- 1. You drive down a road whose speed limit is 60 miles per hour. An observer sees you at 12pm, and a second observer 35 miles away sees you at 12:30pm. Assuming they've watched their analysis lectures, how can they prove you were speeding?
- 2. Prove using l'Hôpital's rule that $\lim_{x\to\infty} (1 +$ r \boldsymbol{x} $x = e^r$. (Hint: take logs first.)
- 3. Let H_n denote the harmonic sum $\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$ $\frac{1}{n}$.
	- (a) Show using the mean value theorem that $\frac{1}{n+1} < \log(n+1) \log(n) < \frac{1}{n}$ $\frac{1}{n}$ for all $n \in \mathbb{N}$.
	- (b) Prove that $H_n 1 < \log(n) < H_{n-1}$ for all $n \ge 2$, where $H_k = \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{k}$ $\frac{1}{k}$, and deduce that $\log(n+1) < H_n < \log(n) + 1$.
	- (c) Prove that the sequence $(H_n \log(n))$ is decreasing, and that $\lim_{n \to \infty} (H_n \log(n))$ exists. (This limit is called the *Euler–Mascheroni constant* $\gamma \approx 0.577...$)
- 4. (*) Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable, and suppose there is a constant $C < 1$ such that $|f'(x)| \leq C$ for all $x \in \mathbb{R}$. We will prove that f has exactly one fixed point, meaning there is a unique $y \in \mathbb{R}$ such that $f(y) = y$. Pick some $x_0 \in \mathbb{R}$ and let

$$
x_{n+1} = f(x_n) \text{ for all } n \ge 0.
$$

- (a) Prove that $|x_{n+2} x_{n+1}| \leq C |x_{n+1} x_n|$ for all n.
- (b) Prove that the sequence (x_n) converges, and that if its limit is y then $f(y) = y$.
- (c) Prove that f cannot have two different fixed points.
- 5. (a) Compute the Taylor series $P(x)$ of $f(x) = \log(1+x)$ centered at $x = 0$, and prove that it converges absolutely on $(-1, 1)$.
	- (b) Prove using Taylor's theorem that $f(x) = P(x)$ on some open neighborhood of 0, by showing that the sequence of nth order Taylor polynomials $P_n(x)$ converges uniformly to $f(x)$. Show that the same is true at $x = 1$, and so $log(2) = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$
- 6. Suppose that $f : \mathbb{R} \to \mathbb{R}$ has at least six continuous derivatives, and that $f^{(i)}(0) = 0$ for $i = 1, 2, 3, 4, 5$ but $f^{(6)}(0) = 1$. Prove that $f(x)$ has a local minimum at $x = 0$.
- 7. (a) Prove that $f(x) = e^x$ is convex on all of R.
	- (b) Let $a, b > 0$. Prove the *arithmetic mean–geometric mean inequality*

$$
\frac{a+b}{2}\geq \sqrt{ab}
$$

by using the convexity of e^x . (Hint: think about $\alpha = \log(a)$ and $\beta = \log(b)$.)

- (c) Prove for any $a, b > 0$ and $s \in [0, 1]$ that $sa + (1 s)b \ge a^s b^{1-s}$.
- (d) Prove Young's inequality: for any $x, y \ge 0$ and $p, q > 0$ with $\frac{1}{p} + \frac{1}{q} = 1$,

$$
\frac{x^p}{p} + \frac{y^q}{q} \geq xy.
$$

- 8. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0 & x \end{cases}$ 0, $x = 0$.
	- (a) Prove that for all integers $n \geq 0$, there is a polynomial $p_n(x)$ such that

$$
f^{(n)}(x) = \frac{p_n(x)}{x^{3n}} e^{-1/x^2}
$$
 for all $x \neq 0$.

- (b) Prove that $f^{(n)}(0) = 0$ for all n, and hence that $f(x)$ does not equal its Taylor series (centered at $a = 0$) at any nonzero x.
- (c) Define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = \begin{cases} 0, & x \leq 0 \\ 0, & x \leq 0 \end{cases}$ $e^{-1/x^2}, \quad x > 0.$ Prove that $g^{(n)}(x)$ exists for all $n \geq 0$ and all $x \in \mathbb{R}$, and that $g^{(n)}(0) = 0$ for all n.
- (d) Define $h : \mathbb{R} \to \mathbb{R}$ by $h(x) = g(x)g(1-x)$. Prove that $h^{(n)}(x)$ exists for all $n \geq 0$ and all $x \in \mathbb{R}$, and that $h(x) \neq 0$ if and only if $0 < x < 1$.

The function h is called a *bump function*: it is infinitely differentiable, and it is zero outside a compact set (namely $[0, 1]$) but also takes positive values.

9. Define functions
$$
f_n : \mathbb{R} \to \mathbb{R}
$$
 by $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$ for all $n \ge 1$.

- (a) Prove that f_n is continuously differentiable, and that $|x| \le f_n(x) \le |x| + \frac{1}{n}$ $\frac{1}{n}$.
- (b) Prove that (f_n) converges uniformly to a continuous function f.
- (c) Prove that (f'_n) doesn't converge uniformly on $[-1, 1]$, so the theorem from lecture about limits of differentiable functions doesn't apply to tell us that f should be differentiable on $[-1, 1]$. (Is f differentiable there?)

10. In an upcoming lecture, we'll need to know that $\lim_{x\to\infty} xs^{x-1} = 0$ for all $s \in (0,1)$.

- (a) Prove that for all $c > 0$, there exists $N > 0$ such that $log(x) < cx$ for all $x \geq N$.
- (b) Prove for $s \in (0,1)$ that $\lim_{x \to \infty} x s^x = 0$, and that this implies the above claim.