
MATH40002: Analysis 1 Problem Sheet 7: Lectures 15–16

1. Prove that if f : [a, b]→ [0,∞) is continuous and f(c) 6= 0 for some c ∈ [a, b], then∫ b
a
f(x) dx > 0.

2. Suppose for some f : [a, b] → R and integer n ≥ 1 that the nth power fn of f is
integrable. Prove that if n is odd, then f is integrable. Why doesn’t this work for n
even, and can you find additional hypotheses on f that make it true in that case?

3. Let C[a, b] denote the set of continuous functions f : [a, b]→ R, and define a function

d : C[a, b]× C[a, b]→ R by d(f, g) =

∫ b

a

|f(x)− g(x)| dx.

(a) Prove that d(f, g) = d(g, f) for all f, g ∈ C[a, b].

(b) Prove that d(f, g) ≥ 0, with equality if and only if f = g.

(c) Prove the triangle inequality d(f, g) + d(g, h) ≥ d(f, h).

These properties say that d is a metric, which is a notion of distance on C[a, b].

(d) Prove that if fn → f uniformly on [a, b], then lim
n→∞

d(fn, f) = 0.

4. Evaluate

∫ x

1

√
t2 − 1

t
dt for x ≥ 1. (Hint: what is the inverse of the integrand?)

5. In problem sheet 4 we constructed a smooth (i.e., infinitely differentiable) function
f : R→ [0,∞) such that f(x) > 0 if and only if x ∈ (0, 1).

(a) Construct a smooth, monotone increasing function g : R → [0,∞) such that
g(x) = 0 for all x ≤ 0 and g(x) = 1 for all x ≥ 1.

(b) Given a < b < c < d, construct a smooth function h : R→ [0,∞) satisfying

h(x) = 0 for all x 6∈ [a, d], h(x) = 1 for all x ∈ [b, c],

and with h monotone increasing on (−∞, b] and decreasing on [c,∞).

6. (a) Given a < b < 0, evaluate

∫ b

a

1

x
dx. Be careful not to take the logarithm of a

negative number along the way!

(b) Check that tan(x) = sin(x)
cos(x)

is strictly monotone increasing on the interval

(−π
2
, π
2
), with

lim
x↓−π

2

tan(x) = −∞ and lim
x↑π

2

tan(x) = +∞.

(c) Let tan−1 : R→ (−π
2
, π
2
) be the inverse function to tan(x). Prove for all x ∈ R

that

cos(tan−1(x)) =
1√

1 + x2
.

(d) Fix θ ∈ (0, π
2
). Find a convenient substitution which proves that∫ θ

0

tan(x) dx = − log(cos(θ)).
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(e) Prove for x > 0 that

∫ x

0

tan−1(t) dt = x tan−1(x)− 1

2
log(1 + x2).

7. (a) Check that the derivative of x log(x)− x is log(x).

(b) Use Darboux sums to prove for all integers n ≥ 1 that

log((n− 1)!) ≤
∫ n

1

log(x) dx ≤ log(n!).

(c) Evaluate the integral in (b) and deduce that

1

n
≤ log(n!)

n
− log

(n
e

)
≤ log

(
1 +

1

n

)
+

log(n+ 1)

n

for all n ≥ 1.

(d) Conclude that lim
n→∞

n
n
√
n!

= e.

Remark: this is a weak version of Stirling’s formula n! ∼
√

2πn
(
n
e

)n
.

8. (*) Let f : [N,∞)→ [0,∞) be a nonnegative, monotone decreasing function.

(a) Let Sn =
n∑

k=N

f(k) for all integers n ≥ N . Use Darboux sums to prove that

Sn − f(N) ≤
∫ n

N

f(x) dx ≤ Sn−1.

(b) Prove that the series
∞∑
k=N

f(k) converges if and only if the limit∫ ∞
N

f(x) dx
def
= lim

x→∞

∫ x

N

f(t) dt

(called an improper integral) exists. This is the integral test for convergence.

(c) Prove that if the series S =
∞∑
k=N

f(k) converges, so I =
∫∞
N
f(x) dx exists, then

I ≤ S ≤ I + f(N).

9. Consider for any real s the series
∞∑
n=1

1

ns
.

(a) Prove that this series is not convergent if s ≤ 0.

(b) Use the integral test to prove that for s > 0, the series converges if and only if

s > 1. If s > 1, show that
1

s− 1
<
∞∑
n=1

1

ns
<

s

s− 1
.

(c) Prove for any a > 1 that the series converges uniformly to a continuous function
on [a,∞), and hence it defines a continuous function ζ : (1,∞)→ R called the
Riemann zeta function. Can it be extended continuously to [1,∞)?

(d) (Harder!) Prove that ζ(s) is continuously differentiable, and compute its

derivative. It may help to first show that lim
x→∞

log(x)

xε
= 0 for any ε > 0.
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