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1 Logic

lowkey nothing to write here

2 Numbers

2.1 Rational numbers

Recall Q := (p.q) ∈ 𭟋× N/, where is the equivalence relation.

(p1, q1)(p2, q2) ⇐⇒ p1q2 = p2q1

We write the equivalence class of (p,q) as p/q. Each equivalence class has a distinguished element (p′, q′) suc h that ∄n ∈ N
with n > 1 and n|p′, n|q′. We say p′/q′ is int ”in lowest terns”
Axiom 2.1

1. addition is commutative

2. multiplication is commutatitve

3. addition is associative

4. multiplication is associative

5. multiplication is distributive over addition

6. additive identity 0

7. multiplicative identity 1

8. additive inverse

9. multiplicative inverse

Axiom 2.2 Order axioms

10. for each x ∈ Q precisely one of (a),(b),(c) holds:

(a), x > 0 or (b), x = 0, or (c)− x > 0 (Tricohotomy axiom)

11. x > 0, y > 0 −→ x+ y > 0∀ in Q

12. same as above but for multiplication

13. ∀x ∈ Q∃n ∈ N such that n > x Archimedean axiom

1.2 Decimals

Finite deimals For a0 ∈ Z and ai ∈ 0, 1, 2, . . . , 9 we define the finite decimal a0.a1a2 . . . ai as follows. If a0 ≥ 0 then
a0.a1a2 . . . ai is set to be a0 +

a1

10 + a2

100 + . . . + an

10n ∈ Q For a0 < 0 we set a0.a1a2 . . . ai to be −(|a0|.a1a2 . . . ai). Putting
aj := 0 for j > 1 this is special case of an eventually periodic decimal For rational numbers with eventually preriodic decimals,
for now we will take it as a definition.
a0.a1 . . . ai ¯ai+1ai+2 . . . aj
to be the rational number
a0 +

a1

10 + a2

100 + . . .+ an

10n + (
ai+1ai+2...aj

10j ( 1
1−10i−j )) Thus eventually periodic decimal expansion gives a rational number.

Conversely, periodic decimals give all the rational numbers.

Theorem 1.1.

Any x ∈ Q is equal to an eventually periodic decimal expansion:
x = a0.a1 . . . ai ¯ai+1ai+2 . . . aj
But not all eventually periodic decimals give different rational numbers.
Proposition 2.14 If x ∈ Q has two different decimal expansions then they are of the form
x = a0.a1a2 . . . an9̄ = a0.a1a2 . . . (an + 1) with an ∈ 0, 1, 2, . . . , 8
Arbitrary Decimals So this gives us an obvious way to define the real numbers: as the set of decimal expansions which do
not end in 9̄, R := a1.a2a3 . . . : a0 ∈ Z, ai≥1 ∈ 0, 1, 2 . . . , 9,∄N such that ai = 9∀i ≥ N With some work one can then define
+,-,×,÷¡ on R and chech they satisfy the Axioms 2.1 and 2.2
Theorem 2.8 gives us a way to produce many explicit irrational numbers like.
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1.3 Countability

Definition 1.3.1.

A set is Countable if and only if there exists a bijection f : N −→ S Proposition 2.16 Suppose S⊂ N is infinite. Then S is
countable.
Proposition 2.17 Z is countable

Theorem 1.2.

Q is countable

Theorem 1.3.

R is uncountable

1.4 The completeness Axiom

∅ ≠ S ⊂ R is bounded above is and only if ∃M ∈ R such that ∀x ∈ S, x ≤ M Such M is called an upper bound for S
bounded below is just the opposite innit
S is bounded if and only if S is bounded above and below

Definition 1.4.1.

Suppose ∅ ≠ S ⊂ R is bounded above. We say x ∈ R is least upper bound of S or supremum of S if and only if

• x is an uppose bound for S

• x ≤ y for any y which is an upper bound fort S

Theorem 1.4.

The completeness Axiom of R
Suppose that S ⊂ R is nonempty and bounded above, Then S has a supremum
Proposition 2.34 There exists 0 < x ∈ R such that x2 = 3
Proposition 2.38 Suppose ∅ ≠ S ⊂ R and y is an upperbound for S. Then y = supS ⇐⇒ ∀ϵ > 0∃S : s > y − ϵ

1.5 Alternative approach: Dedekind cuts

Definition 1.5.1.

We say a non-empty subset S ⊂ Q is a Dedekind cut if it satisfies the following

i If s ∈ § amd s > t ∈ Q then t ∈ S(S os a semi-infinite interval to the left)

ii S is bounded above but has no maximum.

Definition 1.5.2.

R :=Dedekind cuts S ⊂ Q

1.6 Triangle inequalities

Theorem 1.5.

For all a, b ∈ R we have |a+ b| ≤ |a|+ |b|

2 Sequence

Definition 2.0.1.

A sequence is a function a : N → R
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2.1 Convergence of Sequences

Definition 2.1.1.

Definition 2.1.2. Convergence
We say that an → a as n → ∞ if and only if

∀ϵ > 0N ∈ N such that ∀n ≥ N, |an − a| < ϵ

Definition 2.1.3.

We say an diverges if and only if it does not converge.

∀aϵ > 0 such that ∀N ∈,≥ N such that |an − a| ≥ ϵ

The definition for convergence is basically the same for complex numbes too Turns out convergence for complex numbers is
equivalent to the real part converging to the real part and the imaginary part converging to the imaginary part/

Theorem 2.1.

The Uniqueness of Limits
Limits are unique. If an → a and an → b then a = b
Proposition 3.16 If (an) is convergent then it is bounded

Theorem 2.2.

Algebra of limits If an → a and bn → b, then:

1. an + bn → a+ b

2. anbb → ab

3. an

bn
→ a

b if b ̸= 0

Theorem 2.3.

If (an) is bounded above and monotonically increasing then an converges to a := supai : i ∈ N Cauchy Sequences

Definition 2.1.4.

(an)n≥1 is called a Cauchy sequence if and only if ∀ϵ > 0NN such that ∀n,m ≥ N, |an−am| < ϵ Proposition 3.25 If an → a
then (an) is Cauchy Lemma 3.27
If (an) is a Cauchy sequence then (an) is bounded.

Theorem 2.4.

If (an) is a Cauchy sequene of real numbers then an converges.
There for a sequence is Cauchy if and only if it is convergent and vice versa

2.2 Subsequences

Definition 2.2.1.

A A subsequence of (an) is a new sequence bi = an(i)∀i ∈ N where n(1) < n(2) < · · · < n(i) < · · · ∀i

Theorem 2.5. Bolzano-Weierstrass

If (an) is a bounded sequence of real numbers then it has a convergent subsequence
Proposition3.39
If an → a then any subsequence an(i) → a as i → ∞
Bolzano−Weierstrass ⇐⇒ CauchyTheorem

Definition 2.2.2.

We say an → +∞ if and only if ∀R > 0N ∈ N such that an > R∀n ≥ N

3 Series

Definition 3.0.1.

An (infinite) series is an expression
∑

an
∞
n=1 where ((ai)i) is a sequence.
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3.1 Convergence of Series

Definition 3.1.1.

We say that the series
∑

an converges to A ∈ R if and only if the sequence of partial sums converges to A

Theorem 3.1.∑∞
n=0 is convergent −→ an → 0 Proposition 4.6 Supppose an ≥ 0∀n. Then the following facts are true:

1. Σ∞
n=1 converges if and only if (sn) is bounded above

2. Similarly Σ∞
n=1 diverges to +∞ if and only if (sn) is unbounded

Theorem 3.2.

Comparison test If 0 ≤ an ≤ bn and Σbn converges, then Σan converges

Theorem 3.3.

Algebra of limits for series
If Σan,Σbn are convergent then so is Σ(λan + µbn). What it converges to is obvious

3.2 Absolute convergence

Definition 3.2.1.

For an ∈ R or , we say the series Σ∞
n=1an is absolutely convergent if and only if the series Σ∞

n=1|an| is convergent

Theorem 3.4.

Let (an)n≥ be a real or complex sequence.
If Σ∞

n=1an is absolutely convergent, then it is convergent.

3.3 Test for convergence

Theorem 3.5.

Comparison II
Suppose cn ≤ an ≤ bn∀n and Σcn,Σbn are both convergent.
Then Σan is convergnet

Theorem 3.6.

Comparison III If an

bn
→ L ∈ R and Σbn is absolutely convergent, then Σan is absolutely convergent.

Theorem 3.7.

Alternating Series Test
Suppose an is alternating with |an| ↓ 0. Then Σan converges.

Theorem 3.8.

Ratio Test
If an is a sequence such that |an+1

an
→ r < 1, then Σan is absolutely convergent

Theorem 3.9.

Root Test
If |an|1/n → r < 1, them Σan is absolutely convergent

Theorem 3.10.

Σan is absolutely convergent ⇔ (1) + (2) ⇒ (3) + (4) where,

(1) an≥0an is convergent to A

(2) an<0an is convergent to B

(3) Σan = A+B

(4) Σbm = A+B where (bm) is any rearrangement of (an)
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3.4 Power Series

Theorem 3.11.

Radius of Convergence Fix a real or complex series (an) and consider the series Σanz
n for z ∈ Then R ∈ [0,∞] such that

• |z| < R −→ Σanz
n is absolutely convergent

• and if not it’s divergent

Definition 3.4.1.

Given series Σan,Σbn their Cauchy Product is the series Σcn where cn := Σn
i=0aibn−i

Theorem 3.12.

Cauchy Product If two serieses are absolutely convergent then their Cauchy product is absolutely congergent to the product
of the series’

3.5 Exponential Power Series

Definition 3.5.1.

For any z ∈ set E(z) := Σ∞
n=0

zn

n! E(z) is convergent ∀z ∈ Proposition 4.43 E(z) + E(w) = E(z + w)

Definition 3.5.2.

e := E(1) = Σ 1
n! ∈ (0,∞)

Corollary 4.45 E(n) = enforn ∈ N
Proposition 4.46
E(q) = eq for q ∈ Q
Proposition 4.47 E(x) has the following properties for x ∈ R

1. E(x) > 0∀x ∈ R

2. x ≥ 0 −→ E(x) ≥ 1 and x > 0 −→ E(x) > 1

3. E(x) is strictly increasing for x ∈ R

4. |E(x)− 1| ≤ |x|
1−|x| for |x| < 1

5. x 7→ E(x) is a continuous bijection R→̃(0,∞)

Point 5 enables us to define an inverse function from (0,∞)→̃R

4 Continuity

4.1 Limits

Definition 4.1.1.

Fix a function f : R → R and points a, b ∈ R
We say that f(x) → b as x → a if and only if

∀ϵ > 0∃δ > 0 such that 0 < |x− a| < δ −→ |f(x)− b| < ϵ

Definition 4.1.2.

Fix a function f : R → R and a point a ∈ R. We say that f continuous as a if and only if limx→af(x) = f(a)

Theorem 4.1.

f : R → R is contiunous at a ∈ R if and only if

∀ϵ > 0∃δ > 0 such that |x− a| < δ −→ |f(x)− f(a)| < ϵ
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4.2 Continuity

Definition 4.2.1.

We say that f is continuous on R if it is continuous at all a
Proposition 5.10 E :→ defined by E(z) := Σ∞

n=0
zn

n! is continuous on

Theorem 4.2.

f : R → R is continuous at a ∈ R ⇐⇒ f(xn) → f(a)∀ sequences xn → a
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