
MATH40002: Analysis 1 Problem Sheet 4: Lectures 8–10

1. You drive down a road whose speed limit is 60 miles per hour. An observer sees
you at 12pm, and a second observer 35 miles away sees you at 12:30pm. Assuming
they’ve watched their analysis lectures, how can they prove you were speeding?

2. Prove using l’Hôpital’s rule that lim
x→∞

(
1 +

r

x

)x
= er. (Hint: take logs first.)

3. Let Hn denote the harmonic sum 1
1

+ 1
2

+ · · ·+ 1
n
.

(a) Show using the mean value theorem that 1
n+1

< log(n+ 1)− log(n) < 1
n

for all
n ∈ N.

(b) Prove that Hn − 1 < log(n) < Hn−1 for all n ≥ 2, where Hk = 1
1

+ 1
2

+ · · ·+ 1
k
,

and deduce that log(n+ 1) < Hn < log(n) + 1.

(c) Prove that the sequence
(
Hn−log(n)

)
is decreasing, and that lim

n→∞
(Hn−log(n))

exists. (This limit is called the Euler–Mascheroni constant γ ≈ 0.577 . . . .)

4. (*) Let f : R → R be differentiable, and suppose there is a constant C < 1 such
that |f ′(x)| ≤ C for all x ∈ R. We will prove that f has exactly one fixed point,
meaning there is a unique y ∈ R such that f(y) = y. Pick some x0 ∈ R and let

xn+1 = f(xn) for all n ≥ 0.

(a) Prove that |xn+2 − xn+1| ≤ C|xn+1 − xn| for all n.

(b) Prove that the sequence
(
xn
)

converges, and that if its limit is y then f(y) = y.

(c) Prove that f cannot have two different fixed points.

5. (a) Compute the Taylor series P (x) of f(x) = log(1 + x) centered at x = 0, and
prove that it converges absolutely on (−1, 1).

(b) Prove using Taylor’s theorem that f(x) = P (x) on some open neighborhood
of 0, by showing that the sequence of nth order Taylor polynomials Pn(x)
converges uniformly to f(x). Show that the same is true at x = 1, and so
log(2) = 1

1
− 1

2
+ 1

3
− 1

4
+ 1

5
− . . . .

6. Suppose that f : R→ R has at least six continuous derivatives, and that f (i)(0) = 0
for i = 1, 2, 3, 4, 5 but f (6)(0) = 1. Prove that f(x) has a local minimum at x = 0.

7. (a) Prove that f(x) = ex is convex on all of R.

(b) Let a, b > 0. Prove the arithmetic mean–geometric mean inequality

a+ b

2
≥
√
ab

by using the convexity of ex. (Hint: think about α = log(a) and β = log(b).)

(c) Prove for any a, b > 0 and s ∈ [0, 1] that sa+ (1− s)b ≥ asb1−s.

(d) Prove Young’s inequality : for any x, y ≥ 0 and p, q > 0 with 1
p

+ 1
q

= 1,

xp

p
+
yq

q
≥ xy.
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8. Define f : R→ R by f(x) =

{
e−1/x

2
, x 6= 0

0, x = 0.

(a) Prove that for all integers n ≥ 0, there is a polynomial pn(x) such that

f (n)(x) =
pn(x)

x3n
e−1/x

2

for all x 6= 0.

(b) Prove that f (n)(0) = 0 for all n, and hence that f(x) does not equal its Taylor
series (centered at a = 0) at any nonzero x.

(c) Define g : R→ R by g(x) =

{
0, x ≤ 0

e−1/x
2
, x > 0.

Prove that g(n)(x) exists for all

n ≥ 0 and all x ∈ R, and that g(n)(0) = 0 for all n.

(d) Define h : R → R by h(x) = g(x)g(1 − x). Prove that h(n)(x) exists for all
n ≥ 0 and all x ∈ R, and that h(x) 6= 0 if and only if 0 < x < 1.

The function h is called a bump function: it is infinitely differentiable, and it is zero
outside a compact set (namely [0, 1]) but also takes positive values.

9. Define functions fn : R→ R by fn(x) =

√
x2 +

1

n2
for all n ≥ 1.

(a) Prove that fn is continuously differentiable, and that |x| ≤ fn(x) ≤ |x|+ 1
n
.

(b) Prove that
(
fn
)

converges uniformly to a continuous function f .

(c) Prove that
(
f ′n
)

doesn’t converge uniformly on [−1, 1], so the theorem from
lecture about limits of differentiable functions doesn’t apply to tell us that f
should be differentiable on [−1, 1]. (Is f differentiable there?)

10. In an upcoming lecture, we’ll need to know that lim
x→∞

xsx−1 = 0 for all s ∈ (0, 1).

(a) Prove that for all c > 0, there exists N > 0 such that log(x) < cx for all x ≥ N .

(b) Prove for s ∈ (0, 1) that lim
x→∞

xsx = 0, and that this implies the above claim.
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