- 1. Prove that if $f : [a, b] \to [0, \infty)$ is continuous and $f(c) \neq 0$ for some $c \in [a, b]$, then $\int_a^b f(x) dx > 0.$
- 2. Suppose for some $f : [a, b] \to \mathbb{R}$ and integer $n \geq 1$ that the *n*th power f^n of f is integrable. Prove that if n is odd, then f is integrable. Why doesn't this work for n even, and can you find additional hypotheses on f that make it true in that case?
- 3. Let $C[a, b]$ denote the set of continuous functions $f : [a, b] \to \mathbb{R}$, and define a function $d: C[a, b] \times C[a, b] \to \mathbb{R}$ by $d(f, g) = \int^b$ a $|f(x) - g(x)| dx$.
	- (a) Prove that $d(f, g) = d(g, f)$ for all $f, g \in C[a, b]$.
	- (b) Prove that $d(f, g) \geq 0$, with equality if and only if $f = g$.
	- (c) Prove the triangle inequality $d(f, g) + d(g, h) \geq d(f, h)$.

These properties say that d is a metric, which is a notion of distance on $C[a, b]$.

- (d) Prove that if $f_n \to f$ uniformly on $[a, b]$, then $\lim_{n \to \infty} d(f_n, f) = 0$.
- 4. Evaluate \int^x 1 √ $t^2 - 1$ t dt for $x \geq 1$. (Hint: what is the inverse of the integrand?)
- 5. In problem sheet 4 we constructed a smooth (i.e., infinitely differentiable) function $f : \mathbb{R} \to [0, \infty)$ such that $f(x) > 0$ if and only if $x \in (0, 1)$.
	- (a) Construct a smooth, monotone increasing function $g : \mathbb{R} \to [0, \infty)$ such that $g(x) = 0$ for all $x \le 0$ and $g(x) = 1$ for all $x \ge 1$.
	- (b) Given $a < b < c < d$, construct a smooth function $h : \mathbb{R} \to [0, \infty)$ satisfying

$$
h(x) = 0
$$
 for all $x \notin [a, d]$, $h(x) = 1$ for all $x \in [b, c]$,

and with h monotone increasing on $(-\infty, b]$ and decreasing on $[c, \infty)$.

- 6. (a) Given $a < b < 0$, evaluate \int^b a 1 \overline{x} dx. Be careful not to take the logarithm of a negative number along the way!
	- (b) Check that $tan(x) = \frac{sin(x)}{cos(x)}$ is strictly monotone increasing on the interval $\left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$, with

$$
\lim_{x \downarrow -\frac{\pi}{2}} \tan(x) = -\infty \quad \text{and} \quad \lim_{x \uparrow \frac{\pi}{2}} \tan(x) = +\infty.
$$

(c) Let tan⁻¹: $\mathbb{R} \to \left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$) be the inverse function to $\tan(x)$. Prove for all $x \in \mathbb{R}$ that

$$
\cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1+x^2}}.
$$

(d) Fix $\theta \in (0, \frac{\pi}{2})$ $\frac{\pi}{2}$). Find a convenient substitution which proves that

$$
\int_0^\theta \tan(x) \, dx = -\log(\cos(\theta)).
$$

(e) Prove for
$$
x > 0
$$
 that $\int_0^x \tan^{-1}(t) dt = x \tan^{-1}(x) - \frac{1}{2} \log(1 + x^2)$.

- 7. (a) Check that the derivative of $x \log(x) x$ is $\log(x)$.
	- (b) Use Darboux sums to prove for all integers $n \geq 1$ that

$$
\log((n-1)!) \le \int_1^n \log(x) dx \le \log(n!).
$$

(c) Evaluate the integral in (b) and deduce that

$$
\frac{1}{n} \le \frac{\log(n!)}{n} - \log\left(\frac{n}{e}\right) \le \log\left(1 + \frac{1}{n}\right) + \frac{\log(n+1)}{n}
$$

for all $n > 1$.

(d) Conclude that $\lim_{n\to\infty}$ $\frac{n}{\sqrt[n]{n!}}$ $=e$.

Remark: this is a weak version of *Stirling's formula n*! \sim √ $\overline{2\pi n}$ ($\frac{n}{e}$ $\frac{n}{e}$ $\Big)^n$.

- 8. (*) Let $f : [N, \infty) \to [0, \infty)$ be a nonnegative, monotone decreasing function.
	- (a) Let $S_n = \sum_{n=1}^n$ $k=N$ $f(k)$ for all integers $n \geq N$. Use Darboux sums to prove that

$$
S_n - f(N) \le \int_N^n f(x) dx \le S_{n-1}.
$$

(b) Prove that the series
$$
\sum_{k=N}^{\infty} f(k)
$$
 converges if and only if the limit

$$
\int_{N}^{\infty} f(x) dx \stackrel{def}{=} \lim_{x \to \infty} \int_{N}^{x} f(t) dt
$$

(called an improper integral) exists. This is the integral test for convergence.

(c) Prove that if the series $S = \sum_{n=1}^{\infty}$ $k=N$ $f(k)$ converges, so $I = \int_N^{\infty} f(x) dx$ exists, then $I \leq S \leq I + f(N).$

9. Consider for any real s the series $\sum_{n=1}^{\infty} \frac{1}{n}$ $n=1$ $\frac{1}{n^s}$.

- (a) Prove that this series is not convergent if $s \leq 0$.
- (b) Use the integral test to prove that for $s > 0$, the series converges if and only if $s > 1$. If $s > 1$, show that $\frac{1}{s}$ $s-1$ $\langle \sum_{i=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^s}$ s $s-1$.
- (c) Prove for any $a > 1$ that the series converges uniformly to a continuous function on $[a,\infty)$, and hence it defines a continuous function $\zeta : (1,\infty) \to \mathbb{R}$ called the Riemann zeta function. Can it be extended continuously to $[1,\infty)$?
- (d) (Harder!) Prove that $\zeta(s)$ is continuously differentiable, and compute its derivative. It may help to first show that $\lim_{x\to\infty}$ $log(x)$ $\frac{\Theta(x)}{x^{\epsilon}} = 0$ for any $\epsilon > 0$.