
MATH40002: Analysis 1 Problem Sheet 5: Lectures 11–12

1. (a) Suppose that some function f : (−R,R) → R is equal to the power series
∞∑
n=0

anx
n

n!
, which converges absolutely on (−R,R). Prove that the Taylor series

of f centered at a = 0 is precisely
∞∑
n=0

anx
n

n!
.

(b) Compute the Taylor series of f(x) = 1
1−x2 centered at a = 0. What is f (100)(0)?

2. (*) Let
(
an
)

denote the Fibonacci sequence, with a0 = 0, a1 = 1, and an+2 =
an+1 + an for all n ≥ 0.

(a) Prove by induction that an < 2n for all n ≥ 0. What is the radius of conver-
gence of the exponential generating function

F (x) =
∞∑
n=0

anx
n

n!
= 0 + 1x+

1x2

2
+

2x3

6
+

3x4

24
+ . . .?

(b) Prove that F ′′(x) = F ′(x) + F (x), and that F (0) = 0 and F ′(0) = 1.

(c) Solve this differential equation for F (x).

(d) Use the solution from part (c) to prove Binet’s formula:

an =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
.

3. Recall that we defined π = inf{y > 0 | sin(y) = 0}.

(a) Prove that sin(nπ) = 0 for all n ∈ Z.

(b) Prove that if sin(y) = 0, then y = nπ for some n ∈ Z. (Hint: write y = qπ+r.)

(c) Prove that cos(x) = 0 if and only if x = (2k+1)π
2

for some k ∈ Z.

4. In this problem we will show that the mysterious constant π lies strictly between
2
√

2 ∼= 2.828 . . . and 3.2. (Can you use these same ideas to do better?)

(a) Use the third-order Taylor polynomial for cos(x), centered at x = 0, to prove
that if 0 < x ≤ π

2
then

1− x2

2
< cos(x) ≤ 1− x2

2
+
x4

24
.

(b) Evaluate one or both of these inequalities at x = π
2

and conclude that π > 2
√

2.

(c) Show that cos(2) < 0 and hence that π
2
< 2. Once you’ve done this, use a

calculator to do the same for cos(1.6) and deduce that π < 3.2.

5. Fix an integer r ≥ 0 and define f : [1, b]→ R by f(x) = xr, where b > 1.

(a) Let Pn = (1, b1/n, b2/n, . . . , b(n−1)/n, b) be a partition of [1, b]. Compute the
lower Darboux sum L(f, Pn), and show that U(f, Pn) = br/nL(f, Pn).

(b) Prove that lim
n→∞

L(f, Pn) = lim
n→∞

U(f, Pn), and compute their common value.
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