- 1. You drive down a road whose speed limit is 60 miles per hour. An observer sees you at 12pm, and a second observer 35 miles away sees you at 12:30pm. Assuming they've watched their analysis lectures, how can they prove you were speeding?
- 2. Prove using l'Hôpital's rule that $\lim_{x\to\infty} \left(1+\frac{r}{x}\right)^x = e^r$. (Hint: take logs first.)
- 3. Let H_n denote the harmonic sum $\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$.
 - (a) Show using the mean value theorem that $\frac{1}{n+1} < \log(n+1) \log(n) < \frac{1}{n}$ for all $n \in \mathbb{N}$.
 - (b) Prove that $H_n 1 < \log(n) < H_{n-1}$ for all $n \ge 2$, where $H_k = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{k}$, and deduce that $\log(n+1) < H_n < \log(n) + 1$.
 - (c) Prove that the sequence $(H_n \log(n))$ is decreasing, and that $\lim_{n \to \infty} (H_n \log(n))$ exists. (This limit is called the *Euler-Mascheroni constant* $\gamma \approx 0.577...$)
- 4. (*) Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable, and suppose there is a constant C < 1 such that $|f'(x)| \leq C$ for all $x \in \mathbb{R}$. We will prove that f has exactly one fixed point, meaning there is a unique $y \in \mathbb{R}$ such that f(y) = y. Pick some $x_0 \in \mathbb{R}$ and let

$$x_{n+1} = f(x_n)$$
 for all $n \ge 0$.

- (a) Prove that $|x_{n+2} x_{n+1}| \le C|x_{n+1} x_n|$ for all *n*.
- (b) Prove that the sequence (x_n) converges, and that if its limit is y then f(y) = y.
- (c) Prove that f cannot have two different fixed points.
- 5. (a) Compute the Taylor series P(x) of $f(x) = \log(1+x)$ centered at x = 0, and prove that it converges absolutely on (-1, 1).
 - (b) Prove using Taylor's theorem that f(x) = P(x) on some open neighborhood of 0, by showing that the sequence of *n*th order Taylor polynomials $P_n(x)$ converges uniformly to f(x). Show that the same is true at x = 1, and so $\log(2) = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$
- 6. Suppose that $f : \mathbb{R} \to \mathbb{R}$ has at least six continuous derivatives, and that $f^{(i)}(0) = 0$ for i = 1, 2, 3, 4, 5 but $f^{(6)}(0) = 1$. Prove that f(x) has a local minimum at x = 0.
- 7. (a) Prove that $f(x) = e^x$ is convex on all of \mathbb{R} .
 - (b) Let a, b > 0. Prove the arithmetic mean-geometric mean inequality

$$\frac{a+b}{2} \geq \sqrt{ab}$$

by using the convexity of e^x . (Hint: think about $\alpha = \log(a)$ and $\beta = \log(b)$.)

- (c) Prove for any a, b > 0 and $s \in [0, 1]$ that $sa + (1 s)b \ge a^s b^{1-s}$.
- (d) Prove Young's inequality: for any $x, y \ge 0$ and p, q > 0 with $\frac{1}{p} + \frac{1}{q} = 1$,

$$\frac{x^p}{p} + \frac{y^q}{q} \ge xy.$$

- 8. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0\\ 0, & x = 0. \end{cases}$
 - (a) Prove that for all integers $n \ge 0$, there is a polynomial $p_n(x)$ such that

$$f^{(n)}(x) = \frac{p_n(x)}{x^{3n}} e^{-1/x^2}$$
 for all $x \neq 0$.

- (b) Prove that $f^{(n)}(0) = 0$ for all n, and hence that f(x) does not equal its Taylor series (centered at a = 0) at any nonzero x.
- (c) Define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = \begin{cases} 0, & x \le 0 \\ e^{-1/x^2}, & x > 0. \end{cases}$ Prove that $g^{(n)}(x)$ exists for all $n \ge 0$ and all $x \in \mathbb{R}$, and that $g^{(n)}(0) = 0$ for all n.
- (d) Define $h : \mathbb{R} \to \mathbb{R}$ by h(x) = g(x)g(1-x). Prove that $h^{(n)}(x)$ exists for all $n \ge 0$ and all $x \in \mathbb{R}$, and that $h(x) \ne 0$ if and only if 0 < x < 1.

The function h is called a *bump function*: it is infinitely differentiable, and it is zero outside a compact set (namely [0, 1]) but also takes positive values.

9. Define functions
$$f_n : \mathbb{R} \to \mathbb{R}$$
 by $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$ for all $n \ge 1$.

- (a) Prove that f_n is continuously differentiable, and that $|x| \le f_n(x) \le |x| + \frac{1}{n}$.
- (b) Prove that (f_n) converges uniformly to a continuous function f.
- (c) Prove that (f'_n) doesn't converge uniformly on [-1, 1], so the theorem from lecture about limits of differentiable functions doesn't apply to tell us that f should be differentiable on [-1, 1]. (Is f differentiable there?)

10. In an upcoming lecture, we'll need to know that $\lim_{x\to\infty} xs^{x-1} = 0$ for all $s \in (0,1)$.

- (a) Prove that for all c > 0, there exists N > 0 such that $\log(x) < cx$ for all $x \ge N$.
- (b) Prove for $s \in (0, 1)$ that $\lim_{x \to \infty} xs^x = 0$, and that this implies the above claim.