Math40002 Analysis 1

- 1.* Which of the following sequences are convergent and which are not? What is the limit of the convergent ones? Give proofs for each.
 - (a) $\frac{n+7}{n}$ (d) $\frac{n^3-2}{n^2+5n+6}$ (b) $\frac{n}{n+7}$ (e) $\frac{1-n(-1)^n}{n}$ (c) $\frac{n^2+5n+6}{n^3-2}$
- 2. We've defined what it means for (a_n) to converge to a real number $a \in \mathbb{R}$ as $n \to \infty$. Professor Lee Beck thinks infinity is cool, so he comes up with some definitions of $a_n \to +\infty$ as $n \to \infty$. Which are right and which are wrong? For any wrong ones, illustrate its wrongness with an example.
 - (a) $\forall a \in \mathbb{R}, a_n \not\to a$.
 - (b) $\forall \epsilon > 0 \ \exists N \in \mathbb{N}$ such that $n \ge N \Rightarrow |a_n \infty| < \epsilon$.
 - (c) $\forall R > 0 \exists N \in \mathbb{N}$ such that $n \ge N \Rightarrow a_n > R$.
 - (d) $\forall a \in \mathbb{R} \; \exists \epsilon > 0 \text{ such that } \forall N \in \mathbb{N} \; \exists n \geq N \text{ such that } |a_n a| \geq \epsilon.$
 - (e) $\forall \epsilon > 0 \exists N \in \mathbb{N}$ such that $\forall n \ge N, a_n > \frac{1}{\epsilon}$.
 - (f) $\forall n \in \mathbb{N}, a_{n+1} > a_n.$
 - (g) $\forall R \in \mathbb{R}, \exists n \in N \text{ such that } a_n > R.$
 - (h) $1/\max(1, a_n) \to 0.$
- 3. Let (a_n) be a sequence converging to $a \in \mathbb{R}$. Suppose (b_n) is another sequence which is different than (a_n) but only differs from (a_n) in finitely many terms, that is the set $\{n \in \mathbb{N} : a_n \neq b_n\}$ is non-empty and finite. Prove (b_n) converges to a.
- 4. Let $S \subset \mathbb{R}$ be nonempty and bounded above. Show that there exists a sequence of numbers $s_n \in S$, $n = 1, 2, 3, \ldots$, such that $s_n \to \sup S$.
- 5. Give without proof examples of sequences (a_n) , (b_n) with the following properties.
 - (i) Neither of a_n, b_n is convergent, but $a_n + b_n, a_n b_n$ and a_n/b_n all converge.
 - (ii) a_n converges, b_n is unbounded, but $a_n b_n$ converges.
 - (iii) a_n converges, b_n bounded, but $a_n b_n$ diverges.

Starred questions * are good to prepare to discuss at your Problem Class.