- 1. (a) Show that $f(x) = x^{1/2}$ is differentiable on $(0, \infty)$, and compute its derivative.
	- (b) Do the same for $f(x) = x^{1/n}$, where *n* is any positive integer.
	- (c) Now do the same for $f(x) = x^{m/n}$, where m and n are positive integers.
- 2. A function $f : \mathbb{R} \to \mathbb{R}$ is called Hölder continuous with exponent $\alpha > 0$ if there is a constant $C \geq 0$ such that

$$
|f(x) - f(y)| \le C|x - y|^{\alpha}
$$

for all $x, y \in \mathbb{R}$. Show that if $\alpha > 1$ then f is differentiable, and $f'(x) = 0$.

Remark: We will see in lecture soon that if $f' \equiv 0$ then f must be constant.

3. Find all $x \in \mathbb{R}$ where $f(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ 0, & x \in \mathbb{R} \end{cases}$ ², $x \in \mathbb{Q}$ is differentiable and compute its derivative.

4. (a) Show, using
$$
\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}
$$
 and $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$, that

$$
\lim_{x \to 0} \frac{\sin(x)}{x} = 1
$$
 and
$$
\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0.
$$

- (b) Use the angle addition formulas to prove that $sin(x)$ and $cos(x)$ are differentiable and determine their derivatives. (Note: you may not just differentiate the power series term by term, because we have not yet proved that this gives the right answer.)
- 5. Recall that we defined $log: (0, \infty) \to \mathbb{R}$ as the inverse function of e^x .
	- (a) Using only this and formal properties of e^x , prove for $x > 0$ and $0 < |h| < x$ that

$$
\frac{\log(x+h) - \log(x)}{h} = \frac{1}{x} \frac{\log(1 + \frac{h}{x})}{h/x}.
$$

- (b) Prove by a substitution that $\lim_{y\to 0}$ $log(1 + y)$ $\frac{1 + y_j}{y} = \lim_{x \to 0}$ \boldsymbol{x} $\frac{x}{e^x-1}$, and that the latter limit is 1. (Hint: use the power series definition of e^x to evaluate $\lim_{x\to 0}$ e^x-1 \boldsymbol{x} .)
- (c) Show that $log(x)$ is differentiable, and find its derivative.
- 6. (*) Let $f : [a, b] \to \mathbb{R}$ be a differentiable function. We will prove that $f'(x)$ has the intermediate value property even though it may not be continuous. In both parts we will suppose that $f'(a) < f'(b)$ and fix some t such that $f'(a) < t < f'(b)$.
	- (a) Let $g(x) = f(x) tx$. Prove that there is some $c \in (a, b)$ such that $g(c) < g(a)$. (Hint: what is $g'(a)$?) Similarly, prove that there is some $d \in (a, b)$ such that $g(d) < g(b)$. In other words, $g(x)$ is not minimized at $x = a$ or at $x = b$.
	- (b) Show that $g'(y) = 0$ for some $y \in (a, b)$, and deduce that $f'(y) = t$.

7. The goal of this problem is to construct a continuous function which is not differentiable anywhere. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = |x|$ for $-1 \le x \le 1$ and $f(x+2) = f(x)$ for all $x \in \mathbb{R}$. Then define $g : \mathbb{R} \to \mathbb{R}$ by

$$
g(x) = \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i f(4^i x).
$$

- (a) Draw a graph of $f(x)$, and convince yourself that it is continuous.
- (b) Prove that g is continuous.
- (c) Fix $x \in \mathbb{R}$ and an integer $n \in \mathbb{N}$. Let ϵ_n be $+\frac{1}{2}$ if there is no integer in the interval $(4^n x, 4^n x + \frac{1}{2})$ $(\frac{1}{2})$, or $-\frac{1}{2}$ $\frac{1}{2}$ if there is no integer in $(4^n x - \frac{1}{2})$ $\frac{1}{2}, 4^n x$). Check that one of these is always possible, and then define

$$
d_i(x) = \frac{f(4^i(x + \frac{\epsilon_n}{4^n})) - f(4^i x)}{\epsilon_n/4^n}.
$$

Show that $|d_i(x)| = 4^i$ for all $i \leq n$, and that $d_i(x) = 0$ for all $i > n$.

(d) Prove that $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ $g(x+\frac{\epsilon_n}{4^n})-g(x)$ $\epsilon_n/4^n$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $\geq 3^n - (3^{n-1} + 3^{n-2} + \cdots + 1) = \frac{3^n + 1}{2}$ 2 . Conclude that q is not differentiable at x .