Math40002 Analysis 1

Problem Sheet 1

- 1. What is the biggest element of the set $\{x \in \mathbb{R} : x < 1\}$? Give a careful proof.
- 2. Prove that for every positive integer $n \neq 3$, the number $\sqrt{n} \sqrt{3}$ is irrational.
- 3.* Show that any positive *eventually periodic* decimal expansion is rational, and in fact can be written as the fraction

$$p/99...9900...00$$
 (*m* 9s and *n* 0s)

for some integers $p, m, n \ge 0$.

Deduce that any integer divides some number of the form $99 \dots 9900 \dots 00$.

4. Irrational Kevin tries to show $\sqrt{12} - \sqrt{3}$ is rational, by the following argument.

$$\sqrt{12} - \sqrt{3} = p/q, \quad p, q \in \mathbb{N},$$

 $\Rightarrow \quad 12 - 2\sqrt{12}\sqrt{3} + 3 = p^2/q^2,$
 $\Rightarrow \quad 15 - 2\sqrt{36} = p^2/q^2.$

Since $\sqrt{3}6 = 6$ is indeed rational, this looks good to him. Can you help him by pointing out three ways in which he's gone wrong? Be kind to him!

- 5. Suppose the sets S_n , n = 1, 2, 3, ... are all disjoint and countable. Show that $S = \bigcup_{n=1}^{\infty} S_n$ is also countable. (Hint: recall the diagonal argument used in lectures.)
- 6. Suppose that S and T are countable. Show that $S \times T$ is countable. Hence show that $\bigcup_{n=1}^{\infty} S^n$ is countable, where $S^n := S \times \ldots \times S$ (n times).
- 7. † Show the set of polynomials p(x) with integer coefficients is countable. (Hint: use Q6.)

A real number is called *algebraic* if it is a root of a polynomial with integer coefficients. Show that rational numbers n/m and nth roots $\sqrt[n]{m}$ are algebraic. Show that the set of algebraic real numbers is countable.

A real number is called *transcendental* if it is not algebraic. (Examples include π and e, but this is hard to prove.) Prove that transcendental numbers exist, and that in fact there are uncountably many of them.

8. Let $S^1 = \{s_1^1, s_2^1, s_3^1, \ldots\}$, $S^2 = \{s_1^2, s_2^2, s_3^2, \ldots\}$, ..., $S^n = \{s_1^n, s_2^n, s_3^n, \ldots\}$, ... be subsets of N. Here the elements are ordered so that $s_i^n < s_{i+1}^n$ for all i and n. Define t_n recursively to be strictly larger than s_n^n and t_{n-1} (e.g. set $t_n = \max\{s_n^n, t_{n-1}\} + 1$), or $t_{n-1} + 1$ if $\not\exists s_n^n$ (i.e. if S^n has < n elements). Show that $T = \{t_1, t_2, \ldots\} \subseteq \mathbb{N}$ is not equal to any S^i . Conclude that the set of subsets of N is *not* countable.

Starred questions * are good to prepare to discuss at your Problem Class. Questions marked † are slightly harder (more fun).