −→ R is bounded and attains its bounds, i.e. ∃ c, d ∈ [a, b],

f(c) ≤ f(x) ≤ f(d) ∀x ∈ [a, b](
f(c) = inf

x∈[a,b]
f(x) and f(d) = sup

x∈[a,b]
f(x)

)
.

5.4.4 Corollary

For a continuous function f : [a, b] −→ R, ∃ c, d ∈ [a, b] such that the image f([a, b]) is the closed interval
[f(c), f(d)].

5.4.5 Theorem

Let f : [a, b] −→ R (or indeed f : R −→ R, excluding the third statement) be continuous.

f is strictly monotonic ⇐⇒ f is injective ⇐⇒ f is a bijection [a, b] −→ [f(a), f(b)].

5.4.6 Theorem

Let f : R −→ R be continuous and injective. f−1 : f(R) −→ R is continuous (where f(R) is the image of f).

5.5 Open, Closed and Compact Sets

5.5.1 Definition

A set S ⊂ R is open ⇐⇒
∀ s ∈ S, ∃ δ > 0 such that (x− δ, x+ δ) ⊂ S.

5.5.2 Definition

A set S ⊂ R is closed ⇐⇒
∀ sequences (sn) ⊆ S, sn → s =⇒ s ∈ S.

S is compact if, additionally, it is bounded.

5.5.3 Note

The use of ‘open’ and ‘closed’ in these definitions is misleading. The definitions are not antonymous as the
words are in English. For example:

- (0, 1] is neither open nor closed.

- R is both open and closed.

- ∅ is both open and closed.
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5.5.4 Theorem

The open interval (a, b) is an open set.

5.5.5 Theorem

1. For a set of open subsets of R, {Si}, S =
⋃
i Si is also an open set.

2. For a finite set of open subsets of R, {Si}, S =
⋂
i Si is also an open set.

5.5.6 Theorem

The closed interval [a, b] is compact.

5.5.7 Theorem

1. For a finite set of closed subsets of R, {Si}, S =
⋃
i Si is also a closed set.

2. For a set of closed subsets of R, {Si}, S =
⋂
i Si is also a closed set.

5.5.8 Theorem

S ⊂ R is open ⇐⇒ R \ S is closed.

5.6 Uniform Continuity and Convergence

5.6.1 Definition

A function f : S −→ R is uniformly continuous ⇐⇒

∀ ε > 0, ∃ δ > 0 such that ∀x, y ∈ S, |x− y| < δ =⇒ |f(x)− f(y)| < ε.

5.6.2 Theorem

f : S −→ R is uniformly continuous =⇒ f is continuous.

5.6.3 Theorem

f : S −→ R is continuous and S is compact =⇒ f is uniformly continuous.

5.6.4 Definition

Let f1, f2, f3, ... : S −→ R be a sequence of functions defined on S ⊂ R. (fn) converges pointwise to f : S −→
R ⇐⇒

∀x ∈ S, ∀ ε > 0, ∃N ∈ N such that n ≥ N =⇒ |fn(x)− f(x)| < ε

and (fn) converges uniformly to f : S −→ R ⇐⇒

∀ ε > 0, ∃N ∈ N such that ∀x ∈ S, n ≥ N =⇒ |fn(x)− f(x)| < ε.

5.6.5 Theorem

(fn) : S −→ R are all uniformly continuous and converge uniformly to f : S −→ R =⇒ f is uniformly
continuous.

5.6.6 Theorem

(fn) : S −→ R are all continuous (not necessarily uniformly) and converge uniformly to f : S −→ R =⇒ f is
continuous.

5.6.7 Definition
∞∑
i=1

fi converges ⇐⇒ the sequence of partial sums Sn(x) =

n∑
i=1

fi(x) converges

and the series converges uniformly ⇐⇒ the sequence of partial sums converges uniformly.
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5.6.8 Theorem: Weierstrass M-Test

Let f1, f2, f3, ... : S −→ R be a sequence of continuous functions and let M1,M2,M3, ... be such that ∀ i, ∀x ∈
S, |fi(x)| ≤Mi.

∞∑
i=1

Mi converges =⇒
∞∑
i=1

fi(x) converges uniformly to g : S −→ R

and g is continuous.

6 Differentiation

6.0.1 Definition

A function f : S −→ R is differentiable at a ∈ R ⇐⇒

f ′(a) := lim
x→a

f(x)− f(a)

x− a

(
or lim

h→0

f(a+ h)− f(a)

h

)
exists

which is equivalent to

∀ ε > 0, ∃ δ > 0 such that |x− a| < δ =⇒
∣∣∣ f(x)−f(a)x−a − f ′(a)

∣∣∣ < ε

(for some limit f ′(a)). We write the derivative function of f as f ′, defined wherever the derivative exists. f is
differentiable on S ⊆ R ⇐⇒ f is differentiable at all a ∈ S, and we may write ‘f is differentiable’.

6.0.2 Theorem

f(x) = xn has derivative f ′(x) = nxn−1 for n ≥ 0.

6.0.3 Theorem

f(x) = ex has derivative f ′(x) = ex.

6.0.4 Theorem

f is differentiable at a =⇒ f is continuous at a.

6.1 Properties of Derivatives

6.1.1 Theorem: Linearity

f, g are differentiable at a =⇒ h = λf + µg is differentiable at a, and h′(a) = λf ′(a) + µg′(a).

6.1.2 Theorem: Product Rule

f, g are differentiable at a =⇒ h = fg is differentiable at a, and h′(a) = f ′(a)g(a) + f(a)g′(a).

6.1.3 Theorem: Quotient Rule

f, g are differentiable at a =⇒ h = f
g is differentiable at a, and h′(a) = f ′(a)g(a)−f(a)g′(a)

(g(a))2 .

6.1.4 Theorem: Chain Rule

f, g are differentiable at a =⇒ h = f ◦ g is differentiable, and h′(a) = f ′ ◦ g(a)g′(a).

6.2 The Mean Value Theorem

6.2.1 Definition

The function f : S −→ R has a local minimum at x ∈ S ⇐⇒

∃ δ > 0 such that |x− y| < δ =⇒ f(x) ≤ f(y)

and has a local maximum at x ∈ S ⇐⇒

∃ δ > 0 such that |x− y| < δ =⇒ f(x) ≥ f(y).
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6.2.2 Theorem

f : [a, b] −→ R has a local minimum or maximum at x ∈ (a, b) and f is differentiable at x =⇒ f ′(x) = 0. It
is important to use the specific interval notation in this result because if x = a or b, the definitions allow for a
local minimum or maximum which may not have f ′(x) = 0 necessarily. Also note that a function may satisfy
f ′(x) = 0 for some x, but not have a local minimum or maximum at x, e.g. f(x) = x3.

6.2.3 Theorem: Rolle’s Theorem

For a function f which is continuous on [a, b] and differentiable on (a, b), f(a) = f(b) =⇒ ∃ c ∈ (a, b), f ′(c) = 0.

6.2.4 Theorem: Mean Value Theorem

For a function f which is continuous on [a, b] and differentiable on (a, b), ∃ c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

6.2.5 Theorem

Let f be continuous on [a, b] and differentiable on (a, b).

1. f ′(x) ≥ [>] 0 ∀x ∈ (a, b) =⇒ f is monotonically [strictly] increasing on [a, b].

2. f ′(x) ≤ [<] 0 ∀x ∈ (a, b) =⇒ f is monotonically [strictly] decreasing on [a, b].

3. Corollary of 1 and 2: f ′(x) = 0 ∀x ∈ (a, b) =⇒ f is constant on [a, b].

4. Corollary of 3: let g also be continuous on [a, b] and differentiable on (a, b). f ′(x) = g′(x) ∀x ∈ (a, b) =⇒
∃ c ∈ R such that f = g + c.

6.3 L’Hôpital’s Rule

6.3.1 Theorem: L’Hôpital’s Rule

Let f and g be defined and differentiable (with g′(x) 6= 0) on an interval containing a, except possibly at a. If
limx→a f(x) = limx→a g(x) = 0 and limx→a(f ′(x)/g′(x)) exists, then

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)
.

The rule also applies where f, g →∞ as x→ a, or where a is ∞ or −∞.

6.3.2 Corollary

Assuming f ′′(x) exists on the neighbourhood of a and is continuous at a, it is equal to

lim
h→0

f(a+ h)− 2f(a) + f(a− h)

h2
.

6.4 Higher Derivatives

Assuming they exist, the first, second, ..., nth derivatives of f will be written f ′, f ′′, ..., f (n). Notice the

parentheses; fn denotes n iterations of f , not a derivative. Derivatives may also be written df
dx ,

d2f
dx2 , ...,

dnf
dxn ,

where df
dx = d

dx [f ], indicating that f is being differentiated, and higher derivatives in this notation represent
iterations of differentiation.

6.4.1 Theorem: Taylor’s Theorem

Suppose for a function f : [p, q] −→ R that f (i) is continuous ∀ i ≤ n and that f (n+1) is defined on (p, q). Let
a ∈ [p, q]. For any x ∈ [p, q], x 6= a, ∃ t between x and a such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + ...+

f (n)(a)

n!
(x− a)n +Rn

where Rn = f(n+1)(t)
(n+1)! (x− a)n+1.
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6.4.2 Definition: Taylor Series

Suppose now that f (n)(a) exists ∀n ≥ 0. The Taylor series for f about a is

f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + ...+

f (n)(a)

n!
(x− a)n + ....

6.5 Second Derivatives and Convexity

6.5.1 Theorem

Suppose f ′(a) = 0.

1. f ′′(a) > 0 =⇒ f has a local minimum at x = a.

2. f ′′(a) < 0 =⇒ f has a local maximum at x = a.

6.5.2 Definition

f : [a, b] −→ R is convex ⇐⇒ ∀ c < t < d ∈ [a, b],

f(c) +
f(d)− f(c)

d− c
(t− c) ≥ f(t),

which is equivalent to saying that the set S =
{

(x, y) | x ∈ [a, b], y ≥ f(x)
}

is a geometrically convex subset
of R2; any line segment between two points within S lies entirely within S.

6.5.3 Theorem

f : [a, b] −→ R is convex ⇐⇒ f ′′(x) ≥ 0 ∀x ∈ (a, b) (assuming f ′′ is continuous).

6.6 Limits of Differentiable Functions

6.6.1 Theorem

Let fn : [a, b] −→ R be a sequence of differentiable functions and suppose ∃ c ∈ [a, b] such that limn→∞ fn(c)
exists. If the sequence (f ′n) converges uniformly, then (fn) converges uniformly to a function f , and
limn→∞ f ′n(x) = f ′(x).

6.6.2 Theorem: Differentiation of Power Series

f(x) =
∑∞
n=0 anx

n has a continuous derivative on (−R,R) (where R > 0 is the radius of convergence) and
f ′(x) =

∑∞
n=0 nanx

n−1 ∀ |x| < R.

7 Integration

The definite integral ∫ b

a

f(x) dx

is intended to find the area under the curve f between a and b. In calculus and applications, this was derived
by the limit of Riemann sums. Here we will use Darboux integration, but the two are ultimately equivalent.

7.1 The Darboux Sum

7.1.1 Definition

A partition of [a, b] is a sequence x0, ..., xk such that a = x0 < x1 < ... < xk−1 < xk = b.

7.1.2 Definition

Let f : [a, b] −→ R be bounded, let P = {x0, ..., xk} be a partition of [a, b] and let

mi = inf
xi≤t≤xi+1

f(t), Mi = sup
xi≤t≤xi+1

f(t).

The lower and upper Darboux sums of f with respect to P are

L(f, P ) :=

k−1∑
i=0

mi(xi+1 − xi), U(f, P ) :=

k−1∑
i=0

Mi(xi+1 − xi).

13



7.1.3 Lemma

For a bounded function f : [a, b] −→ R and any partition P of [a, b],

L(f, P ) ≤ U(f, P ).

7.1.4 Definition

A partition Q is a refinement of P ⇐⇒ every point of P belongs to Q, written P ď Q, and a proper refinement
⇐⇒ additionally, Q 6= P , written P ă Q. R is a common refinement of P and Q ⇐⇒ P ď R ∧Q ď R.
Note that some may write ă in general, and state a proper refinement explicitly using ň, just as some use ⊂
in general for a subset, and state a proper subset explicitly using (.

7.1.5 Theorem

P ă Q =⇒
L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

7.1.6 Theorem

For a bounded function f : [a, b] −→ R and any two partitions P,Q of [a, b],

L(f, P ) ≤ U(f,Q).

7.2 The Darboux Integral

7.2.1 Definition

Theorem 7.1.6 allows us to make the following definitions. The lower and upper Darboux integrals of f on [a, b]
are ∫ b

a

f(x) dx := sup
P
L(f, P ),

∫ b

a

f(x) dx := inf
P
U(f, P ).

7.2.2 Lemma

Assuming f : [a, b] −→ R is bounded, ∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx.

7.2.3 Definition

f is Darboux integrable on [a, b] ⇐⇒ the upper and lower Darboux sums are equal, in which case,∫ b

a

f(x) dx :=

∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

7.2.4 Theorem

A bounded function f : [a, b] −→ R is Darboux integrable ⇐⇒

∀ ε > 0, ∃ a partition P of [a, b], U(f, P )− L(f, P ) < ε.

7.2.5 Corollary

Let f : [a, b] −→ R be a bounded function and (Pn) be a sequence of partitions of [a, b] such that
limn→∞

(
U(f, Pn)− L(f, Pn)

)
= 0. f is Darboux integrable and∫ b

a

f(x) dx = lim
n→∞

L(f, Pn) = lim
n→∞

U(f, Pn).

7.2.6 Theorem

f : [a, b] −→ R is continuous =⇒ f is Darboux integrable.
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7.3 Basic Properties

By the remark at the beginning of this section, Darboux integration will now be referred to as simply integration
(and Darboux integrable as integrable).

7.3.1 Theorem

Let f, g : [a, b] −→ R be integrable.

1. f(x) ≤ g(x) ∀x ∈ [a, b] =⇒
∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

2. Lemmas for 3:
∫ b
a
cf(x) dx = d

∫ b
a
f(x) dx ∀ c ∈ R;

∫ b
a
f(x) + g(x) dx =

∫ b
a
f(x) dx+

∫ b
a
g(x) dx.

3.

∫ b

a

cf(x) + dg(x) dx = c

∫ b

a

f(x) dx+ d

∫ b

a

g(x) dx ∀ c, d ∈ R.

4. ∀ c ∈ (a, b), f is integrable on [a, c] and [c, b] and

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

7.3.2 Theorem

Let f : [a, b] −→ R be integrable and let m ≤ f(x) ≤M ∀x ∈ [a, b]. Let g : [m,M ] −→ R be continuous.

h = g ◦ f

is also integrable on [a, b].

7.3.3 Corollary

Let f : [a, b] −→ R be integrable. |f | is also integrable on [a, b], and∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx

which is analogous to the triangle inequality.

7.3.4 Corollary

f, g : [a, b] −→ R are integrable =⇒ fg : [a, b] −→ R is integrable (the product, not the composition).

7.4 The Fundamental Theorem of Calculus

7.4.1 Theorem: First Version

Let f : [a, b] −→ R be continuous and define F : [a, b] −→ R as

F (x) =

∫ x

a

f(t) dt.

F is continuous on [a, b] and differentiable on (a, b) and F ′(x) = f(x) ∀x ∈ (a, b).

7.4.2 Theorem: Second Version

Let f : [a, b] −→ R be continuous and have continuous derivative on (a, b).∫ b

a

f ′(x) dx = f(b)− f(a).

7.4.3 Theorem

Let n ∈ Z.

1. n 6= −1 (and if n < 0, 0 /∈ [a, b]) =⇒
∫ b
a
xn dx = bn+1

n+1 −
an+1

n+1 .

2.
∫ b
a

1
x dx = log b− log a.
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7.4.4 Theorem: Integral Mean Value Theorem

For a continuous f : [a, b] −→ R, ∃ c ∈ (a, b),∫ b

a

f(x) dx = f(c)(b− a).

7.4.5 Theorem: Integration by Parts

For two continuous functions f, g : [a, b] −→ R with continuous first derivatives,∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x) dx.

7.4.6 Theorem: Integration by Substitution

For a continuous f : [a, b] −→ R and a function φ : [c, d] −→ [a, b] with continuous first derivative on (c, d),∫ φ(d)

φ(c)

f(x) dx =

∫ d

c

f(φ(t))φ′(t) dt.

7.5 Limits of Integrable Functions

7.5.1 Theorem

Just as theorem 6.6.1 states the commutativity of uniform convergence and differentiation, the same is true
for integration: let fn : [a, b] −→ R be a sequence of integrable functions which converge uniformly to f . f is
integrable and

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

7.6 Improper Integrals

7.6.1 Definition

Suppose f : (a, b] −→ R is integrable on all subintervals [c, b] ⊂ (a, b]. The improper integral over (a, b] is
defined ∫ b

a

f(x) dx = lim
c↓a

∫ b

c

f(x) dx

if the limit exists. Similarly, if f [a, b) −→ R is integrable on all subintervals [a, c] ⊂ [a, b), we define∫ b

a

f(x) dx = lim
c↑b

∫ c

a

f(x) dx

if the limit exists.

7.6.2 Definition

If the integral
∫ b
a
f dx is unbounded at some point c ∈ (a, b), or if a = −∞ and b = ∞, we can simply define

the improper integral ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

(and in the second case the choice of c is irrelevant, done only in order to apply the previous definition).

7.7 Lebesgue’s Criterion for Integrability

Several results so far have outlined conditions which imply integrability, and there are many examples of
discontinuous, bounded integrable functions. This section is about exactly which functions are and are not
integrable.

7.7.1 Definition

An open cover of S ⊂ R is a set of open intervals {Uα = (aα, bα)} such that

S ⊂
⋃
α

Uα.
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7.7.2 Lemma

Let {Uα = (aα, bα)} be an open cover of S ⊂ R.

1. {Uα} has a countable subcover (∃ a countable set of Ui ∈ {Uα} which is also an open cover of S).

2. S is compact =⇒ {Uα} has a finite subcover.

7.7.3 Definition

S ⊂ R has (outer) measure zero ⇐⇒ ∀ ε > 0, ∃ a finite or countable open cover {Uα = (aα, bα)} of S such
that ∑

α

(bα − aα) < ε.

7.7.4 Corollary

A single point has measure zero and a countable union of sets of measure zero has measure zero.

7.7.5 Theorem

Any set containing an interval of the form [a, b] (a < b) does not have measure zero.

7.7.6 Definition

For the purposes of results that follow, we define the ‘jump’ of f : [a, b] −→ R at x as

jf (x) = inf
δ>0

(
sup
|x−y|<δ

f(y)− inf
|x−y|<δ

f(y)

)
For any x ∈ [a, b] and fixed δ > 0, sup|x−y|<δ f(y) ≥ f(x) ≥ inf |x−y|<δ f(y), so jf (x) ≥ 0 ∀x ∈ [a, b] with
equality if and only if f is continuous at x.

7.7.7 Definition

We can now define the set of discontinuities of f : [a, b] −→ R by

D(f) =
{
ξ ∈ [a, b] | f is not continuous at ξ

}
=
{
ξ ∈ [a, b] | jf (ξ) > 0

}
and also, for c > 0, define

Dc(f) =
{
ξ ∈ [a, b] | jf (ξ) ≥ c

}
.

7.7.8 Theorem

f : [a, b] −→ R is integrable =⇒ Dc(f) has measure zero ∀ c > 0 (requires 7.7.4).

7.7.9 Corollary

Noting that D(f) =
⋃
n∈N

D 1
n

(f), f : [a, b] −→ R is integrable =⇒ D(f) has measure zero by 7.7.4.

7.7.10 Lemma

For f : [a, b] −→ R, each set Dc(f) is compact.

7.7.11 Theorem

f is bounded and D(f) has measure zero =⇒ f is integrable.

7.7.12 Theorem: Lebesgue’s Criterion for Integrability

The combination of 7.7.9 ( =⇒ ) and 7.7.11 (⇐= ) gives Lebesgue’s criterion:
A bounded function f : [a, b] −→ R is integrable ⇐⇒

D(f) =
{
ξ ∈ [a, b] | f is not continuous at ξ

}
has measure zero.
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