1. Define a function $f : [a, b] \to \mathbb{R}$ by $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \end{cases}$ $-1, x \notin \mathbb{Q}$.

Prove that f is not integrable, but that f^2 is.

- 2. Prove that any monotone increasing function $f : [a, b] \to \mathbb{R}$ is integrable, by considering its Darboux sums for partitions where every subinterval $[x_i, x_{i+1}]$ has the same length.
- 3. Define the mesh of a partition $P = (x_0, \ldots, x_k)$ to be the maximal length of any subinterval:

$$
\mathrm{mesh}(P) = \max_{0 \le i \le k-1} \Delta x_i = \max_{0 \le i \le k-1} (x_{i+1} - x_i).
$$

Show that if $f : [a, b] \to \mathbb{R}$ is continuous and (P_n) is any sequence of partitions of [a, b] such that mesh $(P_n) \to 0$ as $n \to \infty$, then

$$
\int_a^b f(x) dx = \lim_{n \to \infty} L(f, P_n) = \lim_{n \to \infty} U(f, P_n).
$$

The proof should follow the argument we used in lecture to show that continuous functions are integrable.

4. (a) Prove for any $\theta \in \mathbb{R}$ and $n \in \mathbb{N}$ that if $\sin(\frac{\theta}{2}) \neq 0$, then

$$
\sin(\theta) + \sin(2\theta) + \dots + \sin(n\theta) = \frac{\sin(n\theta/2)\sin((n+1)\theta/2)}{\sin(\theta/2)}
$$

using the formula $\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)).$

(b) Fix $t \in (0, \frac{\pi}{2}]$ so that $sin(x)$ is monotone increasing on the interval $[0, t]$, and 2 consider the partition $P_n = (0, \frac{t}{n})$ $\frac{t}{n}, \frac{2t}{n}$ $\frac{2t}{n}, \ldots, \frac{(n-1)t}{n}$ $\frac{-1}{n}$, t) of [0, t]. Compute the upper Darboux sum $U(\sin(x), P_n)$, and show that

$$
\lim_{n \to \infty} U(\sin(x), P_n) = 2\sin^2(\frac{t}{2}).
$$

Remark: This limit is equal to $1-\cos(t)$ by the double-angle formula $\cos(2\theta)$ = $1-2\sin^2(\theta)$, so problem 3 tells us that

$$
\int_0^t \sin(x) dx = 2\sin^2\left(\frac{t}{2}\right) = 1 - \cos(t)
$$

for all $t \in (0, \frac{\pi}{2})$ $\frac{\pi}{2}$.

5. Let $f, g : [a, b] \to \mathbb{R}$ be bounded functions such that $f(x)$ and the product $f(x)g(x)$ are both integrable, and $f(x) \geq 0$ for all $x \in [a, b]$. If $c \leq g(x) \leq d$ for all $x \in [a, b]$, prove that

$$
c\int_a^b f(x) dx \le \int_a^b f(x)g(x) dx \le d\int_a^b f(x) dx.
$$

6. (*) Define $f : [0,1] \to \mathbb{R}$ by $f(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ 0, & x \in \mathbb{R} \end{cases}$ $1/|q|, \quad x = \frac{p}{q}$ $\frac{p}{q} \in \mathbb{Q}$.

We proved in problem sheet 1 that f is discontinuous at all rational numbers.

- (a) Compute the lower Darboux integral $\int_0^1 f(x) dx$.
- (b) Consider the partition $P_n = (0, \frac{1}{n^2})$ $\frac{1}{n^3}, \frac{2}{n^3}$ $\frac{2}{n^3}, \ldots, \frac{n^3-1}{n^3}$ $\frac{3-1}{n^3}$, 1) of [0, 1]. Show for *n* large that there are at most n^2 subintervals $\left[\frac{i}{n^3}, \frac{i+1}{n^3}\right]$ $\frac{n+1}{n^3}$ on which

$$
M_i = \sup_{\frac{i}{n^3} \le t \le \frac{i+1}{n^3}} f(t)
$$

is at least $\frac{1}{n}$.

- (c) Prove that $U(f, P_n) \leq \frac{2}{n}$ $\frac{2}{n}$ for *n* large. (Hint: break the sum into terms where $M_i \geq \frac{1}{n}$ $\frac{1}{n}$ and terms where $M_i < \frac{1}{n}$ $\frac{1}{n}$.)
- (d) Conclude that f is integrable, and compute $\int_0^1 f(x) dx$.