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1 Chapter 1, Limits of Functions, continuity

Definition 1.0.1. ϵ− δ Definition of Limit

Let f be a function defined at all points near X0, except possible at x0, and let l be a real number. We say that l is a limit
of f(x) as x approaches x0, if for every ϵ > 0 there exists a δ > 0 such that |f(x)− l| < ϵ whenever |x− x0| < δ and x ̸= x0.
We write limx→x0

f(x) = l

Basic Properties of Limits

1. Sum rule
limx→x0

[f(x) + g(x)] = limx→x0 f(x) + limx→x0 g(x)

2. Product rule
limx→x0[f(x)g(x)] = limx→x0 f(x) limx→x0 g(x)

3. Reciprocalrule If limx → x0f(x) ̸= 0 then
limx→x0[1/f(x)] = 1/ limx→x0 f(x)

4. Quetient rule If limx→x0 g(x) ̸= 0 then
limx→x0[f(x)/g(x)] = limx→x0 f(x)/ limx→x0 g(x)

5. Composite function rule If h(x) is conitnuous at limx→x0 f(x) then
limx→x0 h(f(x)) = h(limx→x0 f(x))

Definition 1.0.2. The ϵ−A definition of limx → ∞f(x) = l

Let f(x) bedefined on a domain containing, the interval (a,∞).A real number lis the limit of f(x) as x approaches ∞ if for
every ϵ > 0 there exists a A > a, such that |f(x)− l| < ϵ whenver x > A. We write
limx → ∞f(x) = l

Definition 1.0.3. ϵ−B definition of limx→x0 f(x) = ∞

Let f(x) be a function defined in an interval containing x0 except possibly at x = x0. We saythat f(x) approaches ∞ as
x approaches x0, if given any real number B > 0, there exists ϵ > 0, so that whenever |x − x0| < ϵ and x ̸= x0, we have
f(x) > B. We write limx→x0 f(x) = ∞

Definition 1.0.4. One-Sided limit

Let f(x) be defined for all x in an interval (x0, a). We say that f(x) approaches l as x approaches x0 from the right if for
any ϵ > 0 there exists δ > 0, such that for all x0 < x < x0 + δ we have |f(x)− l| < ϵ. We Write limx→x0− f(x) = l
Comparison Test for Limits

1. limx→x0 f(x) = 0 and |g(x) ≤ |f(x)| for all x near x0 with x ̸= x0, then limx→x0 g(x) = 0

2. limx→∞ f(x) = 0 and |g(x)| ≤ |f(x)| for all large enough x thenlimx→∞ g(x) = 0

Two Basic Trigonometric Limits
limh→0

sinh
h = 1 limh→0

cosh−1
h = 0

Definition 1.0.5. Continuity

We say that f is continuous at x0 if limh→0 f(x0 + h) = f(x0) Equivalently limx→x0 f(x) = f(x0) A totally equivalent
definition is: f(x) is continuous at a point x0 if for every ϵ > 0 there exists a number δ > 0 such that |f(x)− f(x0)| < ϵ for
all x in the domain of f for which |x− x0| < δ

2 Differentiation

2.1 Definition with limits

Definition 2.1.1. Differentiability

The function f(x) is differentiable at x if ”Newton’s quotient”

limh → 0 f(x+h)−f(x)
h exists. We call this f ′(x) the derivative of f at point x
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2.1.1 Polynomials

Theorem 2.1.

Let n be an integer ≥ 1 and let f(x) = xn. Then f ′(x) = df
dx = nxn−1

Theorem 2.2.

Let f(x) = xa where a is any real number and x > 0. Then f ′(x) = axa−1.

2.2 General rules, chain rule, rate of changes

2.2.1 General rules

1. If c is a constant (cf)′(x) = cf ′(x)

2. if f(x), g(x) are given functions and f ′(x), g′(x) exist, then

(f + g)′(x) = f ′(x) + g′(x)

3. (fg)′(x) = f ′(x)g(x) + f(x)g′(x)

4. Let g(x) be a function that has a derivative g′(x) and such that g(x) ̸= 0

Then d
dx (

1
g(x) ) = − g′(x)

(g(x))2

5. d
dx

f(x)
g(x) = g(x)f ′(x)−f(x)g′(x)

(g(x))2

2.2.2 The Chain Rule

d
dx (f)(x) = (f ◦ g)′(x) = f ′(g(x))g′(x)

Theorem 2.3.

If f(x) is differentiable at x = x0 then it is also continuous there.

2.3 Implicit differentiation, related rates of change

Not much notable here. You can prove the derivative of polynomials with fractional powers using implicit differentiation.

3 Mean Value and Intermediate Value Theorems

For a function f(x) which is defined at a point c, we say that c is maximum of f if
f(c) ≥ f(x)∀x where f is defined
The minimum is obvious

Theorem 3.1.

Let f be a function which is defined and differentiable on the open interval (a, b). Let c be a number in the interval which is
a maximum for the function. Then f ′(c) = 0, f ′(c) = 0 also if c is a minimum of f

Theorem 3.2.

Let f(x) be continuous on the close interval [a,b]. Then f(x) has a maximum and a minimum on this interval.

Theorem 3.3.

Let f(x) be continuous over the closed intervala ≤ x ≤ b and differentiable on the interval a < x < b. Assume also that
f(a) = f(b) = 0. Then there exists a point c, a < c < b such that f ′(c) = 0

Theorem 3.4.

Suppose f is continuous on [a, b] and differentiable on a, b Then there exists a < c < b such that f ′(c) = f(b)−f(a)
b−a

Definition 3.0.1.

We say that f is increasing over a given interval if given x1, x2 in the interval with x1 ≤ x2, we have f(x1) ≤ f(x2) If it is
strictly increasing it is the same with < insteaf of ≤ Same for decreasing and strictly decreasing
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Definition 3.0.2.

Let f(x) be continuous in some interval, and differentiable there(even possible at the end points.)
If f ′(x) = 0 in the interval(except possible at endpoints) then f is constant
If f ′(x) > 0 in the interval(except possible at endpoints) then f is strictly increasing
If f ′(x) < 0 in the interval(except possible at endpoints) then f is striclty decreasing

Theorem 3.5. Intermediate value theorem

Let f be continuous on the close interval a ≤ x ≤ b. Given any number y∗ between f(a)andf(b), there exists a point x∗
between a and b such that f(x∗) = y∗

4 Inverse Functions

Definition 4.0.1.

Let y = f(x) be defined on some interval. Given any y0 in the range of f , if we can find a unique value x0 in its domain such
that f(x0) = y0, then we an define the inverse funtion x = g(y)(sometimes written x = f−1(y)

Theorem 4.1.

Let f(x) be strictly increasing or strictly decreasing. Then the inverse function exists.

Theorem 4.2.

If f(x) is continuous [a, b] and is strictly increasing(or decreasing), and f(a) = ya and f(b) = yb, then x = g(y) is defined on
[ya, yb]

4.0.1 Derivative of inverse functions

Theorem 4.3.

let f(x) be differentiable on (a, b) and f ′(x) > 0 or f ′(x) < 0 for all x in (a, b). Then the inverse function exists and we have
g′(y) = d

dyf
−1(y) = 1

f ′(x)

5 Exponentials and Logarithms

5.1 Geometrical Definition, Derivative

Definition 5.1.1.

The quantity log(x) is the area under the curse 1
x between 1 and x if x ≥ 1 and the negative the area under the curve 1

x
between 1 and x if x is in the interval (0, 1). In particular log(1) = 0

Theorem 5.1.

log(x) is differentiable and d
dx log(x) =

1
x

Theorem 5.2.

If a, b > 0, then log(ab) = log(a) + log(b)

Theorem 5.3.

log(x) is strictly increasing for all x > 0. Its range is (−∞,∞)

Theorem 5.4.

If n is an integer(positive or negative) then log(an) = nlog(a) for all a > 0
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5.2 Exponential as Inverse of logx

Theorem 5.5.

If x1, x2 are two numbers then exp(x1 + x2) = exp(x1)exp(x2)

Theorem 5.6.

exp(x)is differentiable and d
dxexp(x) = exp(x)

Theorem 5.7.
d
dxa

x = ax(log(a))

Corollary:

limh→0
ah−1

h = log(a) for a > 0

Theorem 5.8.

Let a be any real number and let f(x) = xa for x > 0.Then f ′(x) exists and f ′(x) = axa−1

5.3 Function estimates for Small and Large Arguments

Theorem 5.9. Let a be any real number. Then (1+a)n

n → ∞ as n → ∞

Corollary: e
n

n → ∞ as n → ∞ since e = 1 + a for some a > 0

Theorem 5.10.

The function f(x) = ex

x is strictly increasing for x > 1 and limx→∞ f(x) = ∞
Corollary
The function x− log(x) becomes arbitrarily large as x becomes arbitrarily large. x beats log.
Corrolary
The function x

log(x) becomes large as x becomes large. x beats log

Corolary
As x becomes large x1/x approches the limit 1.

Theorem 5.11. exp(x) beats any power of x

Let m be a positive integer. Then the function f(x) = ex

xm is strictly increasing for x¿m and becomes arbitrarily large as x
becomes arbitrarily large.

5.4 Logarithmic Differentiation

not much here

5.5 L’Hopital’s Rule

Theorem 5.12.

If f, g are differnetiable on an open interval containing x0, g(x0) = f(x0) = 0, and g′(x0) ̸= 0, then

limx→x0

f(x)
g(x) = f ′(x0)

g′(x0)

Theorem 5.13.

Let f(x) and g(x) be a differentiable on an open interval containing x0(except possible at x0). Assume that g(x) ̸= 0 and
g′(x) ̸= 0 for x in an interval about x0 but with x ̸= x0. Assume also that f.g are continous at x0 with f(x0) = g(x0) = 0

and limx→x0

f(x)
g(x) = l. Then also:

limx→x0

f(x)
g(x) = l

Theorem 5.14. L’Hopital’s Rule-general case

To find limx → x0
f(x)
g(x) when limx → x0f(x) and limx → x0g(x) are both zero or both infinite, differentiate numberator and

denominator and take the limit of the new function. Repeat as many times as needed as long as it satisfies the conditions.
Note that x0 may be replaced by ±∞ or x0±
Theorem 5.15. Cauchy Mean Value Theorem

Let f,g be continuous on [a, b] and differentiable on (a, b) with g(a) ̸= g(b). Then there exists c in (a, b) such that

g′(c) f(b)−f(a)
g(b)−g(a) = f ′(c)
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6 Integration

6.1 Anti-derivative and Geometrical Interpretation

Definition 6.1.1.

Given f(x) defined over some interval then if we can find a function F (x) defined over the same interval such that
F ′(x) = f(x) then F (x) is the indefinite integral of f −→ F =

∫
f(x)dx. Then

d
dx (F −G) = 0 ⇒ F (x) = G(x) + constant

6.1.1 Area under a curve

Theorem 6.1.

The function F (x) is differentiable and its derivatives is equal to f(x). Another way to state this is d
dx

∫ x

a
f(t)dt = f(x)

Definition 6.1.2. Signed Area

If f(x) < 0 then the area is below the x− axis.Define F (x) to be minus the area. This leads to the definite integral.

7 The Riemann Sum

Given f(x), a ≤ x ≤ b, take the partition of the interval [a.b] to be xi = a+ih i = 0, 1, . . . . . . , n h = b−a
n Take any sub-interval

[xi−1, xi] and let xi ∈ [xi−1, xi]. Then the Riemann sum is Σn
i=1f(xi∗)h There are three ways of picking xi∗

1. xi∗ = xi the right hand Riemann Summ

2. xi∗ = xi−1 left hand RS

3. xi∗ = 1
2 (xi + xi−1) mid point RS

The Limit as n → ∞, h → 0 limn→∞
∑n

i=1 f(xi∗)h =
∫ b

a
f(x)dx This can be probed using squeeze theorem between the

Lower Riemann sum and Right Sum

8 Properties of the definite Integral; Fundamental Theorrem of Calculus

1.
∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx c a constant

2.
∫ b

a
f(x) + g(x)dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx

3. If c ∈ (a, b) then∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx

4. If f(x) ≤ g(x) for x ∈ [a, b] then∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx

Theorem 8.1. Suppose g(x) is defined for all x ∈ [a, b] and is differentiable on [a, b]. Then∫ b

a
g′(x)dx = g(b)− g(a)

Theorem 8.2. Fundamental Theorem of Calculus

Suppose F is differentiable on [a.b] and F ′ is integrable on [a, b] Then∫ b

a
F ′(x)dx = F (b)− F (a)

If f is integrable on [a, b] and has anti-derivative F then∫ b

a
f(x)dx = F (b)− F (a) Useful Theorem d

dx

∫ g(x)

a
f(t)dt = f(g(x))g′(x)

9 Some Application

just do practise questions for these. this aint fucking physics note
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10 Improper Integrals

Definition 10.0.1. Improper Integral∫ b

a
f(x)dx is an improper integral if

(i) a = −∞ and/or b = ∞
(ii) f(x) → ±∞ in (a, b)

11 Mean value theorem for Integrals

Given a function f that is integrable on [a.b] we define its average ⟨f⟩[a,b] by the formula ⟨f⟩[a,b] = 1
b−a

∫ b

a
f(x)dx

Theorem 11.1.

Let f be continuous on [a, b] then there exists a point x0 ∈ (a.b) such that

f(x0) =
1

b−a

∫ b

a
f(x)dx

12 Techniques of Integration

lmao it’s just integration just get good

13 Application of Integration

Length of Curves L =
∫ b

a
[1 + (f ′(x))2]1/2dx

L =
∫ t1
t0
[(dxdt )

2 + (dydt )
2]1/2dt Volumes of Revolution

V =
∫ b

a
π(f(x))2dx Rotating around x-axis

V =
∫ b

a
2πxf(x)dx Revolving around the y-axis

swith the x and y for rotating around y-axis

Surface area of revolution S =
∫ b

a
2πf(x)

√
1 + (f(x))2dx

13.1 Centre of Mass

1D case-simple If centre of mass is at x=, then we must have zero total moment Σmk(x̄− xk) = 0 i.e x̄ = Σmkxk

Σmk
2D-case-

disrete masses
If there are n-masses of mass mk and cordinates (xk, yk). Assume the centre of mass is ((̄x), ȳ). So must balance the moments
in x− axis and y − axis
Therefore:
x̄ = Σmixi

Σmi
,ȳ = Σmiyi

Σmi

Now for continuous mass distribution.
Define the density per unit area as ρ(x, y)
Dividing the region into small rectangles with sides ∆y,∆x
So the moment of one of these rectangles about the y-axis is xiρ(xi, yi)∆y
Adding all of them gives ijxiρ(xi, yi)∆y

The moment of the whole plate about the y-axis ¯x
∫ ∫

ρ(x, y)dxdy
Therefore x̄

∫ ∫
ρdxdy =

∫ ∫
xρdxdy

similar result for ȳ

Theorem 13.1. Theorem of Pappus

Let R be a region that lies on one side of line l A = area of R
V = Volume obtained by rotating about l
d = distane travelled by the centre of mass when R is rotated
then V = Ad

8



13.2 Mment of Inertia

Consider an object of mass m at a distane y from the x-axis rotating at an angular velocity of ω.
Then the velocity of the the object is
v = yω
And thus the kinetic energy of the object is
KE = 1

2m(yω)2.
The coefficient of 1

2ω
2 ia defined to be the moment of inertia. Hence for the single particle considered here, we define the

moment of inertia I to be
I = my2

And therefore KE = 1
2ω

2I

So using this, we an express the moment of inertia of a string.
Moment of Inertia about x-axis - Ix =

∫ x1

x0
ρ(x)y2

√
1 + y2

Moment of Inertia about y-axis - Iy =
∫ x1

x0
ρ(x)x2

√
1 + y2

13.3 Length Of curves and areas ousing polar coorindates

Length of polar curve: L =
∫ β

θ=α
[(drdθ )

2 + r2]1/2dθ
Area of polar curve

A = 1
2

∫ β

alpha
r2dθ

14 Series

Definition 14.0.1.

Given a sequence ann≥1of real numbers, define the sequence of partial sums SN = ΣN
n=1an If SN → S as N → ∞ we say the

series converges to the sum S S = Σ∞
n=1an

Theorem 14.1.

The series
∑∞

n=1
1
n diverges to +∞

Theorem 14.2.

If α > 1 is a rational number, then
∑∞

n=1
1
nα converges

14.0.1 Elemental algebraic rules for series

Theorem 14.3.

If the series
∑∞

n=1 an converges then an → 0 as n → ∞

14.1 Cauchy sequences and convergence of series

Definition 14.1.1. Cauchy Sequence

Cauchy Sequence if and only if:
∀ϵ > 0N ∈ N such that for any m,n > N
|Sm − Sn| < ϵ

Theorem 14.4. Every cauchy sequence converges

Theorem 14.5. The alternating series test

A series thats alternating and an → 0 as n → ∞ converges

14.2 Convergence tests

Theorem 14.6. Comparison test

Llet
∑∞

n=1 bn be convergent with bn non-negative. If |an| ≤ bnthen the series for an converges

Theorem 14.7.

9



Every absolutely convergent series is convergent

Theorem 14.8. Integral test

Let f(x) be a function which is defined for all x ≥ 1, and is positive and decreasing.
∑∞

n=1 f(n) converges if and only if the
indefinite integral to infinity converges

Theorem 14.9. The ratio test

Let S =
∑∞

n=1 an limn → ∞|an+1

an
| = L Then:

1. If L < 1 the series converges absolutely

2. If L > 1 the series diverges

3. If L = 1 the test is inconclusive

Theorem 14.10. The root test

Suppose:

limn → ∞|an|1/n = L

Then:

1. If L < 1 the series converges absolutely

2. If L > 1 the series diverges

3. If L = 1 the test is inconclusive

15 Power Series

Definition 15.0.1.

let x be a real number and ann≥0 be a sequence of numbers. Then we can form the power series
∑∞

n=0 anx
n. The partial

sums SN are polynomials of degree N

Theorem 15.1.

Assume that there is a number R > 0 such that
∑∞

n=0 anR
n converges. Then for all |x| < R the series∞n=0anx

n converges
absolutely

Definition 15.0.2.

The greatest such R(mentioned above) is called the radius of convergence .

Theorem 15.2. Ratio test for power series

Let ∞
n=0an be a power series and asuume that limn → ∞|an+1

an
| = L exists. Let R = 1

L
Then

1. If |x| < R the series converges absolutely

2. If |x| > R the serues diverges

3. If x = ±R could converge or diverge

15.1 Differentiation and integration of power series

We can differentiate power series if |x| < R

Theorem 15.3.

Let f(x) =
∑∞

n=0 an
THen f ′(x) =

∑∞
n=0 nan−1 The integral is the opposite

Theorem 15.4.

If two power series with radi of convergence R1, R2 are added or multiplied together then the radi of convergence of the new
series is min(R1, R2)

10



16 Taylor series

Theorem 16.1. Taylor’s theorem with remainder

Let f be a function defined on a closed interval between two numbers x0 and x. Assume that the function has n + 1
derivatigves on the

f(x) = f(x0) + f ′(x0)(x− x0) +
f2(x0)

2! (x− x0) + . . .+ fn(x0)
n! (x− x0)

n +Rn

where the remaineder Rn is given by

Rn =
∫ x

x0

(x−t)n

n! fn+1(t)dt

16.1 Exponentials and logarithms. Binomial theorem

ex = 1 + x+ x2

2 + . . .+ xn

n! +
ec

(n+1)!x
n+1

log(1 + x) = x− x2

2 + x3

3 + . . .+ (−1)n−1 xn

n + (−1)n
∫ x

0
tn

1+tdt

(1 + x)n =
∑∞

n=1
α(α−1)...(α−n+1)

n! xn

17 Orthogonal and orthonormal function spaces

Definition 17.0.1.

If f, g are real value functions that are Riemann integrabale then the inner product of f, g are

(f, g) =
∫ b

a
f(x)g(x)dx

Definition 17.0.2.

Let S = ϕ0, ϕ1, . . . , be a collection of functions that are Riemann integrable on [a,b] If

(ϕn, ϕm) = 0 whenver m ̸= n

Then S is an Orthogonal system on [a,b]. Additionally if ||ϕn|| = 1 then S is said to be Orthonormal

18 Periodic functiuons and periodic extensions

At points of discontinuity define

f(ξ) = 1
2 [f(ξ+) + f(ξ−)]

19 Trigonometric polynomials

19.1 Euler’s relation

cos(θ) + isin(θ) = eiθ Orthogonality
∫ π

−π
einxe−imxdx = 0 if n,= 2πif n = m

20 Fourier series

Consider the trigonetrix polynomial

f(x) = SN (x) = 1
2a0 +

N
n=1 ancos(nx) + bnsin(nx)

where an = 1
π

∫ π

−π
f(x)cos(nx)dx

bn = 1
π

∫ π

−π
f(x)sin(nx)dx

Orthogonality properties If m,n are integers then∫ π

−π
sin(mx)sin(nx)dx =

∫ π

−π
cos(mx)cos(nx)dx = 0,m ̸= n, π,m = n∫ π

−π
sin(mx)cos(nx)dx = 0

Theorem 20.1. The fourier series formed by the fourier coefficients converges to the value f(x) for any piecewise continuous
function f(x) over period period 2π which has piecewise continuous derivatives of first and second order. At any discontinuities
the function must be defined by f(x) = 1

2 [f(x
+)f(x−)]
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If cn(x) =
1
2 + cos(x)+ cos(2X)+ cos(3x)+ . . . =

sin(n+ 1
2 )x

2sin(0.5x) Define the poits where 1
2x = nπ define cn by n+1/2 Riemann-

Lebesgue Lemma

Iλ =
∫ b

a
g(x)sin(λx)dx tends to 0 as → ∞

Lemma 2∫∞
0

sin(z)
z dz = π

2
Parseval’s indentity
If f(x) = SN (x) = 1

2a0 +
∑N

n=1 ancos(nx) + bnsin(nx)

Then 1
π

∫ π

−pi
f2dx = 1

2a
2 + 0 +

∑∞
n=1(a

2
n + b2n)

Fourier Transform pair
f(x) = 1

2π

∫∞
−∞

∫∞
−∞ f(t)eiωtdteiωxdω
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