- 1. Give an example of a compact set $S \subset R$ and a continuous function $f : S \to \mathbb{R}$ which does not satisfy the intermediate value theorem: in other words, there are points $a < b$ in S and some x between $f(a)$ and $f(b)$ such that $f(c) \neq x$ for all $c \in S$.
- 2. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is continuous, then $f^{-1}(c) = \{x \in \mathbb{R} \mid f(x) = c\}$ is closed.
- 3. (*) Let $(S_n)_{n\in\mathbb{N}}$ denote a decreasing sequence of nonempty subsets of \mathbb{R} , meaning that

$$
S_1 \supset S_2 \supset S_3 \supset \ldots
$$

Let $S = \bigcap^{\infty}$ $n=1$ S_n be their intersection.

- (a) Give an example where all of the S_n are open and S is empty.
- (b) Prove that if all of the S_n are compact, then S is nonempty. (Hint: consider the sequence $x_n = \inf(S_n)$.
- 4. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is continuous and $S \subset \mathbb{R}$ is compact, then the image $f(S)$ is also compact.
- 5. Give a family of continuous functions $f_n : \mathbb{R} \to \mathbb{R}$ for all $n \in \mathbb{N}$ such that the f_n converge pointwise to a function $f : \mathbb{R} \to \mathbb{R}$ with infinitely many discontinuities.
- 6. Recall that $\cos(x) = \text{Re}(E(ix))$ and $\sin(x) = \text{Im}(E(ix))$ have power series

$$
\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \qquad \sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}.
$$

- (a) Use the identity $E(ix)E(-ix) = E(0) = 1$ to prove that $\cos^2(x) + \sin^2(x) = 1$ for all $x \in \mathbb{R}$.
- (b) Prove that $|\sin(x)| \le |x|$ for all $x \in \mathbb{R}$. (Hint: reduce to the case $0 \le x \le 1$.)
- (c) Prove that $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin(x)$ is uniformly continuous. (Hint: use the identity $\sin(\alpha) - \sin(\beta) = 2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}).$
- 7. Give an example of a sequence of functions $f_1, f_2, f_3, \cdots : \mathbb{R} \to \mathbb{R}$ and constants $M_1, M_2, M_3, \dots \in \mathbb{R}$ such that $|f_i(x)| \leq M_i$ for all $x \in \mathbb{R}$ and the sum $\sum_{i=1}^{\infty}$ $i=1$ M_i converges, but $\sum_{i=1}^{\infty} f_i(x)$ is *not* continuous. $i=1$