
Required for: MATH40004 Calculus and Applications
Based on the lectures of Demetrios Papageorgiou and Vahid Shahrezaei, Imperial College London

1 Limits of Functions

1.0.1 Definition: as x→ x0, f(x)→ l

For a function f , defined over an interval containing x0 but not necessarily at x0, l ∈ R is the limit of f(x)
as x approaches x0 if ∀ ε > 0, ∃ δ > 0 such that |x− x0| < δ =⇒ |f(x)− l| < ε.

Written limx→x0
f(x) = l.

1.0.2 Definition: as x→∞, f(x)→ l

For a function f , defined over an interval (a,∞), l ∈ R is the limit of f(x) as x approaches ∞ if ∀ ε > 0,
∃A > a such that x > A =⇒ |f(x)− l| < ε.

Written limx→∞ f(x) = l [Similarly for limx→−∞ f(x) = l].

1.0.3 Definition: as x→ x0, f(x)→∞

For a function f , defined over an interval containing x0 but not necessarily at x0, the limit of f(x) as x
approaches x0 is ∞ if ∀B ∈ R>0, ∃ δ > 0 such that |x− x0| < δ =⇒ f(x) > B.

Written limx→x0 f(x) =∞ [Similarly for limx→x0 f(x) = −∞].

1.0.4 Definition: one-sided limits

For a function f , defined over an interval to the right [Resp. left] of x0, l ∈ R is the limit of f(x) as x
approaches x0 from the right [Resp. left] if ∀ ε > 0, ∃ δ > 0 such that x0 < x < x+ δ =⇒ |f(x)− l| < ε [Resp.
x− δ < x < x0 =⇒ |f(x)− l| < ε].

Written limx→x0+ f(x) = l [Resp. limx→x0− f(x) = l].

1.1 Properties of Limits

1.1.1 Theorem

lim
x→x0

f(x) + g(x) = lim
x→x0

f(x) + lim
x→x0

g(x).

lim
x→x0

f(x)g(x) = lim
x→x0

f(x) lim
x→x0

g(x).

lim
x→x0

f(x)

g(x)
=

limx→x0
f(x)

limx→x0 g(x)
.

If h(x) is continuous at limx→x0
f(x), then

lim
x→x0

h(f(x)) = h

(
lim
x→x0

f(x)

)
.

1.1.2 Theorem: Comparison Test

If limx→x0
f(x) = 0 and |g(x)| ≤ |f(x)| ∀x approaching x0, then limx→x0

g(x) = 0 (applies to limx→∞).
Similarly, if limx→x0

g(x) =∞, then limx→x0
f(x) =∞.
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2 Differentiation

2.0.1 Definition

For a function f , the derivative of f at x is

df

dx
=

d

dx
[f(x)] = f ′(x) = lim

h→0

f(x+ h)− f(x)

h
.

If the limit exists, f is differentiable.

2.0.2 Theorem

d

dx
[(f + g)(x)] = f ′(x) + g′(x).

d

dx
[(fg)(x)] = f ′(x)g(x) + f(x)g′(x).

d

dx

[
f(x)

g(x)

]
=
f ′(x)g(x)− f(x)g′(x)

(g(x))2
.

d

dx
[(f ◦ g)(x)] = f ′ ◦ g(x)g′(x).

2.0.3 Note

For two functions x and y of a parameter t, the derivative dy
dx =

( dydt )
( dxdt )

.

2.1 Polynomials

2.1.1 Theorem

Let n be an integer, n > 1, and let f(x) = xn. f ′(x) = df
dx = nxn−1.

2.1.2 Theorem

Let a be any real number and let f(x) = xa. For x > 0, f ′(x) = df
dx = axa−1.

2.2 Maxima, Minima and Continuity

2.2.1 Definition

For a function f defined at m, m is a maximum of f if f(m) ≥ f(x) ∀x and a minimum if f(m) ≤ f(x) ∀x.

2.2.2 Theorem

For a function f defined and differentiable over an interval (a, b),

c is a maximum or a minimum =⇒ f ′(c) = 0

2.2.3 Definition

In the context of calculus, f(x) is continuous over the interval [a, b] if limh→0 f(x+ h) = f(x) ∀ a ≤ x ≤ b.

2.2.4 Theorem

For a function f defined and continuous over an interval [a, b], ∃xmax, xmin such that f(xmax) ≥ f(x) and
f(xmin) ≤ f(x) ∀x ∈ [a, b].

2.2.5 Theorem: Rolle’s Theorem

For a function f defined and continuous over an interval [a, b] and differentiable over (a, b), f(a) = f(b) =⇒
∃ c ∈ (a, b) such that f ′(c) = 0.
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2.2.6 Theorem: Mean Value Theorem

For a function f defined and continuous over an interval [a, b] and differentiable over (a, b), ∃ c ∈ (a, b) such
that

f ′(c) =
f(b)− f(a)

b− a
(there is a point in the interval at which the slope of the curve is equal to the slope between the two points).

2.2.7 Theorem: Cauchy Mean Value Theorem

For two functions f, g defined and continuous over an interval [a, b] and differentiable over (a, b), where g(a) 6=
g(b), ∃ c ∈ (a, b) such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.

2.2.8 Definition

For a function f defined over an interval, ∀x1, x2 in the interval, f is
increasing if x1 < x2 =⇒ f(x1) ≤ f(x2),
decreasing if x1 < x2 =⇒ f(x1) ≥ f(x2),
strictly increasing if x1 < x2 =⇒ f(x1) < f(x2),
strictly decreasing if x1 < x2 =⇒ f(x1) > f(x2).

2.2.9 Theorem

For a function f defined and continuous over an interval [a, b] and differentiable over (a, b),
f ′(x) = 0 ∀x ∈ (a, b) =⇒ f is constant over (a, b),
f ′(x) > 0 ∀x ∈ (a, b) =⇒ f is strictly increasing over (a, b),
f ′(x) < 0 ∀x ∈ (a, b) =⇒ f is strictly decreasing over (a, b).

2.2.10 Theorem: Intermediate Value Theorem

For a function f defined and continuous over an interval [a, b], ∀ y∗ ∈ [f(a), f(b)] ∃x∗ ∈ [a, b] such that
y∗ = f(x∗).

3 Inverse Functions

3.0.1 Definition

For a function f defined on an interval, We require a unique x0 in the domain for each y0 in the codomain such
that y0 = f(x0) in order to define g(y) = x. This inverse function is often notated x = f−1(y).

3.0.2 Theorem

If a function is continuous and is strictly increasing or decreasing, the inverse exists.

3.0.3 Theorem

Specifically, for a function f continuous over an interval [a, b] and strictly increasing or decreasing, the inverse
is defined over the interval [f(a), f(b)].

3.1 Derivatives of Inverse Functions

3.1.1 Theorem

For a function f differentiable and strictly increasing or decreasing over an interval, f−1′(x) = 1
f ′(x) .

3.2 Logarithms

3.2.1 Definition

log x is the area under the curve 1
x between 1 and x for x ≥ 1 or negative the area between 1 and x for 0 < x ≤ 1.

log 1 := 0.
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3.2.2 Theorem

The derivative of log x exists and is equal to 1
x .

3.2.3 Theorem

For a, b > 0, log(ab) = log a+ log b.

3.2.4 Corollary

For a > 0, n ∈ Z, log(an) = log(a · a · a · ... · a︸ ︷︷ ︸
n

) = n log a.

3.2.5 Corollary

For a, b > 0, log(ab ) = log(ab−1) = log a+ log b−1 = log a− log b.

3.2.6 Theorem

log x (defined for x > 0) is strictly increasing and its range is (−∞,∞).

3.3 The Exponential Function

3.3.1 Definition

Define exp(x) as the inverse of log x, which exists. Define e = exp(1). Now exp(x) = ex (provable by induction).
I will write ex from now on.

3.3.2 Theorem

The derivative of ex exists and is equal to ex.

3.3.3 Theorem

d
dxa

x = ax(log a).

4 Finding Limits

4.0.1 Theorem

For a ∈ R>0, limn→∞
(1+a)n

n →∞.

4.0.2 Corollary

limn→∞
en

n →∞.

4.0.3 Theorem

f(x) = ex

x is strictly increasing for x > 1 and limx→∞ f(x) =∞.

4.0.4 Corollary

limx→∞ x− logx =∞.

4.0.5 Corollary

limx→∞
x

logx =∞.

4.0.6 Corollary

limx→∞ x
1
x = 1.

4.0.7 Theorem

f(x) = ex

xm (m ∈ R>0) is strictly increasing for x > m and limx→∞ f(x) =∞.
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4.0.8 Theorem: L’Hôpital’s Rule

When f(x0)
g(x0) is of an indeterminant form ( 0

0 or ∞∞ ),

lim
x→x0

f(x)

g(x)
= lim
x→x0

f ′(x)

g′(x)
.

The rule holds for limits where x0 is ∞ or −∞.

5 Integration

5.0.1 Definition

The indefinite integral of a function f , defined over some interval, is F such that F ′(x) = f(x), defined over
the same interval. The integral is written

F =

∫
f dx

which is not unique, since if G(x) := F (x) + c, d
dx

[
F −G

]
= 0 =⇒ G′(x) = F ′(x) = f(x).

5.0.2 Definition

The definite integral from a to b of a function f , defined over [a, b], is the area under the curve between x = a
and x = b, written ∫ b

a

f dx

(which is unique, since the constants from F (a) and F (b) are equal and cancel - see 5.1.4 fundamental theorem
of calculus). Note any area beneath the x-axis is negative in the definite integral.

5.0.3 Theorem

Define a function for the area under the curve between a and some x,

Fa(x) =

∫ x

a

f(t) dt

Fa(x) is differentiable with derivative f(x) (for any a). (f(x), which is the height of the curve at x, can be
thought of as the rate of change of the area under the curve at x, which does not depend on the lower limit a).

5.1 The Riemann Sum

5.1.1 Definition

For a function f defined over [a, b], take a partition xi = a + ih, i = 0, ..., n (where h = b−a
n ). For each

subinterval, let x∗i ∈ [xi−1, xi]. The Riemann Sum is defined

n∑
i=1

f(x∗i )h.

Three useful cases are

- x∗i = xi, the right-hand Riemann Sum.

- x∗i = xi−1, the left-hand Riemann Sum.

- x∗i = 1
2 (xi + xi−1), the midpoint Riemann Sum.

5.1.2 Theorem

lim
n→∞

(
n∑
i=1

f(x∗i )h

)
=

∫ b

a

f dx
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5.1.3 Theorem ∫ b

a

cf dx = c

∫ b

a

f dx.∫ b

a

f + g dx =

∫ b

a

f dx+

∫ b

a

g dx.∫ b

a

f dx = −
∫ a

b

f dx.

For c ∈ (a, b), ∫ b

a

f dx =

∫ c

a

f dx+

∫ b

c

f dx.

If f(x) ≤ g(x) ∀x ∈ [a, b], ∫ b

a

f dx ≤
∫ b

a

g dx.

5.1.4 Theorem: The Fundamental Theorem of Calculus

For a function F differentiable on [a, b] and with F ′ integrable on [a, b],∫ b

a

F ′ dx = F (b)− F (a).

5.1.5 Theorem

d

dx

[∫ g(x)

a

f(t) dt

]
= f(g(x)) · g′(x).

5.2 Improper Integrals

5.2.1 Definition∫ b
a
f dx is an improper integral if a = −∞ or b =∞ or f(x)→ ±∞ in (a, b). Improper integrals can be found

by taking limits of proper integrals. If the limits are finite, the integral is convergent, otherwise it is divergent.

5.2.2 Theorem: Comparison Test

If |g(x)| ≤ f(x) ∀x ≥ a, then

1.
∫∞
a
f dx is convergent =⇒

∫∞
a
g dx is convergent.

2.
∫∞
a
g dx is divergent =⇒

∫∞
a
f dx is divergent.

5.2.3 Theorem ∫ ∞
1

1

xp
dx

{
converges if p > 1

diverges if p ≤ 1

5.2.4 Theorem ∫ 1

0

logx dx is convergent

5.2.5 Theorem: Integral Mean Value Theorem

For functions f and g continuous on [a, b] with g(x) ≥ 0 for x ∈ [a, b], ∃x0 ∈ (a, b) such that∫ b

a

fg dx = f(x0)

∫ b

a

g dx.
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6 Applications of Integration

6.0.1 Theorem

The length of a curve between x = a and x = b is

L =

∫ b

a

ds =

∫ b

a

√
1 +

(
df

dx

)2

dx =

∫ tb

ta

√(
dx

dt

)2

+

(
dy

dt

)2

dt

where x(t) and y(t) are a parametrisation of the curve given by f .

6.0.2 Theorem

Let Px be a family of planes with common axis x, where a solid V lies between planes Pa and Pb. If a function
for the area of V cut by Px is A(x) then the volume is

V =

∫ b

a

A dx.

6.0.3 Theorem

The solid produced by revolving the area under a curve f(x) between x = a and x = b about the x-axis is

V = π

∫ b

a

f2 dx.

The solid produced by revolving the area under a curve f(x) between x = a and x = b about the y-axis is

V = 2π

∫ b

a

xf dx.

6.0.4 Theorem

The surface area produce by revolving the curve f(x) between x = a and x = b about the x-axis is

S = 2π

∫ b

a

f ds = 2π

∫ b

a

f

√
1 +

(
df

dx

)2

dx.

6.0.5 Theorem

In polar coordinates, where r is a function of θ, the region bounded by a curve and the half-lines θ = α and
θ = β is

R =
1

2

∫ β

α

r2 dθ.

6.0.6 Theorem

The length of a curve between θ = α and θ = β is

L =

∫ β

α

√(
dr

dθ

)2

+ r2 dθ.

6.1 Centre of Mass

6.1.1 One-Dimensional Discrete Centre of Mass

For a set of discrete masses with coordinates xi and masses mi, the centre of mass x̄ must be such that there
is a zero total moment, so it satisfies∑

i

mi(x̄− xi) = 0 ⇐⇒ x̄ =

∑
imixi∑
imi

.
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6.1.2 Two-Dimensional Discrete Centre of Mass

For a set of discrete masses with coordinates (xi, yi) and masses mi, the centre of mass (x̄, ȳ) must be such
that there is a zero total moment in both dimensions, so it satisfies∑

i

mi(x̄− xi) = 0 and
∑
i

mi(ȳ − yi) = 0

⇐⇒ (x̄, ȳ) =

(∑
imixi∑
imi

,

∑
imiyi∑
imi

)
.

6.1.3 Two-Dimensional Continuous Centre of Mass

For a continuous region bounded by a curve f and x = a and x = b, take a partition xi = a + ih, i = 0, ..., n
(where h = b−a

n ). For a rectangle Ri, centre of mass (x∗i , y
∗
i ) = (1

2 (xi+xi−1), 1
2f(xi)), the moments of Ri about

the x and y-axes are

Mx(Ri) = mi · dx-axis = ρf(x∗i )∆x ·
1

2
f(x∗i )

and My(Ri) = mi · dy-axis = ρf(x∗i )∆x · x∗i .

Therefore, in the limiting partition, the moments of the union of the rectangles about the x and y-axes are

Mx = lim
n→∞

n∑
i=1

ρ · 1

2
f(x∗i )

2∆x = ρ · 1

2

∫ b

a

f2 dx

and My = lim
n→∞

n∑
i=1

ρ · x∗i f(x∗i )∆x = ρ ·
∫ b

a

xf dx.

Note that the total mass of the region is ρ
∫ b
a
f dx, and so

x̄ =

∫ b
a
xf dx∫ b
a
f dx

ȳ =
1
2

∫ b
a
f2 dx∫ b

a
f dx

(so we can assume ρ = 1 without loss of generality).

6.1.4 Theorem: Theorem of Pappus

Let R be a region entirely to one side of a line l. Let A be the area of R, V the volume of revolution of R about
l and d the circumference of the circle of revolution of the centre of mass of R about l.

V = Ad.

7 Series, Power Series and Taylor’s Theorem

7.0.1 Definition

For a sequence of real numbers (an)n≥1, the sequence of N th partial sums (series) is (SN )N≥1, where

SN =

N∑
n=1

an.

7.0.2 Definition

If SN → S as n→∞, the series (SN ) converges to

S = lim
N→∞

N∑
n=1

an :=

∞∑
n=1

an.

If SN →∞ as n→∞, the series diverges.
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7.0.3 Definition

A geometric series is a sequence of partial sums of a sequence of the form an = a0r
n−1.

7.0.4 Theorem

For a geometric series,

SN =
a0(1− rN )

1− r

7.0.5 Corollary

For a geometric series with |r| < 1,

S∞ =
a0

1− r
and so the series converges. If |r| ≥ 1, the series diverges.

7.1 Series of Positive or Negative Terms

7.1.1 Theorem

If a sequence of partial sums (SN ) has only positive terms and is bounded above, the series converges. If the
sequence of partial sums is not bounded above, the series diverges (analogous theorem for negative terms).

7.1.2 Theorem
∞∑
n=1

1

n
→∞.

7.1.3 Lemma
∞∑
n=1

an and

∞∑
n=1

bn converge =⇒
∞∑
n=1

(αan + βbn) converges.

7.1.4 Theorem
∞∑
n=1

an converges =⇒ an → 0 as n→∞.

7.1.5 Corollary

∞∑
n=1

an converges =⇒
∞∑
n=N

an → 0 as N →∞.

7.2 Series and Cauchy Sequences

7.2.1 Definition

A sequence (an) is Cauchy if

∀ ε, ∃N ∈ N, m, n ≥ N =⇒ |am − an| < ε.

The convergent property of Cauchy sequences is necessary for the next few theorems (see Required for: Analysis
I).

7.2.2 Theorem: Alternating Series Test

For a decreasing sequence of positive numbers (an), where an → 0 as n→∞,

∞∑
n=1

(−1)n−1an converges.
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7.2.3 Theorem: Comparison Test

If |bn| ≤ an ∀n, then

1.
∑∞
n=1 an converges =⇒

∑∞
n=1 bn converges.

2.
∑∞
n=1 bn diverges =⇒

∑∞
n=1 an diverges.

7.3 Absolute and Conditional Convergence

7.3.1 Definition∑∞
n=1 an is absolutely convergent if

∑∞
n=1 |an| is convergent. A series which is convergent but not absolutely

convergent is conditionally convergent.

7.3.2 Theorem

Every absolutely convergent series is convergent.

7.4 The Integral Test

7.4.1 Theorem

For a function f , defined ∀x ≥ 1 and both positive and decreasing,

∞∑
n=1

f(n) converges ⇐⇒
∫ ∞

1

f dx converges.

7.4.2 Theorem
∞∑
n=1

1

np

{
converges if p > 1

diverges if p ≤ 1

7.5 The Ratio Test

7.5.1 Theorem

For a sequence (an), let limn→∞

∣∣∣an+1

an

∣∣∣ = L.

1. L < 1 =⇒
∑∞
n=1 an is absolutely convergent.

2. L > 1 =⇒
∑∞
n=1 an is divergent.

3. L = 1 is an inconclusive test.

7.6 The Root Test

7.6.1 Theorem

For a sequence (an), let limn→∞ |an|
1
n = L.

1. L < 1 =⇒
∑∞
n=1 an is absolutely convergent.

2. L > 1 =⇒
∑∞
n=1 an is divergent.

3. L = 1 is an inconclusive test.
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7.7 Power Series

7.7.1 Definition

For a sequence of real numbers (an)n≥0, the power series for (an)n≥0 is the function

f(x) =

∞∑
n=0

anx
n

and we denote the N th partial sum

fN (x) =

N∑
n=0

anx
n

which is a degree-N polynomial.

7.7.2 Definition

The radius of convergence of a power series is R such that the series converges for |x| < R. (Note that the power
series could be centered about a point x0, in which case R is such that we have convergence for |x− x0| < R).

7.7.3 Theorem

For a power series f(x) =
∑∞
n=0 anx

n with radius of convergence R, if |x| < R (the series converges), then

1. f ′(x) exists and is equal to
∑∞
n=1 nanx

n−1.

2.
∫
f dx exists and is equal to

∑∞
n=0

1
n+1anx

n+1 (+ a constant).

7.7.4 Theorem: Algebraic Operations

Suppose f(x) =
∑∞
n=0 anx

n and g(x) =
∑∞
n=0 bnx

n have radii of convergence Rf and Rg respectively.

1. Similarly to Lemma 7.1.3,
∑∞
n=0(αan + βbn)xn has radius of convergence R = min{Rf , Rg}.

2. f(x)g(x) =
(∑∞

n=0 anx
n
)(∑∞

n=0 bnx
n
)

=
∑∞
n=0

(∑n
m=0 ambn−m

)
xn.

7.8 Taylor Series

7.8.1 Note: Obtaining the Maclaurin Series

Consider a power series f(x). Over values of x for which the series is convergent, we can differentiate the series
term by term, and obtain that:

f(0) = a0

f ′(0) = a1

f ′′(0) = 2a2

...

f (k)(0) = k!ak.

So we can write

f(x) =

∞∑
k=0

f (k)(0)

k!
xk.

7.8.2 Theorem: Taylor’s Theorem

Let f be a function defined on [x0, x] and continuously differentiable (n+ 1) times on the interval, then

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + ...+

f (n)(x0)

n!
(x− x0)n +Rn

(where Rn =
∫ x
x0

(x−t)n
n! f (n+1)(t) dt is the remainder term) for which n→∞ gives a convergent sum provided

limn→∞Rn = 0. Note that I have assumed x0 < x, but the proof is easily adapted if this is not the case.
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7.8.3 Note

By the integral mean value theorem (5.2.5), ∃ c ∈ [x0, x] such that∫ x

x0

(x− t)n

n!
f (n+1)(t) dt = f (n+1)(c)

∫ x

x0

(x− t)n

n!
dt =

f (n+1)(c)

(n+ 1)!
(x− x0)n+1

so we have a form for Rn which is similar to the other terms of the Taylor series.

7.8.4 Theorem: L’Hôpital’s Rule

L’Hôpital’s Rule can now be proved with Taylor’s theorem. Note: Many limits involving fractions are easier to
evaluate with Taylor Expansions.

8 Trigonometric Series and Fourier Series

8.1 Prerequisites

8.1.1 Definition: Orthogonal Function Spaces

Let S = {φ0, φ1, ..., φn} (a set of functions) where all φi are Riemann integrable on [a, b]. Define the inner
product

(φm · φn) =

∫ b

a

φm(x)φn(x) dx.

and define φm and φn to be orthogonal with respect to [a, b] if (φm ·φn) = 0. Define the norm ||φm|| = (φm ·φm)
1
2

(provided
∫ b
a
φm(x)φm(x) dx ≥ 0) and define φi to be normal if ||φi|| = 1. If (φm · φn) = 0 ∀m,n and

||φi|| = 1 ∀ i, S is orthonormal with respect to [a, b].

8.1.2 Definition: The Trigonometric Orthonormal Set{
φ | φ0 = 1√

2π
, φ2n−1 = cosnx√

π
, φ2n = sinnx√

π

}
is an orthonormal set with respect to [−π, π] since

∫ π

−π

sin px√
π
· sin qx√

π
dx =

∫ π

−π

cos px√
π
· cos qx√

π
dx =

{
0, if p 6= q

1, if p = q 6= 0

and

∫ π

−π

sin px√
π
· cos qx√

π
dx = 0 ∀ p, q.

8.1.3 Definition

A real function f is periodic with period P 6= 0 ⇐⇒ f(x) = f(x+ P ) ∀x ∈ R.

8.1.4 Definition

A periodic extension of a real function f defined over a chosen interval of length P is such that

f(x± nP ) := f(x) ∀n ∈ Z ∀x ∈ the chosen interval.

At any given point of discontinuity x = ξ, define

f(ξ) =
1

2

(
f(ξ−) + f(ξ+)

)
(where ξ− = limx→ξ− f(x) and ξ+ = limx→ξ+ f(x)).

8.1.5 Lemma

Let f be a function with period P . ∫ b

a

f dx =

∫ b±P

a±P
f dx.
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8.2 Trigonometric Polynomials

Define the trigonometric polynomial

SN (x) =
1

2
a0 +

N∑
n=1

an cosωnx+ bn sinωnx

so that a sum of trigonometric functions with periods 2π
ω can now be represented by a list of 2N + 1 coefficients

a0, an and bn. In complex form (with ω = 1),

1

2
a0 +

N∑
n=1

an cosnx+ bn sinnx

=
1

2
a0 +

N∑
n=1

an

(
einx + e−inx

2

)
+ bn

(
einx − e−inx

2i

)

=
1

2
a0 +

N∑
n=1

einx

2
(an − ibn) +

e−inx

2
(an + ibn)

:=

N∑
n=−N

γne
inx

where γ0 := 1
2a0, γ−n := 1

2 (an + ibn) and γn := γ−n
∗ = 1

2 (an − ibn). Note that the sum is still real, necessarily
by the fact that γn = γ−n

∗ ⇐⇒ SN (x) = SN (x)∗.

8.3 Fourier Series

8.3.1 Note: Obtaining the Trigonometric Coefficients

For a function f , assume ∃ a0, an, bn such that f(x) = SN (x). By integrating on [−π, π], we obtain by
trigonometric orthogonality that

a0 =
1

π

∫ π

−π
f(t) dt

and, multiplying by cosnx or sinnx, that∫ π

−π
cos(nx)f(x) dx =

∫ π

−π
an cos2(nx) dx ⇐⇒ an =

1

π

∫ π

−π
cos(nt)f(t) dt∫ π

−π
sin(nx)f(x) dx =

∫ π

−π
bn sin2(nx) dx ⇐⇒ bn =

1

π

∫ π

−π
sin(nt)f(t) dt

8.3.2 Lemma

1

2
+ cosx+ cos 2x+ ...+ cosnx =

sin(n+ 1
2 )x

2 sin x
2

:= cn(x)

provided cn(x)
∣∣∣
x=2kπ

:= n+ 1
2 .

8.3.3 Lemma: Riemann-Lebesgue Lemma

For a function f , integrable and differentiable on [a, b],

lim
λ→∞

∫ b

a

f(x) sinλx dx = 0.

8.3.4 Lemma ∫ ∞
0

sinx

x
dx =

π

2
.

8.3.5 Theorem: Convergence of Fourier Series

For a function f which is piecewise continuous, has piecewise continuous first and second derivatives and has
period 2π, the Fourier series 1

2a0+
∑∞
n=1(an cosnx+bn sinnx), with a0, an, and bn defined as in 8.3.1, converges

to f(x) and to f(ξ) at points of discontinuity.
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8.3.6 Theorem: Parseval’s Theorem

Let f be a function with Fourier series 1
2a0 +

∑∞
n=1(an cosnx+ bn sinnx).

1

π

∫ π

−π

(
f(x)

)2

dx =
1

2
a2

0 +

∞∑
n=1

(a2
n + b2n).

8.3.7 Note: Fourier Series in the Complex Form

By theorem 8.3.5, f(x) is also the limit of
∑∞
n=−∞ γne

inx, and the γn are equal to

γ−n =
1

2
(an + ibn) =

1

2π

∫ π

−π
f(t)

(
cosnt+ i sinnt

)
dt =

1

2π

∫ π

−π
f(t)eint dt

γn = γ∗−n =
1

2
(an − ibn) =

1

2π

∫ π

−π
f(t)

(
cosnt− i sinnt

)
dt =

1

2π

∫ π

−π
f(t)e−int dt

so in the complex form, only one formula is required for γn and we have, by the theorem,

f(x) =

∞∑
n=−∞

γne
inx

where γn =
1

2π

∫ π

−π
f(t)e−int dt.

8.4 Fourier Transforms

The orthonormal set in 8.1.2 can be adapted for 2L-periodic functions:{
φ | φ0 = 1√

2L
, φ2n−1 = 1√

L
cos(nπxL ), φ2n = 1√

L
sin(nπxL )

}
is an orthonormal set with respect to [−L,L] and,

setting ω = π
L , f(x) is equal to the Fourier series

f(x) =
1

2
a0 +

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))

where an =
1

L

∫ L

−L
cos

(
nπt

L

)
f(t) dt and bn =

1

L

∫ π

−π
sin

(
nπt

L

)
f(t) dt

or, in complex form, the Fourier series

f(x) =

∞∑
n=−∞

γne
inπxL

where γn =
1

2L

∫ L

−L
f(t)e−i

nπt
L dt.

8.4.1 L→∞

As L→∞, h := π
L → 0, so for

∞∑
n=−∞

γne
inhx =

∞∑
n=−∞

(
h

2π

∫ L

−L
f(t)e−inht dt

)
einhx,

an appropriate limit is ωn := nh which is the frequency. h can be thought of as ωn+1−ωn = δω, so
∑∞
−∞G(ωn)h

will behave as the Riemann integral
∫∞
−∞G(ωn) dω. So in the limit,

∞∑
n=−∞

(
h

2π

∫ ∞
−∞

f(t)e−iωt dt

)
eiωx =

1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(t)e−iωt dt

)
eiωx dω.
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8.4.2 Theorem: The Fourier Transform Pair

On infinite domains, a representation of the function f is thus given by

f(x) =
1

2π

∫ ∞
−∞

f̂(ω)eiωx dω

f̂(ω) =

∫ ∞
−∞

f(x)e−iωx dx

which is analogous to the Fourier series in 8.3.7. Note that in the above two equations, f can be obtained from
f̂ and f̂ can be obtained from f , so we say that ‘the Fourier transform of f ’ is equal to the function f̂ , written
F
{
f(x)

}
= f̂(ω), and ‘the inverse Fourier transform of f̂ ’ is equal to the function f , written F−1

{
f̂(ω)

}
= f(x).

In the second line, x has replaced t so as to resemble a transform of f(x), rather than just f .

8.4.3 Definition

The Fourier cosine transform of f(x) is Fc
{
f(x)

}
:= f̂c(ω) :=

∫∞
0
f(t) cosωt dt.

8.4.4 Lemma

If f is even about 0, f̂(ω) = 2f̂c(ω).

8.4.5 Definition

The Fourier sine transform of f(x) is Fs
{
f(x)

}
:= f̂s(ω) :=

∫∞
0
f(t) sinωt dt.

8.4.6 Lemma

If f is odd about 0, f̂(ω) = −2if̂s(ω).

8.4.7 Theorem

Using the above results, the Fourier cosine transform of even f and Fourier sine transform of odd f are given
similarly to 8.4.2, with their inversion formulae, by

f̂c(ω) =

∫ ∞
0

f(t) cosωt dt f̂s(ω) =

∫ ∞
0

f(t) sinωt dt

f(x) =
2

π

∫ ∞
0

f̂c(ω) cosωx dω f(x) =
2

π

∫ ∞
0

f̂s(ω) sinωx dω

8.4.8 Theorem: Linearity of the Fourier Transform

1. F
{
af(x) + bg(x)

}
= af̂(ω) + bĝ(ω) ∀ a, b ∈ R.

2. F−1
{
af̂(ω) + bĝ(ω)

}
= af(x) + bg(x) ∀ a, b ∈ R.

8.4.9 Theorem

F
{
f(ax)

}
= 1

a f̂(ωa ) ∀ a > 0.

8.4.10 Theorem

F
{
f(−x)

}
= f̂(−ω).

8.4.11 Theorem

1. F
{
f(x− x0)

}
= e−iωx0 f̂(ω) (shift in domain space).

2. F
{
eiω0xf(x)

}
= f̂(ω − ω0) (shift in transform space).

8.4.12 Theorem: Symmetry Formula

F
{
f̂(x)

}
= 2πf(−ω).
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8.4.13 Theorem

F
{
dnf
dxn

}
= (iω)nf̂(ω) (assuming that all derivatives of f → 0 as x→ ±∞).

8.4.14 Theorem

F
{
xf(x)

}
= if̂ ′(ω).

8.4.15 Theorem

Assuming that all derivatives of f → 0 as x→ ±∞,

1. Fc
{
f ′(x)

}
= −f(0) + ωf̂s(ω).

2. Fs
{
f ′(x)

}
= −ωf̂c(ω).

3. Fc
{
f ′′(x)

}
= −f ′(0) + ω2f̂c(ω).

4. Fs
{
f ′′(x)

}
= ωf(0)− ω2f̂s(ω).

8.4.16 Theorem

Let f∗(x) be the conjugate of the complex value f(x). F
{
f∗(x)

}
= f̂∗(−ω).

8.4.17 Definition

The convolution of two functions f and g is

f(x) ∗ g(x) =

∫ ∞
−∞

f(x− u)g(u) du.

8.4.18 Theorem: Convolution Theorem

F
{
f(x) ∗ g(x)

}
= f̂(ω)ĝ(ω).

8.4.19 Theorem: Energy Theorem

For a real valued function f ,
1

2π

∫ ∞
−∞

∣∣∣f̂(ω)
∣∣∣2 dω =

∫ ∞
−∞

(
f(x)

)2

dx.

8.5 The Dirac Delta Function

8.5.1 Definition

For the purpose of defining thr Dirac delta function, consider the function fk(x) =

{
k
2 , |x| <

1
k

0, |x| > 1
k

and note that∫∞
−∞ fk(x) dx = 1.

8.5.2 Definition

The Dirac delta function is
δ(x) = lim

k→∞
fk(x).

8.5.3 Theorem: Sifting Property

For any continuous function g, defined over R,∫ ∞
−∞

g(x− a)δ(x) dx = g(a).

8.5.4 Theorem

F
{
δ(x)

}
= 1 and so δ(x) can be written δ(x) = 1

2π

∫∞
−∞ e±iωx dω.
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9 Ordinary Differential Equations

9.0.1 Definition

A function f is differentiable to order k ⇐⇒

∃ lim
h→0

f (i)(x+ h)− f (i)(x)

h
= f (i+1)(x) ∀ i ≤ k − 1.

9.0.2 Definition

‘Ordinary’ refers to the presence of unknown functions in only one independent variable (here x); an ordinary
differential equation is of the form

G

(
x, f,

df

dx
, ...,

dkf

dxk

)
= 0.

The order of the ODE is the order of the highest derivative of f present.
The degree of the ODE is the exponent to which this highest derivative is raised.
An ODE is linear if G is a linear function of f and all its derivatives, i.e.

G

(
x, f,

df

dx
, ...,

dkf

dxk

)
= g0(x)f + g1(x)

df

dx
+ ...+ gk(x)

dkf

dxk
+ g(x) = 0

where g0, ..., gk and g are arbitrary and not necessarily linear functions, and f is the unknown function of x.

9.0.3 Definition

G

(
x, f,

df

dx
, ...,

dkf

dxk

)
= 0 is the implicit form of an ODE (as above).

dkf

dxk
= F

(
x, f,

df

dx
, ...,

dk−1f

dxk−1

)
is the explicit form of an ODE.

9.0.4 Definition

To solve an ODE is to find f such that the ODE is satisfied over its domain. fPI is a particular integral or

particular solution of an ODE if G
(
x, fPI ,

dfPI
dx , ...,

dkfPI
dxk

)
= 0.

fGS is a general solution of an ODE of order k if fGS(x; c1, ..., ck), c1, ..., ck ∈ R is a family of solutions

for which G
(
x, fGS ,

dfGS
dx , ..., d

kfGS
dxk

)
= 0. The constants of integration {ci} are fixed by conditions, giving

particular solutions.

9.1 First and Second Order ODEs: Specific Cases

First Order ODEs

Implicit form: G
(
x, y, dydx

)
= 0, Explicit form: dy

dx = F (x, y) .

9.1.1 Separable First Order ODEs

dy

dx
= F1(y)F2(x) ⇐⇒

∫
dy

F1(y)
=

∫
F2(x) dx+ c1.

9.1.2 Linear First Order ODEs

F1(x)
dy

dx
+ F2(x)y − F3(x) = 0

⇐⇒ I(x)
dy

dx
+ I(x)

F2(x)

F1(x)
y = I(x)

F3(x)

F1(x)
⇐⇒ d

dx

[
I(x)y

]
= I(x)

F3(x)

F1(x)

⇐⇒ y =
1

I(x)

(∫
I(x)

F3(x)

F1(x)
dx+ c1

)
.

Letting p = F2

F1
, The result above requires that

d[Iy]

dx
= I

dy

dx
+ Ipy ⇐⇒ dI

dx
= Ip

(separable)⇐⇒ I(x) = Ae
∫
p dx.
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9.1.3 Homogeneous First Order ODEs

dy

dx
= F

(y
x

)
⇐⇒ u+ x

du

dx
= F (u) ⇐⇒

∫
du

F (u)− u
=

∫
dx

x
+ c1 = ln |x|+ c1

(where u = y
x =⇒ dy

dx = u+ xdudx ). Once uGS is found, yGS can be found by y(x) = xu(x).

9.1.4 Bernoulli ODEs

dy

dx
+ F1(x)y = F2(x)yn

⇐⇒ y−n
dy

dx
+ F1(x)y1−n = F2(x) ⇐⇒ du

dx
+ (1− n)F1(x)u = (1− n)F2(x)

(where u = y1−n =⇒ du
dx = (1 − n)y−n dydx ). If the first derivative has an arbitrary coefficient function, it can

be manipulated as in 9.1.2. uGS can be found from this linear first order ODE and yGS can then be found by

y(x) =
(
u(x)

) 1
1−n .

Second Order ODEs

Implicit form: G
(
x, y, dydx ,

d2y
dx2

)
= 0, Explicit form: d2y

dx2 = F
(
x, y, dydx

)
.

9.1.5 F Depending Only on x

d2y

dx2
= F (x)

⇐⇒ dy

dx
=

∫
F (x) dx+ c1 ⇐⇒ y =

∫ (∫
F (x) dx+ c1

)
dx+ c2.

9.1.6 F Depending Only on x and dy
dx

ODEs of the form
d2y

dx2
= F

(
x,
dy

dx

)
often require substitution, for example:

9.1.7 Definition

The radius of curvature of a curve y(x) is

(
1 +

(
dy
dx

)2
) 3

2

d2y
dx2

.

9.1.8 Theorem

The family of curves with constant radius of curvature R is a set of circles with radius R.

9.1.9 F Depending Only on y

d2y

dx2
= F (y)

⇐⇒ du

dx
= F (y) ⇐⇒ u

du

dy
= F (y)

(separable)⇐⇒ 1

2
u2 =

1

2

(
dy

dx

)2

=

∫
F (y) dy + c1

(separable)⇐⇒
∫

dy

±
√

2
(∫
F (y) dy + c1

) =

∫
dx+ c2

(where u = dy
dx =⇒ d2y

dx2 = du
dx = du

dy
dy
dx = ududy ).
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9.1.10 F Depending Only on y and dy
dx

d2y

dx2
= F

(
y,
dy

dx

)
⇐⇒ d

dy

[
1

2
u2

]
= F (y, u)

(where u = dy
dx =⇒ d2y

dx2 = du
dx = du

dy
dy
dx = ududy = d

dy

[
1
2u

2
]
). If uGS is a solution to this first order ODE then

yGS can be found from the first order ODE dy
dx = uGS(y, c1).

9.2 Linear ODEs of Order k (and Specific Cases)

As in 9.0.2, the general form of a linear ODE with unknown function f is

g0(x)f + g1(x)
df

dx
+ ...+ gk(x)

dkf

dxk
+ g(x) = 0.

9.2.1 Definition

In the above form, a linear ODE is homogeneous ⇐⇒ g(x) = 0 and it is inhomogeneous otherwise.

9.2.2 Definition

An operator acts on a function. A linear operator is an operator (e.g. D[f ] ≡ d
dx [f ]) such that D[λ1f1 +λ2f2] =

λ1D[f1] + λ2D[f2].

9.2.3 Note

Linear ODEs can be associated to the linear operator L[f ] =
∑k
i=0 gi(x)Di[f ], such that the ODE is then

represented by L[f ] = g(x), and the homogeneous case is L[f ] = 0. We then have also that L[λ1f1 + λ2f2] =
λ1L[f1] + λ2L[f2].

9.2.4 Definition

A set of functions {fi}ki=1 is linearly independent ⇐⇒

α1f1 + ...+ αkfk = 0 =⇒ α1 = ... = αk = 0.

9.2.5 Note

We can think of functions as vectors and of the set of solutions to a homogeneous linear ODE of order k as a
k-dimensional vector space. By the property in 9.2.3, also notice that a linear combination of two solutions to
L[f ] = 0 is also a solution. The general solution of the homogeneous linear ODE can thus be written

fHGS(x; c1, ..., ck) = c1f1 + ...+ ckfk

where {fi}ki=1 is a set of linearly independent solutions which form a basis of the solution space.

9.2.6 Theorem

{fi}ki=1 is linearly independent if the Wronskian W ({fi}ki=1) (the determinant of the Wronskian matrix W)
6= 0:

W
(
{fi}ki=1

)
= det

(
W
)

= det
(

[f
(i−1)
j ]k×k

)
=

∣∣∣∣∣∣∣∣∣
f1 f2 · · · fk
df1
dx

df2
dx

dfk
dx

...
. . .

...
dk−1f1
dxk−1

dk−1f2
dxk−1 · · · dk−1fk

dxk−1

∣∣∣∣∣∣∣∣∣ 6= 0.

9.2.7 Theorem

For an inhomogeneous linear ODE L[f ] = g(x), let the general solution to the corresponding homogeneous

linear ODE L[f ] = 0 be fHGS(x; c1, ..., ck) =
∑k
i=1 cifi, known as the complementary function fCF , and let fPI

be any particular integral such that L[fPI ] = g(x).

L[fCF ] = 0
L[fPI ] = g(x)

}
=⇒ L[fCF + fPI ] = L[fCF ] + L[fPI ] = 0 + g(x)

so let the general solution be fGS = fCF + fPI , satisfying L[fGS ] = g(x) as above.
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9.2.8 Corollary

An inhomogeneous linear ODE of the form L[f ] = h1(x) + h2(x) + h3(x) + ... has a general solution fGS =
fCF +

∑
fPIi where fPIi are particular integrals satisfying L[fPIi] = hi(x).

9.2.9 Note

An ansatz is an educated guess about a desired solution. It may be made based on the predicted effect of
the operator L on a certain function. For example, suppose L is known to give only constant coefficients. If
g(x) = eax, then the particular integral may be of the form fPI = Aeax. fPI can be substituted and the values
of the undetermined coefficients found. If fPI is part of the complementary function, it will give L[fPI ] = 0, so
we might instead try A(x)eax for example, where an undertermined function of x is to be found. This is called
the method of variation of parameters.

9.2.10 First Order Linear ODEs With Constant Coefficients

The solution may follow from the method in 9.1.2.

9.2.11 Second Order Linear ODEs With Constant Coefficients

Consider an ODE of the form

α2
d2f

dx2
+ α1

df

dx
+ α0f = g(x).

By 9.2.5, the complementary function will be a linear combination of two functions. To find it, we can use
the ansatz fH = eλx, which gives α2λ

2 + α1λ + α0 = 0, the characteristic equation, giving in turn λ1,2 =
−α1±

√
α2

1−4α2α0

2α2
. We now have a pair of candidate functions (eλ1x, eλ2x) for a basis of the complementary

solution space, and must consider the following cases:

1. If λ1 6= λ2, W ({eλ1x, eλ2x}) = e(λ1+λ2)x(λ2 − λ1) 6= 0, and so fCF = c1e
λ1x + c2e

λ2x.

2. If λ1 = λ2, then f1 = eλ1x is one solution, and we propose f2 = A(x)eλ1x. Substituting gives d2A
dx2 =

0 =⇒ A(x)f1 = (B1x+B2)f1. B2f1 will be absorbed into c′1f1, and W ({eλ1x, xeλ1x}) = e2λ1x 6= 0, and
so fCF = c1e

λ1x + c2xe
λ1x.

3. If λ1,2 ∈ C \ R, write λ1,2 = − α1

2α2
± iω, where ω2 =

∣∣∣α2
1−4α2α0

4α2
2

∣∣∣. Using case 1, the complementary

function is

fCF = e−
α1
2α2

x(c′1e
iωx + c′2e

−iωx) = e−
α1
2α2

x((c′1 + c′2) cosωx+ i(c′1 − c′2) sinωx)

:= eψx(c1 cosωx+ c2 sinωx)

where ψ and ω are the original real and imaginary coefficients pf λ1,2, and it is easy to check that the
Wronskian of sin and cos is 6= 0. While this form is useful, notice that since c1, c2 must be real, c′1 = c′∗2 ,
and so their sum and i times their difference can be written A cosφ and A sinφ, giving further the form
fCF = eψxA cos(ωx− φ).

Once fPI is also found (which may require variation of parameters), it may contain terms similar to terms of
fCF , but the coefficients can be combined as usual.

9.2.12 Note

It is important to refer to new, combined constants differently. For example, in case 2 above I let the original
coefficient of f1 be c′1 so I could then let B2 + c′1 := c1, and in case 3 I wrote the linear combination with c′1, c

′
2

so their combinations could be c1, c2.

9.2.13 kth Order Linear ODEs With Constant Coefficients

For ODEs of the form L[f ] =
∑k
i=0 αiDi[f ] = g(x), to find fCF we can again use the ansatz fH = eλx

which gives the characteristic equation
∑k
i=0 αiλ

i = 0. If the λi can be obtained, a candidate basis for the
complementary solution space is thus found to be {eλ1x, ..., eλkx}.

1. The Wronskian is e
∑
λi
∏

1≤i<j≤k(λj − λi) (Vandermonde), which is clearly 6= 0 ⇐⇒ all the λi are
distinct ( =⇒ the candidate basis is linearly independent).
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2. If the λi are not all distinct, we have seen at a low level that multiplying a repeated function by successive
powers of x gives linearly independent functions, and this in fact works generally: suppose λr is a root
that appears d times, replacing the subset {eλrx, ..., eλrx} → {eλrx, ..., xd−1eλrx} for each repeated root
in the candidate basis gives a linearly independent basis.

Finally, the particular integral must be found, and if g(x) is of the form ebx, fPI is known immediately to be
Axdebx, where b appears d times in the set {λi} (so b 6= λi ∀ i =⇒ fPI = Ax0ebx = Aebx).

9.2.14 Euler-Cauchy ODEs

Euler-Cauchy equations are a specific example of linear ODEs with non-constant coefficients:

αkx
k d

kf

dxk
+ αk−1x

k−1 d
k−1f

dxk−1
+ ...+ α1x

df

dx
+ α0f = g(x)

(i.e. gi(x) = αix
i). The change of variable x = ez transforms an Euler-Cauchy equation into a linear ODE

with constant coefficients.

9.3 Systems of Ordinary Differential Equations

9.3.1 Definition

A system of ODEs is of the form

G1

(
x, f1, ..., fn,

df1

dx
, ...,

dfn
dx

, ...,
dkf1

dxk
, ...,

dkfn
dxk

)
= 0

...

Gn

(
x, f1, ..., fn,

df1

dx
, ...,

dfn
dx

, ...,
dkf1

dxk
, ...,

dkfn
dxk

)
= 0.

The system is still ordinary because the unknown functions f1, ..., fn are in only one independent variable x.
In single ODEs, the unknown function was f : R −→ R. To solve the system will be to find

~f =

 f1

...
fn


(~f : R −→ Rn) such that ~f satisfies the system.

9.3.2 Theorem

Any system of ODEs can be written as a system of first order ODEs, and the number of equations in the new
system will be equal to the sum of the original number of equations and the total number of derivatives of
f1, ..., fn beyond their first that appear in the original system.

9.3.3 Corollary

Any single ODE of order k > 1 can be solved as a system of k first order ODEs.

9.3.4 Systems of First Order Linear ODEs With Constant Coefficients

By 9.3.2 we can, without loss of generality, discuss only systems of first order ODEs, and we will assume that
each equation can be written in explicit form. A linear system with constant coefficients is then of the form

df1
dx = (

∑n
i=1 α1ifi) + g1(x)

...
dfn
dx = (

∑n
i=1 αnifi) + gn(x)

which can be written as the matrix equation
df1
dx
...
dfn
dx

 =

α11 · · · α1n

...
. . .

...
αn1 · · · αnn


(:=A)

f1

...
fn

+

g1(x)
...

gn(x)


(:=~g(x))

⇐⇒ d~f

dx
= A~f + ~g(x).
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So if we define the linear operator L[~f ] := d~f
dx −A~f , then the entire system can be written

L[~f ] = ~g(x).

The solutions to L[~f ] = 0 will form an n-dimensional vector space (since each of the n unknown functions in the

vector is given by first order ODEs), and a set of linearly independent solutions {~fi}ni=1 will form a basis. The

complementary function is thus ~fCF =
∑n
i=1 ci

~fi, and ~fGS = ~fCF + ~fPI (where ~fPI satisfies L[~fPI ] = ~g(x)).
To actually solve the homogeneous problem (find fCF ), we’ll first consider the case where A is diagonalisable,
so ∃V (with columns equal to linearly independent eigenvectors of A: ~vi) such that V −1AV = Λ, where Λ is
diagonal with entries λi (the eigenvalues of A). Then

L[~fCF ] = 0 =⇒ d~fCF
dx = A~fCF =⇒ V −1 d~fCF

dx = V −1AV V −1 ~fCF

=⇒ d
dx [V −1 ~fCF ] = [V −1AV ][V −1 ~fCF ]

=⇒ d~z
dx = Λ~z

(where V −1 ~fCF := ~z ). Since Λ is diagonal, we now have a simple system of ODEs of the form dzi
dx = λizi which

all solve to give zi = cie
λix, and ~fCF = V ~z =⇒

~fCF = c1e
λ1x~v1 + ...+ cne

λnx~vn

and so a basis for the complementary solution space is {~fi} = {eλix~vi}.

9.3.5 Note

Do not confuse notation here. In section 9.2, {fi}ki=1 was the basis of the complementary solution space for a

single kth order linear ODE. In 9.3.4, {~fi}ni=1 is the basis of the system’s complementary solution space, while
{fi}ni=1 is simply the set of unknown functions in the system (notice the difference in the cardinality of the sets,
n and k).

9.3.6 (9.3.4 Cont.)

If A is not diagonalisable, we can instead find W such that W−1AW := J is Jordan - a matrix whose only
non-zero off-diagonal entries lie on the superdiagonal above and adjacent to identical diagonal entries, and are
equal to 1. In the context of eigenvalues, J will have 1s ‘connecting’ repeated eigenvalues of A, although for
each additional dimension of an eigenspace, one fewer 1 will appear with that eigenvalue in J , so note that
diagonalisation (Λ) is a special case of the Jordan canonical form (J). In solving the homogeneous problem,
we again have

L[~fCF ] = 0 =⇒ d~fCF
dx = A~fCF =⇒ W−1 d~fCF

dx = W−1AWW−1 ~fCF

=⇒ d
dx [W−1 ~fCF ] = [W−1AW ][W−1 ~fCF ]

=⇒ d~z
dx = J~z

(where W−1 ~fCF := ~z ). While J is not diagonal, the last ODE of this new system contains only one unknown
function and can be solved and substituted upwards into successive inhomogeneous linear first order ODEs
which, due to the structure of a Jordan matrix, contain only two unknown functions each.

9.4 Qualitative Analysis of ODEs

9.4.1 Definition

~f∗ is a fixed point or equilibrium point of a system of first order ODEs if ~f(t0) = ~f∗ =⇒ ~f(t) = ~f∗ ∀ t > t0,
i.e.

d~f

dt

∣∣∣∣∣
~f=~f∗

= 0

9.4.2 Definition

In the phase plane, a fixed point ~f∗ is Lyapunov stable ⇐⇒

∀ ε > 0, ∃ δ > 0 such that ||~f(0)− ~f∗|| < δ =⇒ ||~f(t)− ~f∗|| < ε (∀ t ≥ 0)

and asymptotically stable if additionally, ∃ δ > 0 such that ||~f(0) − ~f∗|| < δ =⇒ limt→∞ ||~f(t) − ~f∗|| = 0.
Stability is essentially the idea that if the initial conditions (t = 0) are close to a stable fixed point, they will
stay close to it, or in the asymptotic case converge to it, as time progresses.

22



9.4.3 Definition

For linear systems which can be written in matrix form d~f
dt = A~f , supposing ~v is an eigenvector of A, we have

that d~v
dt = A~v = λ~v for some λ. So initial conditions on the line in the phase plane defined by ~v will stay on it.

The line is invariant.

9.4.4 Definition

A phase portrait of a system is a geometrical representation of all distinct solutions with qualitatively different
trajectories represented across the phase plane, for example, eigenvector lines of the system matrix will appear
in the phase portrait with arrows pointing in or out depending on the sign of their eigenvalue.

9.4.5 Theorem: Catalogue of Phase Portraits for the Two-Dimensional Linear System With
Constant Coefficients

Consider the general two-dimensional system

d~f

dt
= A~f, A =

[
a b
c d

]
(~f =

[
x(t)
y(t)

]
).

The eignvalues of A are given by (a−λ)(d−λ)−bc = 0 ⇐⇒ ad−bc−(a+d)λ+λ2, so letting τ = Tr(A) = a+d

and ∆ = det(A) = ad− bc, we have λ1,2 = τ±
√
τ2−4∆
2 . The τ∆-plane can be split into case regions which give

rise to distinct behaviours in the xy-phase plane. Each case is drawn and discussed in lectures, but in terms of
stability, they can be grouped as follows: in the upper left quadrant, including the positive ∆-axis and negative
τ -axis, the fixed points of the system are Lyapunov stable and also asymptotically stable aside from on the
positive ∆-axis, and they are unstable elsewhere.

9.4.6 Note

Notice that in the above phase portraits, stability occurred when τ ≤ 0, ∆ ≥ 0, which ensured that Re{{λ1}, {λ2}} ≤
0. In an n-dimensional system, i.e. where A ∈ Rn×n and ~f ∈ Rn, we similarly require that Re{λi} ≤ 0 ∀ i ∈
{1, ..., n} for stability of the system.

9.5 Bifurcations

9.5.1 Definition

A bifurcation in a dynamical system is a qualitative change in behaviour brought about by change in parameters.
This may cause a previously stable system to become unstable, for example as in 9.4.5-6, by making some
eigenvalues of A have non-negative real parts, or in the one-dimensional system

dy

dt
= ky

where a negative k gives rise to a stable system and a positive k to an unstable system, both clearly with a
fixed point at y = 0.

9.5.2 Definition

A bifurcation diagram plots the changing values of the fixed points of a system against the system’s varying
parameter. Convention is to use • for a stable fixed point and ◦ for an unstable fixed point in graphical
representations.

9.5.3 Definition

The following list gives some example ODE forms for the common types of bifurcations named beside them.
Some of their names arise from their bifurcation diagrams, which are not shown here.

dy
dt = r + y2 Saddle-node bifurcation†.
dy
dt = ry − y2 Transcritical bifurcation.

dy
dt = ry − y3 Supercritical pitchfork bifurcation.
dy
dt = ry + y3 Subcritical pitchfork bifurcation.

† A saddle-node bifurcation is in fact any collision and disapperance of two equilibria.
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9.5.4 Definition

Another type of special point is a singularity, at which the equation is undefined. Singularities may also be
stable or unstable, as in the example dy

dt = k
y , for k < 0 or k > 0.

10 Introduction to Multivariate Calculus

So far, we have considered functions of single independent variables, of the form

f : R −→ R(
or, in systems, ~f =

 f1

...
fn

 : R −→ Rn, where f1, ..., fn : R −→ R
)
.

All the functions f and f1, ..., fn above are called ordinary functions, and differential equations involving them
are ordinary differential equations. In this section, we look at multivariate functions, which are of the form

f : Rn −→ R.

10.0.1 Definition

Let f : Rn −→ R be a function in n independent variables x1, ..., xn. The partial derivative of f with respect
to xi ∈ {x1, ..., xn} is

∂f

∂xi
= lim
h→0

f(x1, ..., xi + h, ..., xn)− f(x1, ..., xi, ..., xn)

h
.

10.0.2 Note

In actually finding partial derivative formulae, the formula of the function in all its variables can be differentiated
with respect to one as if all others were constant. This is reflected in the fact that, taking for example
the function with output f(x, y), we often write the partial derivative with respect to one variable as being

‘evaluated’ at the other variable: ∂f
∂x

∣∣∣
y

or
(
∂f
∂x

)
y
.

Considering the same example function in two variables, let gx(x, y) = ∂f
∂x and gy(x, y) = ∂f

∂y . These partial
derivatives can be partially differentiated again, still with respect to either variable:

∂gx
∂x = ∂2f

∂x2 ,
∂gx
∂y = ∂

∂y

[
∂f
∂x

]
,

∂gy
∂y = ∂2f

∂y2 ,
∂gy
∂x = ∂

∂x

[
∂f
∂y

]
.

10.0.3 Corollary: Symmetry of Mixed Derivatives

Let f : Rn −→ R have continuous first and second partial derivatives with respect to two of its independent

variables x, y, then ∂
∂y

[
∂f
∂x

]
= ∂

∂x

[
∂f
∂y

]
and this derivative is written ∂2f

∂x∂y = ∂2f
∂y∂x .

10.0.4 Theorem: The Total Derivative

For the function f : Rn −→ R, let ∆f = f(x1 + ∆x1, ..., xn+ ∆xn)− f(x1, ..., xn) and let df = lim∆xi→0 ∀ i ∆f .

df =

n∑
i=1

∂f

∂xi
dxi

where dxi is the infinitesimal ∆xi → dxi. The total derivative df evaluates the infinitesimal change of f(~x) as
all independent variables xi change infinitesimally.

10.0.5 Corollary: Chain Rule for Multivariate Functions

Suppose f : R −→ R is a function of t indirectly through the intermediate variables x1, ..., xn, i.e. f maps
t 7−→ f(x1(t), ..., xn(t)).

df

dt
=

(
∂f

∂xi

)(
dxi
dt

)
+ ...+

(
∂f

∂xn

)(
dxn
dt

)
.
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10.0.6 Note

As detailed in 10.0.2, when dealing with chain rule examples in multiple interdependent variables, it is important
to state explicitly which variables are being kept constant in a partial derivative (as is apparent in the following
two examples).

10.0.7 Corollary: Dependence on Another Set of Coordinates

Let f be a function in x, y and suppose x, y are in turn functions in u, v. By substituting the total derivatives
dx and dy into the total derivative df and comparing with the total derivative formula for df in terms of u, v,
the two partial derivatives below can be found.(

∂f

∂u

)
v

=

(
∂f

∂x

)
y

(
∂x

∂u

)
v

+

(
∂f

∂y

)
x

(
∂y

∂u

)
v

and

(
∂f

∂v

)
u

=

(
∂f

∂x

)
y

(
∂x

∂v

)
u

+

(
∂f

∂y

)
x

(
∂y

∂v

)
u

.

10.0.8 Corollary: Differentiation Using the Implicit Form

Given any function f in the variables ~x, letting y = f(~x) (which is the explicit form) we can obviously find an
implicit form: F (~x, y) := y − f(~x) = 0. Taking the total derivative dF and rearranging dF = 0 (below left)
gives the relationship on the right:

dF =
∂F

∂y
dy +

n∑
i=1

∂F

∂xi
dxi = 0, dy = −


(
∂F
∂x1

)
(
∂F
∂y

) dx1 + ...+

(
∂F
∂xn

)
(
∂F
∂y

) dxn


and so comparing with the total derivative dy = ∂y
∂x1

dx1 + ...+ ∂y
∂xn

dxn we obtain the individual relationship

∂y

∂xi
= −

(
∂F
∂xi

)
(
∂F
∂y

) ∀ 1 ≤ i ≤ n.

10.1 Multivariate Taylor Expansion

As before, let f : Rn −→ R be a function of variables ~x = (x1, ..., xn)T . Letting ~∆x = (∆x1, ...,∆xn)T , we can

find the Taylor expansion for f(~x+ ~∆x) about ~x by first expanding about x1:

f(~x+ ~∆x) = f(x1 + ∆x1, x2 + ∆x2, ...)

= f(x1, x2 + ∆x2, ...) +

(
∂f

∂x1

)
x1,x2+∆x2,...

∆x1 +
1

2!

(
∂2f

∂2x1

)
x1,x2+∆x2,...

(∆x1)2 + ...

and upon expanding each term about x2, and in turn expanding each term in those expansions about x3 etc.,
we eventually obtain an entire expansion which can be written, up to the second order, in the form

f(~x+ ~∆x) = f(~x) +

[ (
∂f
∂x1

)
~x
··· ( ∂f

∂xn
)
~x

] ∆x1

...
∆xn

+
1

2!

[
∆x1 ··· ∆xn

]
(
∂2f

∂x21

)
~x

···
(

∂2f
∂x1∂xn

)
~x

...
. . .

...(
∂2f

∂xn∂x1

)
~x
···

(
∂2f

∂x2n

)
~x


 ∆x1

...
∆xn

+ ...

and so defining the Hessian matrix associated with f at ~x and the gradient of f at ~x as

H(~x) =
[(

∂2f
∂xi∂xj

)
~x

]
n×n

and ~∇f~x =


∂f
∂x1

...
∂f
∂xn


~x

respectively, we have a Taylor expansion up to the second order in the form

f(~x+ ~∆x) = f(~x) + (~∇f~x)T∆~x+
1

2
∆~x TH(~x)∆~x+ ...

for the multivariate function f : Rn −→ R.
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