- 1. Evaluate \int^x 0 1 $\frac{1}{1+e^t}$ dt. Does \int_0^∞ 0 1 $\frac{1}{1+e^t}$ dt exist, and if so, what is it?
- 2. The prime number theorem says that the number $\pi(n)$ of primes between 1 and n is approximately \int_2^n 1 $\frac{1}{\log(x)} dx$.
	- (a) Prove that this integral equals $\frac{n}{\log(n)} + \int_2^n$ 1 $\frac{1}{(\log x)^2} dx$, up to a constant which does not depend on n.
	- (b) Prove that there is a constant $C > 0$ such that \int_2^n 1 $\frac{1}{(\log x)^2} dx < \frac{Cn}{(\log n)^2}$ for all sufficiently large n, by splitting the integral up into one with domain $[2, \sqrt{n}]$ sumclemly large *n*, by spinting the integral up into one with do
and one with domain $[\sqrt{n}, n]$ and estimating each one separately.
- 3. Let $f : [0, \infty) \to [0, \infty)$ be uniformly continuous, and suppose that $\int_0^\infty f(x) dx$ exists.
	- (a) For each $\epsilon > 0$, prove that there is a $\delta > 0$ such that for all $y > 0$, if $f(y) \ge \epsilon$ then

$$
\int_{y}^{y+\delta} f(t) dt \ge \frac{\epsilon \delta}{2}.
$$

- (b) Prove that $\lim_{x \to \infty} f(x) = 0$.
- (c) Describe a continuous function $g : [0, \infty) \to [0, \infty)$ such that $\int_{-\infty}^{\infty} g(x) dx$ exists but $\lim_{x\to\infty} g(x)$ does not. Can you make g differentiable as well?

4. Let
$$
\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx.
$$

- (a) Prove that this improper integral converges for all $t > 0$. (In how many ways is it improper?)
- (b) Compute $\Gamma(1)$.
- (c) Prove that $\Gamma(n+1) = n\Gamma(n)$ for all integers $n \geq 1$, and deduce that $\Gamma(n+1) =$ n! for all $n > 0$.
- 5. (*) Let $f : [a, b] \to \mathbb{R}$ be continuous, with $f''(x)$ continuous and bounded on (a, b) .
	- (a) Use integration by parts twice to prove that

$$
\int_{a}^{b} \frac{(x-a)(x-b)}{2} f''(x) dx = \int_{a}^{b} f(x) dx - (b-a) \left(\frac{f(a)+f(b)}{2} \right).
$$

(b) If $|f''(x)| \leq M$ for all $x \in (a, b)$, prove that

$$
\left| \int_{a}^{b} \frac{(x-a)(x-b)}{2} f''(x) dx \right| \le \frac{M(b-a)^{3}}{12}.
$$
 f(b)

a b

In other I shown at right, up to an error of at most $\frac{M(b-a)^3}{12}$. (Hint: check that $(x - a)(x - b) \leq 0$ on [a, b], and compute that $\int_a^b (x - a)(x - b) dx = -\frac{(b - a)^3}{6}$ $\frac{(-a)^{6}}{6}$.)

(c) Apply this to $f(x) = \log(x)$ to show that

$$
\int_1^n \log(x) \, dx = \sum_{k=1}^{n-1} \left(\frac{\log(k) + \log(k+1)}{2} + e_k \right),
$$

where $|e_k| \leq \frac{1}{12k^2}$ for all k.

(d) Evaluate both the integral and the sum from part (c) to show that there is some constant $C > 0$ such that

$$
\left|\log(n!) - \log\left(\frac{n^{n+1/2}}{e^{n-1}}\right)\right| < C
$$

for all *n*, or equivalently if $C_1 = e^{1-C}$ and $C_2 = e^{1+C}$ then

$$
C_1\sqrt{n}\left(\frac{n}{e}\right)^n \le n! < C_2\sqrt{n}\left(\frac{n}{e}\right)^n.
$$