Math40002 Analysis 1 Problem Sheet 4

- 1. Consider the following properties of a sequence of real numbers $(a_n)_{n\geq 0}$:
	- (i) $a_n \rightarrow a$, or
	- (ii) " a_n eventually equals a " i.e. $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $a_n = a$, or
	- (iii) " (a_n) is bounded" i.e. $\exists R \in \mathbb{R}$ such that $|a_n| < R$ $\forall n \in \mathbb{N}$.

For each statement (a-e) below, which of (i-iii) is it equivalent to? Proof?

- (a) ∃ *N* ∈ N such that $\forall n \geq N$, $\forall \epsilon > 0$, $|a_n a| < \epsilon$.
- (b) $\forall \epsilon > 0$ there are only finitely many $n \in \mathbb{N}$ for which $|a_n a| \geq \epsilon$.
- (c) $\forall N \in \mathbb{N}, \exists \epsilon > 0 \text{ such that } n \geq N \Rightarrow |a_n a| < \epsilon.$
- (d) $\exists \epsilon > 0$ such that $\forall N \in \mathbb{N}, |a_n a| < \epsilon \ \forall n \geq N$.
- (e) $\forall R > 0 \ \exists N \in \mathbb{N} \ \text{such that} \ n \geq N \ \Rightarrow \ a_n \in (a \frac{1}{R}, a + \frac{1}{R}).$
- 2. Given a sequence $(a_n)_{n\geq 1}$ of *complex* numbers, define what $a_n \to a$ means. For $x, y \in \mathbb{R}$ and $z := x + iy \in \mathbb{C}$ show $\max(|x|, |y|) \le |z| \le \sqrt{2} \max(|x|, |y|)$, and

 $a_n \to a + ib \in \mathbb{C}$ \iff Re $(a_n) \to a$ and Im $(a_n) \to b$.

- 3. Suppose that $a_n \leq b_n \leq c_n$ $\forall n$ and that $a_n \to a$ and $c_n \to a$. Prove that $b_n \to a$.
- 4. Suppose that $a_n \to 0$ and (b_n) is bounded. Prove that $a_n b_n \to 0$.
- 5. * Suppose that (a_n) and (b_n) are sequences of real numbers such that $a_n \to a$ and $b_n \to b \neq 0$. Prove that the set $\{a_n : n \in \mathbb{N}\}\$ is bounded and that

 $\exists N \in \mathbb{N}$ such that $n \geq N \Rightarrow |b_n| > |b|/2$.

Therefore $(a_n/b_n)_{n\geq N}$ is a sequence of real numbers; prove it tends to a/b .

6. Given functions $f_n: (0,1) \to \mathbb{R}$ and $f: (0,1) \to \mathbb{R}$, suppose we make the following **Definition:** f_n converges to f (or $f_n \to f$) if and only if $\forall x \in (0,1)$ *,* $f_n(x) \to f(x)$. Consider the examples $f_n(x) = \begin{cases} n, & x \leq 1/n \\ 0 & x > 1/n \end{cases}$ $\begin{array}{ll} n, & x \leq 1/n \\ 0, & x > 1/n \end{array}$ for all $n \in \mathbb{N}$. Draw them! Do they converge to some function $f:(0,1) \to \mathbb{R}$? Prove your answer. Compare with the sequence of real numbers $a_n := \int_0^1 f_n$.

7. We call a sequence *sorta-Cauchy* if it satisfies the condition

$$
\forall \epsilon > 0 \; \exists \, N \in \mathbb{N} \quad n \ge N \;\Rightarrow\; |a_n - a_{n+1}| < \epsilon.
$$

Give an example of a sorta-Cauchy sequence which diverges to $+\infty$. Conclude that sorta-Cauchy is not as strong as Cauchy.

8. Give an example of a Cauchy sequence in ${\mathbb Q}$ which does not converge in ${\mathbb Q}.$

In lectures we show that in R, a sequence is Cauchy if and only if it is convergent. Show that it is impossible to prove this using only the arithmetic and order axioms of $\mathbb R$ (i.e. all the axioms except the completeness axioms – the one about the existence of least upper bounds).

Starred questions * *are good to prepare to discuss at your Problem Class.*