Math40002 Analysis 1

Problem Sheet 2

- 1. Fix $S \subset \mathbb{R}$ with an upper bound, and suppose that $S \neq \emptyset$ and $S \neq \mathbb{R}$. Give proofs or counterexamples to each of the following statements.
 - (a) If $S \subset \mathbb{Q}$ then $\sup S \in \mathbb{Q}$.
 - (b) If $S \subset \mathbb{R} \setminus \mathbb{Q}$ then $\sup S \in \mathbb{R} \setminus \mathbb{Q}$.
 - (c) If $S \subset \mathbb{Z}$ then $\sup S \in \mathbb{Z}$.
 - (d) $S \cap \left\{ \frac{n}{m} \in \mathbb{Q} : n, m \in \mathbb{N}, m \leq 10^{100} \right\}$ has a minimum if it is nonempty.
 - (e) There exists a max S if and only if $\sup S \in S$.
 - (f) $\sup S = \inf(\mathbb{R} \setminus S).$

(g)
$$\sup S = \inf(\mathbb{R} \setminus S) \iff S$$
 is an interval of the form $(-\infty, a)$ or $(-\infty, a]$.

2. Fix nonempty sets $S_n \subset \mathbb{R}$, $n = 1, 2, 3, \ldots$ Prove that

$$\sup \{\sup S_1, \sup S_2, \sup S_3, \ldots\} = \sup \left(\bigcup_{n=1}^{\infty} S_n\right),$$

in the sense that if either exists then so does the other, and they are equal.

3. Take bounded, nonempty $S, T \subset \mathbb{R}$. Define $S + T := \{s + t : s \in S, t \in T\}$. Prove

$$\sup(S+T) = \sup S + \sup T.$$

4.* Fix $a \in (0, \infty)$ and $n \in \mathbb{N}$. We will prove $\exists x \in \mathbb{R}$ such that $x^n = a$. Set

$$S_a := \{ s \in [0, \infty) : s^n < a \}$$

and show S is nonempty and bounded above, so we may define $x := \sup S_a$. For $\epsilon \in (0, 1)$ show $(x + \epsilon)^n \leq x^n + \epsilon[(x + 1)^n - x^n]$. (Hint: multiply out.) Hence show that if $x^n < a$ then $\exists \epsilon \in (0, 1)$ such that $(x + \epsilon)^n < a$. (*) If $x^n > a$ deduce from (*) that $\exists \epsilon \in (0, 1)$ such that $(\frac{1}{x} + \epsilon)^n < \frac{1}{a}$. (**) Deduce contradictions from (*) and (**) to show that $x^n = a$.

5. Suppose $0 < q \in \mathbb{Q}$ and $a \in (0, \infty)$. Write $q = \frac{m}{n}$ with $m, n \in \mathbb{N}$ and define

$$a^q := x^m,$$

where $x =: a^{1/n}$ is defined in the last question. Show this is well defined, and make a definition of a^{-q} .

Show that $(ab)^q = a^q b^q$ and $(a^{q_1})^{q_2} = a^{q_1 q_2}$ for any $a, b \in (0, \infty)$ and $q, q_1, q_2 \in \mathbb{Q}$.

6. For real numbers x, y, z, consider the following inequalities.

Prove (a) from first principles. Why is it called the "triangle inequality"? **Deduce** (b,c,d,e,f,g) from (a).

Starred questions * are good to prepare to discuss at your Problem Class.