- 1. (a) Suppose that some function $f : (-R, R) \to \mathbb{R}$ is equal to the power series \sum^{∞} $n=0$ $a_n x^n$ n! , which converges absolutely on $(-R, R)$. Prove that the Taylor series of f centered at $a = 0$ is precisely $\sum_{n=1}^{\infty}$ $a_n x^n$ $n!$.
	- $n=0$ (b) Compute the Taylor series of $f(x) = \frac{1}{1-x^2}$ centered at $a = 0$. What is $f^{(100)}(0)$?
- 2. (*) Let (a_n) denote the Fibonacci sequence, with $a_0 = 0$, $a_1 = 1$, and $a_{n+2} =$ $a_{n+1} + a_n$ for all $n \geq 0$.
	- (a) Prove by induction that $a_n < 2^n$ for all $n \geq 0$. What is the radius of convergence of the exponential generating function

$$
F(x) = \sum_{n=0}^{\infty} \frac{a_n x^n}{n!} = 0 + 1x + \frac{1x^2}{2} + \frac{2x^3}{6} + \frac{3x^4}{24} + \dots?
$$

- (b) Prove that $F''(x) = F'(x) + F(x)$, and that $F(0) = 0$ and $F'(0) = 1$.
- (c) Solve this differential equation for $F(x)$.
- (d) Use the solution from part (c) to prove Binet's formula:

$$
a_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right).
$$

- 3. Recall that we defined $\pi = \inf\{y > 0 \mid \sin(y) = 0\}.$
	- (a) Prove that $sin(n\pi) = 0$ for all $n \in \mathbb{Z}$.
	- (b) Prove that if $sin(y) = 0$, then $y = n\pi$ for some $n \in \mathbb{Z}$. (Hint: write $y = q\pi + r$.)
	- (c) Prove that $\cos(x) = 0$ if and only if $x = \frac{(2k+1)\pi}{2}$ $\frac{+1}{2}$ for some $k \in \mathbb{Z}$.
- 4. In this problem we will show that the mysterious constant π lies strictly between $2\sqrt{2} \cong 2.828...$ and 3.2. (Can you use these same ideas to do better?)
	- (a) Use the third-order Taylor polynomial for $cos(x)$, centered at $x = 0$, to prove that if $0 < x \leq \frac{\pi}{2}$ $\frac{\pi}{2}$ then

$$
1 - \frac{x^2}{2} < \cos(x) \le 1 - \frac{x^2}{2} + \frac{x^4}{24}.
$$

- (b) Evaluate one or both of these inequalities at $x = \frac{\pi}{2}$ $\frac{\pi}{2}$ and conclude that $\pi > 2$ √ 2.
- (c) Show that $cos(2) < 0$ and hence that $\frac{\pi}{2} < 2$. Once you've done this, use a calculator to do the same for $\cos(1.6)$ and deduce that $\pi < 3.2$.
- 5. Fix an integer $r \ge 0$ and define $f : [1, b] \to \mathbb{R}$ by $f(x) = x^r$, where $b > 1$.
	- (a) Let $P_n = (1, b^{1/n}, b^{2/n}, \ldots, b^{(n-1)/n}, b)$ be a partition of [1, b]. Compute the lower Darboux sum $L(f, P_n)$, and show that $U(f, P_n) = b^{r/n} L(f, P_n)$.
	- (b) Prove that $\lim_{n\to\infty} L(f, P_n) = \lim_{n\to\infty} U(f, P_n)$, and compute their common value.