Math40002 Analysis 1

Problem Sheet 5

- 1. Fix x > 0. Prove $(1+x)^n \ge 1 + nx$ for any $n \in \mathbb{N}$. Deduce that $(1+x)^{-n} \to 0$. Deduce that if $r \in (0, 1)$ then $r^n \to 0$, and if $r \in (1, \infty)$ then $r^n \to \infty$.
- 2. Suppose $\lim_{n\to\infty} |a_{n+1}/a_n| = L$. In lectures we proved that if L < 1 then $a_n \to 0$.
 - (a) Prove that if L > 1 then $|a_n| \to \infty$.
 - (b) Give an example with $|a_{n+1}/a_n| < 1 \forall n$ but $a_n \not\to 0$.

Give (without proof) examples where L = 1 and

- (iii) a_n divergent and bounded, (i) $a_n \to 0,$
- (ii) $a_n \to a \neq 0$, (iv) $a_n \to \infty$.
- 3. Let $(a_n)_{n>1}$ be a sequence of strictly positive real numbers. Give an example such that $(1/a_n)_{n\geq 1}$ is unbounded. Suppose that $a_n \to a \neq 0$. Prove from first principles that $(1/a_n)_{n\geq 1}$ is bounded.
- 4.† Fix $r \in (0, 1/8)$. Define $(a_n)_{n \ge 1}$ by $a_1 := 1$ and $a_{n+1} = ra_n^2 + 1$.
 - (a) Show that $a_{n+1} a_n = r(a_n + a_{n-1})(a_n a_{n-1})$. $0 < a_j < 2 \qquad \forall j \le n,$ (b) Show that if (1)then

 $|a_{n+1} - a_n| < (4r)^n/4.$ (2)

- (c) Deduce that if (1) holds, then $a_{n+1} < r/(1-4r) + 1$.
- (d) Conclude that (1) holds for j = n + 1 too, and so $\forall j$ by induction.
- (e) Using (2) deduce $|a_m a_n| < (4r)^n/4(1-4r)$ for $m \ge n$.
- (f) Deduce a_n is Cauchy. What does it converge to?
- 5.* Show that any sequence of real numbers $(a_n)_{n\geq 0}$ has a subsequence which either converges, or tends to ∞ , or tends to $-\infty$.
- 6. At home Professor Papageorgiou has made a fully realistic mathematical model of a dart board. It is a copy of the unit interval [0, 1] in a frictionless vacuum. He throws a countably infinite number of darts at it, the *n*th landing at $a_n \in [0, 1]$.

He then makes a small dot $(x - \epsilon_x, x + \epsilon_x)$ around each point $x \in [0, 1]$ with his pen. Prove that however small he makes each dot, at least one of them will contain an infinite number of darts $a_n \in [0, 1]$.

What if he only makes dots around each dart $a_n \in [0, 1]$?

- 7. Let $(a_n)_{n\geq 1}$ be the sequence $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, $\frac{1}{6}$, ...
 - (i) Give (without proof) a subsequence of $(a_n)_{n\geq 1}$ which converges to $\ell = 0$, and one which converges to $\ell = 1$.
 - (ii) Given any $\ell \in (0, 1)$, give (with proof) a subsequence convergent to ℓ .

8. A student is learning about Cauchy sequences, and thinks they have a brilliant proof that allows them to precisely identify the limit of a Cauchy sequence straight from the Cauchy condition. The student gives their proof below, is it correct?

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } n, m \ge N \implies |a_n - a_m| < \epsilon$$
$$\Rightarrow \ \forall n \ge N \quad |a_n - a_N| < \epsilon$$
$$\Rightarrow a_n \to a_N \text{ as } n \to \infty.$$

Starred questions * are good to prepare to discuss at your Problem Class. Questions marked † are slightly harder (closer to exam standard), but good for you.