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Chapter 1

Limits of Functions, continuity

Given a function f(x) we are concerned with the behaviour near a point x = x0, and in
particular the statement limx→x0 f(x) = `, i.e. the limit of f(x) as x tends to x0, exists
and is equal to `. The precise ε− δ definition is the following.

Definition 1. ε− δ Definition of Limit

Let f be a function defined at all points near x0, except possibly at x0, and let
` be a real number. We say that ` is the limit of f(x) as x approaches x0, if for
every ε > 0 there exists a δ > 0 such that |f(x) − `| < ε whenever |x − x0| < δ
and x 6= x0. We write limx→x0 f(x) = `.

Example Prove that limx→2
√
x =
√

2.

Solution: Here f(x) =
√
x, x0 = 2 and ` =

√
2. Given ε > 0 we need to find δ > 0 so that

|
√
x−
√

2| < ε whenever |x−2| < δ. For all x > 0 we have
√
x−
√

2 = (x−2)/(
√
x+
√

2),
hence

|
√
x−
√

2| = |x− 2|
√
x+
√

2
≤ |x− 2|√

2
.

Hence picking δ =
√

2 ε will do.

In practice we do not want to be doing ε − δ proofs for every limit we encounter.
Instead we use the following laws of limits which can be proven easily using the ε − δ
definition. (Try some! I do analogous proofs later on also.)
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8 CHAPTER 1. LIMITS OF FUNCTIONS, CONTINUITY

Basic Properties of Limits

Assume that limx→x0 f(x) and limx→x0 g(x) exist. Then

(i) Sum rule:
lim
x→x0

[f(x) + g(x)] = lim
x→x0

f(x) + lim
x→x0

g(x).

(ii) Product rule:
lim
x→x0

[f(x) g(x)] = lim
x→x0

f(x) lim
x→x0

g(x).

(iii) Reciprocal rule: If limx→x0 f(x) 6= 0 then

lim
x→x0

[1/f(x)] = 1/ lim
x→x0

f(x).

(iii)′ Quotient rule: If limx→x0 g(x) 6= 0 then

lim
x→x0

[f(x)/g(x)] = lim
x→x0

f(x)/ lim
x→x0

g(x).

This follows immediately from (ii) and (iii).

(iv) Composite function rule: If h(x) is continuous at limx→x0 f(x), then

lim
x→x0

h(f(x)) = h

(
lim
x→x0

f(x)

)
.

Example 1

Calculate limx→1

(
x−1√
x−1

)
.

Solution. Of the form “0/0”. Rationalise, i.e.

lim
x→1

(
x− 1√
x− 1

)
= lim

x→1

(
(x− 1)(

√
x+ 1)

(
√
x− 1)(

√
x+ 1)

)
= lim

x→1

(
��

��(x− 1)(
√
x+ 1)

���
�(x− 1)

)
= 2.

Example 2

Sketch the function f(x) = x/|x|. Do this by considering x > 0 and x < 0 separately.
What happens when x = 0?

The properties given above also hold as x becomes large and positive or negative.
For example if f(x) = 1/x then we know that limx→±∞ f(x) = 0. Lets make this precise.
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Definition 2. The ε−A definition of limx→∞ f(x) = `.

Let f(x) be defined on a domain containing the interval (a,∞). A real number
` is the limit of f(x) as x approaches ∞ if, for every ε > 0 there exists a A > a,
such that |f(x)− `| < ε whenever x > A. We write limx→∞ f(x) = `. [Similarly
for limx→−∞ f(x) = `.]

NOTE: The limit properties (1)-(1) hold for limits of f(x) as x → ±∞, when the
limits are defined.

Consider next the limits limx→0 sin(1/x) and limx→0(1/x2). The limits do not exist (I
cannot plug x = 0 into the functions). Sketch them and determine that they behave
differently: the former is bounded, the latter is unbounded. In fact limx→0(1/x2) =∞.
More precisely we have:

Definition 3. ε−B definition of limx→x0 f(x) =∞.

Let f(x) be a function defined in an interval containing x0, except possibly at
x = x0. We say that f(x) approaches ∞ as x approaches x0 if given any real
number B > 0, there exists a ε > 0, so that whenever |x−x0| < ε and x 6= x0, we
have f(x) > B. We write limx→x0 f(x) = ∞. [Definition of limx→x0 f(x) = −∞
totally analogous.]

In the example f(x) = 1/x2 we found that as x → 0, f(x) → ∞ - the function is even,
so it does not matter if I approach the limit from the right (i.e. through positive values
of x) or the left (through negative x values). What about f(x) = 1/x? It is not hard to
see that as x tends to 0 through positive values then f → +∞, whereas as x tends to 0
through negative values we have f → −∞.

Hence, we need to define

Definition 4. One-Sided Limits:

Let f(x) be defined for all x in an interval (x0, a). We say that f(x) approaches
` as x approaches x0 from the right if, for any ε > 0, there exists a δ > 0, such
that for all x0 < x < x0 + δ we have |f(x)− `| < ε. We write limx→x0+ f(x) = `.
[Analogous definition for the left-sided limit, i.e. limx→x0− f(x) = `.]

Note: If limx→x0 f(x) = +∞ or −∞, then the line x = x0 is a vertical asymptote.
Analogously, if limx→±∞ = `± then the lines y = `± are horizontal asymptotes.

As an Example consider f(x) = 1
(x−1)(x−2)2

. There are vertical asymptotes at x = 1

and x = 2 and a horizontal asymptote y = 0. Sketch the graph without using the
differentiation methods of finding critical points etc., that you are familiar with. Use
intuition and estimation..
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In addition to the basic properties (1)-(1), there is another powerful test which is very
useful in calculations:

Comparison Test for Limits (a.k.a. Squeezing Property)

1. If limx→x0 f(x) = 0 and |g(x)| ≤ |f(x)| for all x near x0 with x 6= x0, then
limx→x0 g(x) = 0.

2. If limx→∞ f(x) = 0 and |g(x)| ≤ |f(x)| for all large enough x, then
limx→∞ g(x) = 0.

Example

(i) Establish Comparison Test 1 using the ε− δ definition of a limit.

(ii) Show that limx→0 x sin
(

1
x

)
= 0.

Solution

(i) Since limx→0 f(x) = 0, then given ε > 0, there exists a δ > 0 such that |f(x)| < ε
when |x−x0| < δ. For the same ε and δ, we also have |g(x)| < ε when |x−x0| < δ,
since |g(x)| ≤ |f(x)|. Hence limx→0 g(x) = 0 also.

(ii) Take g(x) = x sin(1/x) and f(x) = x. Then |g(x)| ≤ |x| for all x 6= 0, so the
comparison test applies. Clearly limx→0 x = 0, hence the result follows.

Two Basic Trigonometric Limits

We will need the following results in finding derivatives of sin and cos from first
principles.

lim
h→0

sinh

h
= 1 lim

h→0

cosh− 1

h
= 0.

The proof of the former is geometrical and the construction is given in Figure 1.1.
OBC is the sector of a circle of radius 1 with subtended angle h. The two triangles
OAB and OCD are constructed as shown with BD the extension of OB. Considering
triangles OAB and OCD we have

sinh =
AB

OB
= s, tanh =

DC

OC
= t.

From geometry we have the following inequality

area of triangle OAB < area of sector OCB < area of triangle OCD,

which in turn provides
1

2
sinh cosh <

h

2
<

1

2
tanh.
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Figure 1.1: Geometrical construction.

The middle quantity follows by noting that the area of the sector OCB is equal to h/2π
times the area of a circle of unit radius which is π. Considering the first inequality (after
canceling the 1/2 factor throughout) we have

sinh cosh < h ⇒ sinh

h
<

1

cosh
.

The above is fine since h and cosh are positive and non-zero so I can divide by them.
The second inequality gives

h <
sinh

cosh
⇒ cosh <

sinh

h
.

Putting these together gives

cosh <
sinh

h
<

1

cosh
.

As h tends to zero cosh tends to 1, hence sinh/h is squeezed between two numbers that
tend to 1. By the Squeezing Property we get the desired result.

To prove the second result we write

cosh− 1

h
=

cosh− 1

h

cosh+ 1

cosh+ 1
=

cos2 h− 1

h(cosh+ 1)

=
− sin2 h

h(cosh+ 1)
=

(
−sinh

h

)
sinh

cosh+ 1
.

Using the product rule for limits, it follows immediately that

lim
h→0

(
−sinh

h

)
sinh

cosh+ 1
=
���

���
��:−1(

lim
h→0

− sinh

h

)
�
��

�
��
�*0(

lim
h→0

sinh

)
���

���
���:

1/2(
lim
h→0

1

cosh+ 1

)
= 0.

Continuity
Looking back at Definition 1, the ε − δ definition of a limit, we can see that it is

equivalent to the statement

lim
h→0

f(x0 + h) = `.
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We can then define what we mean by continuity of a function f(x) at a point x0.

Definition 5. Continuity

We say that f is continuous at x0 if limh→0 f(x0 + h) = f(x0). Equivalently
limx→x0 f(x) = f(x0).

We have seen examples of functions that are not continuous, e.g.

f(x) =

{
1 x > 0
0 x ≤ 0

g(x) =

{
x2 x 6= 0
1 x = 0

are both not continuous at x = 0. If I exclude x = 0, then the limits as x → 0
exist, limh→0+f(h)=1, limh→0− f(h) = 0, and limh→0 g(h) = 0. This may clarify some
confusion I may have generated in video 1. (Note that limh→0+ = limh→0,h>0 and
limh→0− = limh→0,h<0.)

Miscellaneous Examples

1. Find limx→∞

(√
x2 + 1− x

)
, and interpret the result geometrically by considering

a right angled triangle with base of length x and unit height.

We calculate

(√
x2 + 1− x

)
=
(√

x2 + 1− x
) (√x2 + 1 + x

)
(√

x2 + 1 + x
) =

1√
x2 + 1 + x

.

As x becomes arbitrarily large then 1/(
√
x2 + 1 +x) becomes arbitrarily small, and

hence limx→∞

(√
x2 + 1− x

)
= 0. [Can you prove this using the ε−A definition

of limit?]

Geometrical picture for you to do. Hint: The right angled triangle suggested has
hypotenuse

√
x2 + 1. Consider a circle of radius x whose arc cuts the hypotenuse

at a point, and figure out what the quantity
√
x2 + 1−x represents geometrically.

2. Now consider limx→∞
(
x−
√
x+ 1

)
. Find the limit in this case.

Don’t need to do much here. Main thing is to notice that x is much much bigger
than

√
x+ 1 when x is large. Hence, limx→∞

(
x−
√
x+ 1

)
=∞.

A precise definition in this case (for a general function f(x)) would be: We say
limx→∞ f(x) = ∞, if given an arbitrarily large A > 0, there exists a number
M > 0, so that f(x) > A for all x > M .

In our particular example where f(M) = M −
√
M + 1 it is easy to see that taking

M = A2 will do the trick. Of course it can be proven for smaller M but we are
not looking for anything sharper than a proof.

3. Find (a) limx→1
1

(x−1)2
, and (b) limx→∞

1−x2
x3/2

.
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For (a) as x → 1 (from above or below), then (x − 1)2 becomes arbitrarily small.
Its inverse becomes arbitrarily large, so limx→1

1
(x−1)2

=∞

Intuitive answer is: For (b) as x becomes very large then x2 � x3/2, hence the
limit is −∞. Can formalize as follows

lim
x→∞

1− x2

x3/2
= lim

x→∞
(x−3/2 − x1/2) = −∞.
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Chapter 2

Derivative of a Function

2.1 Definition with limits, examples

Consider graphs of functions y = f(x). We need to define the derivative or slope of the
curve at a given point P .

Figure 2.1: Slope of f at P is the slope of the line QP as Q tends to P . Note: The Qs
are to the right of P , the definition is the same is Q1, Q2 etc are to the left of P .

Definition of Differentiability

The function f(x) is differentiable at x if ‘Newton’s quotient’;

lim
h→0

f(x+ h)− f(x)

h

exists. We call this f ′(x), the derivative of f at point x.

17
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Examples

(i) Is f(x) = x2 differentiable everywhere?

f ′(x) = lim
h→0

(x+ h)2 − x2

h
= lim

h→0

x2 + 2xh+ h2 − x2

h

= lim
h→0

(2x+ h) = 2x ⇒ YES

(ii) Is f(x) = |x| differentiable at x = 0? Draw a picture.

Need to check if the limit exists and the values are equal as we approach 0 from
above or below.

(a)

lim
h→0, h>0

f(0 + h)− f(0)

h
= lim

h→0, h>0

h− 0

h
= 1

(b)

lim
h→0, h<0

f(0 + h)− f(0)

h
= lim

h→0, h<0

−h− 0

h
= −1

Right and left derivatives exist but are not equal.

A function is differentiable at x if right and left derivatives exist and are
if the derivatives are equal.

Exercise: Sketch the derivative of f(x) = |x|.

f(x) = |x| is continuous at x = 0, but not differentiable there. Geometrically we can
see this - there is a ‘corner’ in the graph. Now consider a function that is discontinuous
at one or more points. What is the derivative there?

Note: f(x) is not continuous at x = x0 if the limit limx→x0 does not exist.
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Example: Consider

f(x) =

{
x if 0 < x ≤ 1

x− 1 if 1 < x ≤ 2

Here is the graph:

What is the derivative at x = 1?

(a) Left derivative at x = 1

lim
h→−0, h<0

f(1 + h)− f(1)

h
= lim

h→−0, h<0

1 + h− 1

h
= 1

(b) Right derivative at x = 1

lim
h→−0, h>0

f(1 + h)− f(1)

h
= lim

h→−0, h>0

(1 + h− 1)− 1

h
as f(1) = 1

= lim
h→−0, h>0

(1− 1

h
)

which does not exist. In fact, → −∞. Function has no right derivative.

2.1.1 Polynomials

Theorem 1
Let n be an integer ≥ 1 and let f(x) = xn. Then

f ′(x) =
df

dx
= nxn−1.
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Proof.
f(x+ h) = (x+ h)n = xn + nxn−1h+ h2g(x, h)

where g(x, h) involves powers of x and h with numerical coefficient. We don’t care what
it is exactly but limh→0 g(x, h) = some number. Then

df

dx
= lim

h→0

xn + nxn−1h+ h2g − xn

h
= nxn−1.

Theorem 2
Let f(x) = xa, where a is any real number and x > 0. Then f ′(x) = axa−1.
If a is a negative integer then this is easy. General case is different from proof
above.

2.2 General rules, chain rule, rates of change

2.2.1 General rules

(i) If c is a constant, (cf)′(x) = cf ′(x).

(ii) If f(x), g(x) are given functions and f ′(x), g′(x) exist, then

(f + g)′(x) = f ′(x) + g′(x).

(iii) (fg)′(x) = f ′(x)g(x) + f(x)g′(x) (product rule)

(iv) Let g(x) be a function that has a derivative g′(x) and such that g(x) 6= 0.

Then
d

dx

(
1

g(x)

)
= − g′(x)

(g(x))2

(iv)*
d

dx

(
f(x)

g(x)

)
=
g(x)f ′(x)− f(x)g′(x)

(g(x))2
.

Proof. (iii) - (do the rest yourselves as an exercise)

(fg)′ = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

= 0︷ ︸︸ ︷
−f(x)g(x+ h) + f(x)g(x+ h)

h

= lim
h→0

(f(x+ h)− f(x)) g(x+ h) + (g(x+ h)− g(x)) f(x)

h

= g(x)f ′(x) + f(x)g′(x)
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2.2.2 The Chain Rule

Composition (fog)(x) = f(g(x)) is a function constructed as follows: Take a number x,
find g(x) and then take the value of f at g(x).

e.g. f(x) = x2 g(x) =
√
x defined for x > 0.

Then (fog)(x) = (
√
x)2 = x

Let f , g be two functions having derivatives and such that f is defined for all numbers
that are values of g. Then

d

dx
(fog)(x) = (fog)′(x) = f ′(g(x))g′(x)

Why is this useful? Example: d
dx

[
(x3 + 9x2 + π)51

]
Last thing you want to do is multiply out the 51 factors and then differentiate! With

the chain rule we identify

f(x) = x51 g(x) = (x3 + 9x2 + π).

So that

(x3 + 9x2 + π)51 = (fog)(x)

Then
d

dx
(x3 + 9x2 + π)51 = 51(x3 + 9x2 + π)50(3x2 + 18x)

Proof.

(fog)′(x) = lim
h→0

f(g(x+ h))− f(g(x))

h

= lim
h→0

f(g(x+ h))− f(g(x))

g(x+ h)− g(x)
· g(x+ h)− g(x)

h

Let k = g(x+ h)− g(x), (if h 6= 0, k 6= 0), and write u = g(x). Then

(fog)′(x) = lim
h→0

f(u+ k)− f(u)

k
· g(x+ h)− g(x)

h

=

(
lim
h→0

f(u+ k)− f(u)

k

)(
lim
h→0

g(x+ h)− g(x)

h

)
= f ′(u)g′(x) = f ′(g(x))g′(x)

Analogous definition of the derivative f ′(x) is the following:

f ′(x) = lim
y→x

f(y)f(x)

y − x
.
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To see equivalence write y = x+ h.

Application: Particle motion (rectilinear for the moment).

Position of a particle at time t is s = f(t), say. Particle moved from P1 at t = t1 to
P2 at t = t2. Average speed =

f(t2)− f(t1)

t2 − t1
.

So instantaneous speed at any time t is

f ′(t) = lim
t→t0

f(t)− f(t0)

t− t0
rate of change.

f ′(t) is also a function, call it v(t). If it is differentiable then

v′(t) =
d2f

dt2
is the acceleration.

Can define higher derivatives (if they exist) by continuing this process.

Theorem 3
If f(x) is differentiable at x = x0, then it is also continuous there. Question: Is
the converse true?

Proof.

lim
x→x0

(f(x)− f(x0)) = lim
x→x0

(
f(x)− f(x0)

x− x0
· x− x0

)
= lim

x→x0

(
f(x)− f(x0)

x− x0

)
· lim
x→x0

(x− x0)

= f ′(x0) · 0 = 0 DONE!

2.3 Implicit differentiation, related rates of change

Recall: We saw that if n is an integer then

d

dx
xn = nxn−1 d

dx
(x−n = −nx−(n+1).

This also holds if, (i) y = x1/n where n is an integer, and, (ii) y = xr where r is a rational
number; i.e r = p

q , with p, q integers.

Can prove these using implicit differentiation. Start with (i) y = x1/n, n integer.

Assume x1/n is defined.
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Then

yn = x ⇒ d

dx
(yn) =

d

dx
(x),

nyn−1 dy

dx
= 1 ⇒ dy

dx
=

1

n
y1−n =

1

n
x

1−n
n =

1

n
x

1
n
−1.

e.g.

d

dx
x

1
5 =

1

5
x−

4
5

(ii) y = x
p
q . Let g(x) = x

1
q q an integer. Then y = (g(x))p with p an integer. Use

chain rule.

dy

dx
= pgp−1 1

q
x

1
q
−1

=
p

q
x
p
q
−1

These of course generalize to powers of the function.
e.g.

d

dx
(f(x))r = rf r−1f ′ r rational.

Example of implicit differentiation:
Find the equation of the tangent line to the curve 2x6 + y4 = 9xy at the point (1, 2).

Solution: Note that we cannot solve for y as a function of x. Hence implicit differenti-
ation is very powerful here. Calculate the derivative

12x5 + 4y3 dy

dx
= 9y + 9x

dy

dx
.

Substitute point (1, 2)

12 + 32
dy

dx
= 18 + 9

dy

dx

⇒ dy

dx
=

6

23
is the slope of the tangent line

Its equation is y − 2 = 6
23(x− 1).

Can also use implicit differentiation to obtain related rates of change.

If x and y are both functions of a parameter t, then we can differentiate implicitly
with respect to t

e.g. x = cos(t), y = sin(t), t ≥ 0
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Equation is x2 + y2 = 1, where x = x(t), y = y(t). Differentiate implicitly with
respect to t.

2x
dx

dt
+ 2y

dy

dt
= 0⇒ dy

dt
= −x

y

dx

dt

i.e
dy/dt

dx/dt
= −x

y
.

This is the derivative of dy
dx if we think of y = ±

√
1− x2 as a function of x. (Another

way is x2 + y2 = 1 → 2x+ 2y dy
dx = 0 → dy

dx = −x
y = dy/dt

dx/dt .)

In general, if x = f(t) and y = g(t), describe a curve in the plane called a parametric
curve. The slope of it’s tangent line is

dy

dx
=

dy/dt

dx/dt
if

dx

dt
6= 0.

To prove this, note that the curve can be defined (piecewise) as the graph of a

function y = h(x) or x = H(y). Chain rule gives dy
dt = dy

dx
dx
dt as required.

Example
The surface area of a cube is growing at a constant rate of 4cm2/s. How fast is the

length of a side growing when the cube sides are 2cm long? Find the side length when
the rate of change of the volume exceeds that of the area.

Solution

A = 6x2 ⇒ dA

dt
= 12x

dx

dt
⇒ dx

dt
=

1

12x

dA

dt
=

4

12x

If x = 2
dx

dt
=

1

6
cm s−1

V = x3 ⇒ dV

dt
= 3x2 dx

dt
=

3x2

12x

dA

dt
= x cm3s−1

So if x > 4, dV
dt >

dA
dt in numerical value.



Chapter 3

Mean Value and Intermediate
Value Theorems

For a function f(x) which is defined at a point c, we say that c is a maximum of f if

f(c) ≥ f(x) ∀ where f is defined.

For a minimum we have
f(c) ≤ f(x).

e.g.

Here is a result when f is differentiable:

Theorem 1
Let f be a function which is defined and differentiable on the open interval (a, b).
Let c be a number in the interval which is a maximum for the function.

Then f ′(c) = 0. f ′(c) = 0 also, if c is a minimum of f .

Proof. Obvious, here is a geometrical interpretation.

25
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As h→ 0, the slope → 0, ⇒ f ′(c) = 0.

Detailed proof:
f(c) ≥ f(c+ h)⇒ f(c+ h)− f(c) ≤ 0.

i.e. lim
h→0, h>0

f(c+ h)− f(c)

h
≤ 0

Similarly for left limit

lim
h→0

f(c)− f(c− h)

h
≥ 0.

As h→ 0 these can only be equal if f ′(c) = 0 since the function is differentiable.

All points c such that f ′(c) = 0 are called critical points.

Definition
f(x) is said to be continuous on an interval [a, b] if limx→x0 f(x) = f(x0) for all

x0 in [a, b]. Analogously, limh→0 f(x0 + h) = f(x0) a ≤ x0 ≤ b.

Theorem 2
Let f(x) be continuous on the closed interval [a, b]. Then f(x) has a maximum
and a minimum on this interval. i.e There exists c1 and c2 so that f(c1) ≥ f(x)
and f(c2) ≤ f(x) for all x in [a, b].
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e.g

Theorem 3 (Combines Theorems 1 and 2)
Let f(x) be continuous over the closed interval a ≤ x ≤ b and differentiable on
the open interval a < x < b. Assume also that f(a) = f(b) = 0.
Then there exists a point c, a < c < b, such that f ′(c) = 0.

Proof. If f is a constant then nothing to prove. If f is not a constant then there exists
a point in (a, b) where f is not zero. If at some point in (a, b), f is positive, then there
exists a maximum c with f(c) > 0, and c 6= a, b. By Theorem 1, f ′(c) = 0.

Similarly for a point where f < 0 and hence this is a minimum.

Example:

Here there are 3 such points.

Theorem 4
f is continuous on [a, b] and differentiable on (a, b).
Then there exists a < c < b such that

f ′(c) =
f(b)− f(a)

b− a
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Geometrical interpretation:

c is the point where the tangent has the slope f(b)−f(a)
b−a .

Proof. Straight line joining (a, f(a)) and (b, f(b)) has equation y− f(b)−f(a)
b−a (x−a)+f(a).

Consider g(x) = f(x) − f(b)−f(a)
b−a (x − a) − f(a). Then g(a) = 0, g(b) = 0, and by

Theorem 3 there exists a c with a < c < b such that g′(c) = 0.

But g′(x) = f ′(x)− f(b)−f(a)
b−a , and result follows.

Definition
We say that f is increasing over a given interval if given x1, x2 in the interval

with x1 ≤ x2, we have f(x1) ≤ f(x2).

Strictly increasing if f(x1) < f(x2) when x1 < x2.
Strictly decreasing if f(x1) > f(x2) when x1 < x2.

Theorem 5
Let f(x) be continuous in some interval, and differentiable there (even possibly
at the end points).
If f ′(x) = 0 in the interval (except end points), then f is constant.
If f ′(x) > 0 in the interval (except end points), then f is strictly increasing.
If f ′(x) < 0 in the interval (except end points), then f is strictly decreasing.
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Proof. Use the mean value theorem.
Let x1, x2 be points in the interval with x1 < x2. Then there exists x1 < c < x2

such that

f ′(c) =
f(x2)− f(x1)

x2 − x2
=⇒ f(x2)− f(x1) = (x2 − x1)f ′(c)

If f ′(x) = 0 in the interval, f ′(c) = 0 and f(x2) = f(x1) i.e f is constant. If f ′(x) > 0
then f ′(c) > 0 and f(x2) > f(x1), i.e strictly increasing. If f ′(x) < 0 then f ′(c) < 0 and
f(x2) < f(x1), i.e strictly decreasing.

Example 1 (Do yourself). Determine the region of increase and decrease of the function
f(x) = x3 − 2x+ 1.

Example 2 Prove that sin(x) ≤ x for x ≥ 0.
Solution Let f(x) = x− sin(x). Then f(0) = 0.

f ′(x) = 1 − cos(x) ≥ 0 for all x. Hence f(x) is an increasing function Rightarrow
f(x) ≥ 0 for all x.

Theorem 6 - Intermediate value theorem
Let f be continuous on the closed interval a ≤ x ≤ b. Given any number y∗

between f(a) and f(b), there exists a point x∗ between a and b such that f(x∗) =
y∗.

Picture where it works:

(there can be more than one x∗.)
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Picture where is doesn’t work:



Chapter 4

Inverse Functions

Given y as a function of x, when can I express x as a function of y? Here is an easy case:

y = 3x+ 1 ⇒ x =
1

3
(y − 1)

Usually we do not have a formula like this, but we can say a lot about the function
x = g(y).

Definition
Let y = f(x) be defined on some interval. Given any y0 in the range of f , if we

can find a unique value x0 in its domain such that f(x0) = y0, then we can
define the inverse function

x = g(y) (sometimes written x = f−1(y) )

Clearly we have

f(g(y)) = y and g(f(x)) = x

or f(f−1(y)) = y and f−1(f(x)) = x

31
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Question: When can we be certain an inverse function exists?

Theorem 1
Let f(x) be strictly increasing or strictly decreasing. Then the inverse function
exists.

Proof. Obvious from definition of strictly increasing/decreasing.

Theorem 2
If f(x) is continuous on [a, b] and is strictly increasing (or decreasing), and f(a) =
ya and f(b) = yb, then x = g(y) is defined on [ya, yb].

Proof. Easy by the intermediate value theorem.

Here is what goes wrong if we drop continuity

4.0.1 Derivative of inverse functions

Theorem 3
Let f(x) be differentiable on (a, b) and f ′(x) > 0 or f ′(x) < 0 for all x in (a, b).
Then the inverse function exists and we have

g′(y)(= f−1(y)′) =
1

f ′(x)
.

Proof. Need to find

lim
k→0

g(y + k)− g(y)

k

where we have y = f(x). Here is a useful picture:
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Going from y to y+ k, increases x to x+h. The intermediate value theorem ensures
that this is true for all k in fact.

Hence f(x+ h) = y + k ⇒ g(y + k) = x+ h. Since f(x) = y ⇒ g(y) = x.

Back to the limit

lim
k→0

g(y + k)− g(y)

k

lim
h→0

=
h

f(x+ h)− f(x)
=

1

f ′(x)

Chain rule way: g(y) = x where y = f(x). (In fact x = g(y), iff y = f(x)). i.e

dg

dy
f ′(x) = 1 g′ =

1

f ′(x)

Example: Consider

y = x4 + 3x3 + x− 5, x > 0.

Find g′(0) - i.e d
dy f

−1(y)
∣∣
y=0

. Note: We will not even attempt to find x = g(y)!

Theorem says dg
dy = g′(y) = 1

f ′(x) where y = f(x). If y = 0 then need to solve

0 = f(x) by inspection f(1) = 0⇒ f ′(1) = 14⇒ g′(0) = 1
14 .

Note: Very useful in solving problems.

x = g(y) i.e. some function of y. Our theorem really says dx
dy = 1

dy/dx .
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4.0.2 Some special inverse functions

(i) The arcsin, or sin−1.

Consider y = sin(x) (shown below)

So given any −1 ≤ y ≤ 1 there are an infinite number of x such that y = sin(x). If
we restrict out domain to regions where sin(x) is strictly increasing or decreasing,
then we can find inverse functions - we have a theorem. By convention we take
−π

2 ≤ x ≤
π
2 for the domain (range is of course [−1, 1]).

Now d
dx sin(x) > 0 if −π

2 < x < π
2 , and d

dx sin(x) = 0 at x = ±π
2 .

Let the inverse function be g(y) = x. Then

g′(y) =
1

f ′(x)
=

1

(sin(x))′
> 0 x ∈ (−π

2
,
π

2
).

g′(y) =
dx

dy
=

1

cos(x)
=

1√
1− sin2(x)

=
1√

1− y2
.

Think of y as a dummy variable now. Then arcsin(y) = sin−1(y) is a function with
domain [−1, 1] and range [−π

2 ,
π
2 ]. Instead of y use x, i.e. y = f(x) = sin−1(x).

Then
dy

dx
=

d

dx
sin−1(x) =

1√
1− x2

.

Once you have identified the domain and range where the inverse function exists,
there is an easier way (equivalent) to find derivatives.
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Start with y = sin−1(x) i.e y is the angle whose sin is x. Then sin(y) = x. By

chain rule, (cos(y))dy
dx = 1⇒ dy

dx = 1
cos(y) = 1√

1−x2 as shown above.

(ii) arctan or tan−1

Consider y = tan(x)

Can define tan(x) on (−π
2 ,

π
2 ), d

dx tan(x) = 1+tan2(x) > 0. So x = g(y) the inverse
function has domain (−∞,∞) and range (−π

2 ,
π
2 ).

Derivative of tan−1:

y = tan−1(x)

tan(y) = x

(1 + tan2(y))
dy

dx
= 1 ⇒ dy

dx
=

1

1 + x2

Here is the graph of y = tan−1(x)

Note for later material: we showed that d
dx tan−1(x) = 1

1+x2
. In other words,

the anti-derivative of 1
1+x2

is tan−1(x) + c where c is a constant. Similarly, the

anti-derivative of 1√
1−x2 is sin−1(x) + c.

Examples: (Do yourself.) Find arctan
(
tan
(

3π
4

))
, arctan(tan(2π)).
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Chapter 5

Exponentials and Logarithms

Summary of what we know:

If a > 0 is any real number, and r any rational number we know how to define
ar. What about ax where x is any real number (including irrationals)? It is also a
continuous function of x.

Intuitively, we can imagine that any irrational x can be approximated by rationals

and accurate values obtained. Here is an example: 2
√

3. A decimal approximation of√
3 ≈ 1.732050808⇒ 1732

1000 <
√

3 < 17321
10000 . 2x is an increasing function, therefore

2
1732
1000 < 2

√
3 < 2

17321
/

10000
i.e. 2

√
3 ≈ 3.322 correct to 3 decimal places.

There is a way of defining ax and deriving all its properties by using properties of
real numbers - though this is technical and we do not have time to do it.

We will do it in a more intuitive way that may seem a bit unnatural at first, namely by
defining a new function (the logarithm) and then defining the exponential as the inverse
function of the logarithm. Advantage of this - intuitive, simple and clear arguments.

5.1 Geometrical Definition, Derivative

The following leads to the natural logarithm.

Definition
log(x) is the area under the curve 1

x between 1 and x if x ≥ 1; and negative the
area under the curve 1

x between 1 and x if 0 < x < 1. In particular, log(0) = 1.

37
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Hence log(x) ≥ 0 if x ≥ 1; and log(x) < 0, 0 < x < 1.

Theorem 1
log(x) is differentiable and d

dx log(x) = 1
x .

Proof. Need to consider the Newton quotient and prove

lim
h→0

log(x+ h)− log(x)

h
=

1

x
.

Start with h > 0 and consider the area under the curve between x and x+ h.

log(x+ h)− log(x) is the shaded area above. From geometry we have (or from the
fact that 1

x is a decreasing function):
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1

x+ h
· h < log(x+ h)− log(x) <

1

x
· h

⇒ 1

x+ h
<

log(x+ h)− log(x)

h
<

1

x

(here h > 0 so we can divide by h as done above.) As h → 0 we use the squeezing
theorem to get the required limit. If h > 0 the picture is:

So

−h · 1

x
< log(x)− log(x+ h) < −h · 1

x+ h

⇒ 1

x+ h
<

log(x+ h)− log(x)

h
<

1

x

Hence limit is 1
x as h→ 0.

log(x) is a function defined for x > 0, has log(1) = 0 and d
dx log(x) = 1

x . (*)

We will use (*) alone in what follows. If g(x) is another such function then g(x) =
log(x) uniquely. The condition log(1) = 0 fixes this.

Theorem 2
If a, b > 0, then log(ab) = log(a) + log(b).

Proof. Let f(x) = log(ax), x > 0 and a as above.

df

dx
=

1

ax
· a =

1

x
by the chain rule.

i.e. same derivative as log(x) ⇒ they differ by a constant.
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⇒ log(ax) = log(x) +K ∀x > 0

Put x = 1 ⇒ K = log(a). Put x = b ⇒ log(ab) = log(b) + log(a).

Theorem 3
log(x) is strictly increasing for all x > 0. Its range is (−∞,∞).

Proof.

d

dx
log(x) =

1

x
> 0 for all x > 0⇒ strictly increasing.

To prove that it takes on arbitrarily large values, note that since it is strictly increas-
ing and log(1) = 0, we must have, for example, log(2) > 0.

From Theorem 2,

log(2n) = log(2 · 2 · · · · · 2) =

n terms︷ ︸︸ ︷
log(2) + log(2) + · · ·+ log(2) = n log(2).

This holds for any positive integer and log(2) > 0 ⇒ as n becomes large, so does
log(2n). To prove it takes on arbitrarily large negative values, note that

0 = log(1) = log

(
2 · 1

2

)
= log(2) + log

(
1

2

)
⇒ log

(
1

2

)
= − log(2)

Hence

log

(
1

2n

)
= −n log(2) by Theorem 2

→ −∞ as n→∞

Theorem 4
If n is an integer (positive or negative) then log(an) = n log(a) for all a > 0.

Proof. As above - simple use of Theorem 2.
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Domain (0,∞), range (−∞,∞), strictly increasing.

5.2 Exponential as Inverse of log x

Define the exponential as the inverse function of log(x). We know it exists - write it as
exp(x). Since 0 = log(1) by inverse we have exp(0) = 1.

Theorem 5
If x1, x2 are two numbers, then exp(x1 + x2) = exp(x1) · exp(x2).

Proof. Let a = exp(x1), b = exp(x2). By inverses, x1 = log(a), , x2 = log(b).
By Theorem 2

x1 + x2 = log(a) + log(b) = log(ab)

⇒ ab = exp(x1 + x2) as required.
Define the number e to be exp(1), i.e. log(e) = 1, or exp(1) = e.

Geometric interpretation of e shown below:
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Can show easily (by induction for example) that

exp(n) = en for every positive integer n.

Since 1 = exp(0) = exp(m−m) = exp(m) exp(−m) by Theorem 5.

exp(−m) =
1

em
= e−m m a positive integer.

Theorem 6
exp(x) is differentiable and d

dx exp(x) = exp(x).

Proof. Think of d
dx exp(x) as the derivative of the inverse function to log(x). Hence it is

differentiable.
We have proved that if g(y) is the inverse function of y = f(x), then dy

dx = 1
dx/dy i.e.

f ′(x) = 1
g′(y) or g′(y) = 1

f(x) . Let y = exp(x), then the inverse function is x = log(y).

Chain rule 1 = 1
y

dy
dx ⇒

dy
dx = y = exp(x). (Equivalently dy

dx = 1
dx/dy ).

Use ex instead of exp(x) - completely analogous. Derivative for definition:

d

dx
ex = lim

h→0

ex+h − ex

h
= ex lim

h→0

(
eh − 1

h

)
.

By Theorem 6, we have limh→0
eh−1
h = 1.1

Generally we may have the exponential function

y = ax a > 0.

Can write this as y = exp(x log(a)) = ex log(a). All the usual properties ax+y = axay

etc. all hold.

Theorem 7
d

dx
ax = ax(log(a))

1This suggests that limh→0(1 + h)1/h = e. Prove by (1 + h)1/h = exp
(
1
h
log(1 + h)

)
=

exp
(

log(1+h)−log(1)
h

)
→ e.
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Proof.

d

dx
ax =

d

dx
exp(x log(a)) = exp(x log(a)) · log(a) by the chain rule

Corollary:

lim
h→0

ah − 1

h
= log(a) for a > 0

Finally, the general power function.

Theorem 8
Let a be any number and let f(x) = xa for x > 0. Then f ′(x) exists and
f ′(x) = axa−1.

Proof.

f(x) = xa = elog(xa) = ea log(x)

⇒ f ′(x) = ea log(x) · a
x

by chain rule

= axa−1

5.3 Function Estimates for Small and Large Arguments

Start with showing 2 < e < 4. We know that log(e) = 1 i.e. the area between x = 1
and x = e of y = 1/x, is 1.
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Since log(2) < 1, i.e. area A1 < 1, so we must have e > 2. Now

log(4) = 2 log(2) > 2× 1

2
= 1.

This implies e < 4 ⇒ 2 < e < 4. Accurate calculation later using Taylor’s theorem.

Theorem 9
Let a be any positive number. Then (1+a)n

n → ∞ as n → ∞. [Analogously,
limn→∞

n
(1+a)n = 0.]

Proof. Write (1 + a)n = 1 + na+ n(n−1)
2 a2 + b where b ≥ 0 is some number.

⇒ (1 + a)n

n
=

1

n
+ a+

n− 1

2
a2 +

b

n

b
n ≥ 0, and so for large n (1+a)n

n becomes arbitrarily large.

Corollary: en

n →∞ as n→∞, since e = 1 + a for some a > 0.

Theorem 10
The function f(x) = ex

x is strictly increasing for x > 1 and limx→∞ f(x) = ∞.
exp beats x.

Proof.

f ′(x) =
xex − ex

x2
=
ex

x2
(x− 1) > 0 for x > 1

limn→∞ f(n) =∞, hence result follows.

Corollary 1.
The function x− log(x) becomes arbitrarily large as x becomes arbitrarily large.
x beats log.

Proof.

log

(
ex

x

)
= x− log(x) > 0 for x large enough

Since log(t) becomes large for t large.

Corollary 2
The function x

log(x) becomes large as x becomes large. x beats log.
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Proof. Let y = log(x), then x = ey. So x
log(x) = ey

y . log(x) becomes large as x becomes

large, hence y also becomes large. By Theorem 10 the result follows.

Corollary 3
As x becomes large, x1/x approaches the limit 1.

Proof.

x1/x = elog(x1/x) = e
log(x)
x

Now
log(x)

x
=

1

x/ log(x)
→ 0 as x becomes large by Corollary 2

⇒ lim
x→∞

x1/x = 1

Note Corollary 3 is used many times for integers. i.e. n1/n → 1 for n → ∞ being
integers.

Theorem 11 - exp(x) beats any power of x.
Let m be a positive integer. Then the function f(x) = ex

xm is strictly increasing
for x > m and becomes arbitrarily large as x becomes arbitrarily large.

Proof.

f(x) =
ex

em log(x)
= ex−m log(x)

f ′(x) = ex−m log(x)(1− m

x
) > 0ifx > m

log(f(x)) = x−m log(x) = (log(x))(
x

log(x)
−m)

By Corollary 2, log(f(x))→∞⇒ f(x)→∞.

5.4 Logarithmic Differentiation

Examples (Do yourselves)

(i) Differentiate y = xx
√
x

(ii) Differentiate y = (2x+1)1/2

(x2+1)1/4
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5.5 L’Hôpital’s Rule

Theorem 11
If f , g, are differentiable on an open interval containing x0, g(x0) = f(x0) = 0,
and g′(x0) 6= 0, then

lim
x→x0

f(x)

g(x)
=
f ′(x0)

g′(x0)

Proof. Write

f(x)

g(x)
=
f(x)− f(x0)

g(x)− g(x0)
=

f(x)−f(x0)
x−x0

g(x)−g(x0)
x−x0

⇒ lim
x→x0

f(x)

g(x)
= lim

x→x0

f(x)−f(x0)
x−x0

g(x)−g(x0)
x−x0

=
f ′(x0)

g′(x0)

Example 1

lim
x→0

1− cos(x)

sin(x)
of form

0

0

⇒ = lim
x→0

sin(x)

cos(x)
= 0

Example 2

0/0︷ ︸︸ ︷
lim
x→0

sin(x)− x
x3

= lim
x→0

cos(x)− 1

3x2︸ ︷︷ ︸
also 0/0

= . . . carry on differentiating . . .

Problem is that we need to know that if limx→x0
f ′(x0)
g′(x0) which is of the form 0

0 exists,

then it is equal to the limx→x0
f(x)
g(x) . This is the useful form of L’Hôpital’s rule.

Theorem 12
Let f(x) and g(x) be differentiable on an open interval containing x0 (except
possibly at x0.) Assume that g(x) 6= 0 and g′(x) 6= 0 for x in an interval about
x0 but with x 6= x0. Assume also that f , g are continuous at x0 with f(x0) =

g(x0) = 0, and limx→x0
f ′(x)
g′(x) = l. Then also:

lim
x→x0

f(x)

g(x)
= l
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Example 1:

lim
x→0

1− cos(x)

x2
= lim

x→0

sin(x)

2x
if latter limit exists

Can use L’Hôpital’s rule again to show (since limit of form 0
0 .)

lim
x→0

sin(x)

2x
= lim

x→0

cos(x)

2
=

1

2

⇒ lim
x→0

1− cos(x)

x2
=

1

2
by Theorem 2

Note: Need to check that every time we apply L’Hôpital’s rule the limit is of form 0/0.

Example 2:

lim
x→0

(
x2 + 1

x

)
6= lim

x→0

2x

1
= 0.

Not of form 0/0, i.e. not indeterminate.

Example 3:

Show that limx→0
sin(x)−x
tan(x)−x = −1

2 .

Practical note: L’Hôpital’s rule holds for:

(i) One-sided limits

(ii) Limits as x→∞.

(iii) Indeterminate forms ∞∞ .

Let us prove the rule for the form 0/0 as x→∞.

Proof. By assumption we have limx→∞
f ′(x)
g′(x) = l exists. If y = 1

x , then y = 0+ as x→∞,

i.e.

lim
x→∞

f ′(x)

g′(x)
= lim

y→0+

f ′(1/y)

g′(1/y)
= lim

y→0+

−y2f ′(1/y)

−y2g′(1/y)

= lim
y→0+

d
dy [f(1/y)]

d
dy [g(1/y)]

= lim
y→0

f(1/y)

g′(1/y)
by L’Hôpital

= lim
x→+∞

f(x)

g(x)

What about limx→x0
f(x)
g(x) when of the form ∞

∞? Would think that casting into 0
0 form

would help, but it doesn’t. i.e. f(x)
g(x) = 1/g(x)

1/f(x) i.e this is now of form 0
0 . But

lim
x→x0

1/g

1/f
=︸︷︷︸

L’Hôp

lim
x→x+0

−g′/g2

−f ′/f2

does not help! The proof is more technical, see later.
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Theorem - L’Hôpital’s Rule - general case.
To find limx→x0

f(x)
g(x) when limx→x0 f(x) and limx→x0 g(x) are both zero or both

infinite, differentiate numerator and denominator and take he limit of the new
function. Repeat as many times as needed as long as L’Hôpital’s rule applies at
each stage. We then have

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)

Note that x0 may be replaced by ±∞ or x0±

Example 1

lim
x→∞

log(x)

xp
, p > 0, form

∞
∞

= lim
x→∞

1/x

pxp−1
= 0 since p > 0

Example 2

lim
x→0+

x log(x) of form 0×∞ so need to rewrite as

lim
x→0+

log(x)

1/x
which is of form

∞
∞

⇒ lim
x→0+

x log(x) = lim
x→0+

1/x

−1/x2
= 0.

Example 3

(a) Find limx→0+ x
x

Of form 00 (indeterminate).

(b) limx→1 x
−1/(1−x)

Of form 1∞, again indeterminate.

Solutions

(a) xx = ex log(x). Have shown limx→0+ x log(x) = 0 and since exp is continuous,

limx→0+ exp(x log(x)) = exp
[
limx→0+(x log(x)

]
= e0 = 1.
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(b) Again use logs, namely

x−1/(1−x) = exp

(
1

x− 1
log(x)

)
lim
x→1

log(x)

x− 1
is of form

0

0
⇒ by L’Hôp

= lim
x→1

1/x

1
= 1

⇒ lim
x→1

x1/(x−1) = exp

[
lim
x→1

(
log(x)

x− 1

)]
= e by continuity of exp(x).

Note: If we set x = 1+ 1
n with n an integer, then we have shown limn→∞(1 + 1

n)n = e.

Example 4

Find limx→0

(
1

x sin(x) −
1
x2

)
. (The answer is 1/6 and you need to apply L’Hôpital’s

rule 3 times!)

Proof of L’Hôpital’s rule when limx→x0 f(x) = limx→x0 g(x) = 0 i.e. f(x0) = g(x0) =
0. The case x0 →∞ is done in the exercises. We need the following Theorem:

Theorem (Cauchy Mean Value Theorem)
Let f, g be continuous on [a, b] and differentiable on (a, b) with g(a) 6= g(b). Then
there exists c in (a, b) such that

g′(c)
f(b)− f(a)

g(b)− g(a)
= f ′(c).

Proof.

Leth(x) = f(a) + (g(x)− g(a))
f(b)− f(a)

g(b)− g(a)
.

Then h(a) = f(a) and h(b) = f(b). For the function φ(x) = h(x)− f(x) we have φ(a) =
φ(b)−0 and φ is differentiable on (a, b). Hence by the MVT, ∃ c ∈ (a, b) such that φ′(c) =
0. i.e. h′(c) = f ′(c), and the theorem is proved.

Proof. of L’Hôpital’s Theorem
Here we prove the 0/0 version, i.e. f(x0) = g(x0) = 0.

f(x)

g(x)
=
f(x)− f(x0)

g(x)− g(x0)
=
f ′(c′)

g′(c′)

where c′ is a number between x and x0. As x→ x0, c′ → x0 also. By hypothesis

lim
x→x0

[
f ′(x)

g′(x)

]
= l ⇒ lim

x→x0

f ′(c′)

g′(c′)
= l

⇒ lim
x→x0

f(x)

g(x)
= l as required
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Part III

Integration
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Chapter 6

Anti-derivatives and Geometrical
Interpretation

The anti-derivative or integral of a function f(x).

Given f(x) defined over some interval, then if I can find a function F (x) defined over
the same interval such that

F ′(x) = f(x),

then F (x) is the indefinite integral of f ⇒ F =
∫
f(x)dx. This is not unique. Let G

be another indefinite integral, i.e. G′(x) = f(x). Then

d

dx
(F −G) = 0 ⇒ F (x) = G(x) + constant.

6.0.1 Area under a curve

Suppose f(x) ≥ 0 in some given interval [a, b] and it is also continuous on [a, b], (a < b).
Define by F (x) the area under the curve between x = a and some x.

By definition, F (a) = 0.
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Theorem 1
The function F (x) is differentiable and its derivative is equal to f(x). Another

way to state this is d
dx

∫ x
a f(t)dt = f(x).

Proof. Newton quotient F (x+h)−F (x)
h .

Suppose x 6= b and also h > 0. F (x+ h)−F (x) is the area under the graph between
x and x+ h.

Figure 6.1:

Since f(x) is continuous on [x, x+ h] and is defined there, it must have a maximum
at some point x+, and minimum at some point x−. Hence, for all t ∈ [x, x+ h]

f(x−) ≤ f(t) ≤ f(x+).

Can also bound the area using the rectangles shown in Figure 6.1.

h · f(x−) ≤ F (x+ h)− F (x) ≤ h · f(x+)

i.e. f(x−) ≤ F (x+ h)− F (x)

h
≤ f(x+)

Since x+ and x− are contained in [x, x + h], as h → 0, x−, x+ → x and by the

squeezing theorem we have limh→0
F (x+h)−F (x)

h = f(x), i.e. F ′(x) = f(x). Hence the
anti-derivative is connected to area under the curve.
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The constant is fixed by F (a) = 0. In other words, if I can guess a function G(x)
whose derivative is f(x) (e.g. guess log(x) for the anti-derivative of 1

x), then since F
and G differ by a constant I have

F (x) = G(x) +K.

But F (a) = 0 ⇒ −G(a) = K ⇒ F (x) = G(x)−G(a). Hence∫ b

a
f(x)dx = F (b) = G(b)−G(a).

This is the familiar definite integral.

Example 1 ∫ 2

1
x2dx =

[
x3

3

]2

1

=
8

3
− 1

3
.

Here f(x) = x2, G(x) = x3

3 is the guessed anti-derivative.

Definition: signed area

If f(x) < 0 then the area is below the x-axis. Define F (x) to be minus the area.
(All very familiar). This leads to the definite integral.

Example Draw example function f(x)

∫ b

a
f(x)dx = F (b)− F (a) All negative areas are accounted for.
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Chapter 7

The Riemann Sum

Given f(x), a ≤ x ≤ b, take a partition of the interval [a, b] to be

xi = a+ ih i = 0, 1, . . . , n h =
b− a
n

Note: My partition has regular spacing. Can generalise this to have a partition defined
by a sequence {xk}k=0, ... ,n and in the limit max

k
|xk − xk−1| → 0. I am avoiding this

technical issue which is quite irrelevant to what we want to do!

Take any sub-interval [xi−1, xi] and let x∗i ∈ [xi−1, xi]. Then the Riemann sum is∑n
i=1 f(x∗i )h.

Three particularly useful ways:
(i) x∗i = xi “right-hand” RS (Riemann Sum)

(ii) x∗i = xi−1 “left-hand” RS

(iii) x∗i = 1
2(xi + xi−1) midpoint RS
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Now in the limit n → ∞, h → 0, we can prove

lim
n→∞

n∑
i=1

f(x∗i )h =

∫ b

a
f(x)dx.

Sketch of the proof:

Lower Riemann sum =
∑n

i=1 f(xi−1)h := Ln

Upper Riemann sum =
∑n

i=1 f(xi)h := Un

By geometry:

Ln ≤
∫ b

a
f(x)dx ≤ Un.

In the limit it gets squeezed, if the limit exists then it is the integral.

Example 1:
f(x) = x 0 ≤ x ≤ 1

a = 0, b = 1 ⇒ h =
1

n
, xi = ih =

i

n

Upper RS =
n∑
i=1

f(xi)
1

n
=

n∑
i=1

i

n

1

n
=

1

n2

∑
i = 1ni

=
1

n2

n(n+ 1)

2
=

1

2
+

1

2n
→ 1

2
as n→∞

Aside
∑n

i=1 i = 1
2n(n+ 1) := S.

(i) Consider

1 2 3 . . . n− 1 n
+ n n− 1 n− 2 . . . 2 1



59

Add 2S = (1 + n) + (1 + n) + · · ·+ (1 + n)︸ ︷︷ ︸
n times

= n(1 + n)

S =
1

2
n(n+ 1).

(ii) Consider (i+ 1)2 − i2 = 2i+ 1.

⇒
n∑
i=1

(i+ 1)2 − i2 = 2
n∑
i=1

i+
n∑
i=1

1

i.e. @@2
2 − 12 +@@3

2 −@@22 +HH· · · + (n+ 1)2 −@@n2︸ ︷︷ ︸
“telescoping series”

= 2S + n

S =
1

2
n(n+ 1)

Exercise: Re-do Example 1 but with (a) lower RS, (b) midpoint RS.

Example 2 ∫ 1

0
exdx

Upper Riemann Sum Un =

n∑
i=1

ei/n
1

n∫ 1

0
exdx = lim

n→∞

1

n

n∑
i=1

(
e1/n

)i
︸ ︷︷ ︸

geometric series

= e− 1

7.0.1 Comparison between upper Riemann sum and midpoint RS

Un =
n∑
i=1

f(xi)h Mn =
n∑
i=1

f

(
xi−1 + xi

2

)
h

We know that limn→∞ Un = limn→∞Mn =
∫ b
a f(x)dx. Example for

∫ 1
0 e

xdx = e − 1 ≈
1.71828183 := I correct to 8 decimal places.

Here are some calculations

n h Un |I − Un| Mn I −Mn

1 1 2.7183 1.0000 1.6487 0.0696
2 0.5 2.1835 0.4652 1.7005 0.0178
4 0.25 1.9420 0.2237 1.7138 0.0045

Conclusions: If h decreases by a factor of two, then the error |I − Un| decreases by
1/2, but |I −Mn| decreased by 1/4.
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Midpoint is far superior. Why? (Geometrical explanation.)

Question: Can you think of a better way still? We have to go beyond the Riemann
sum definition - Numerical Analysis

Answer: Approximate the function by a linear function. Geometry - (trapezium
rule).

Approximate f(x), x ∈ [xi−1, xi]

by li(x) =
f(xi)− f(xi−1)

xi − xi−1
(x− xi−1) + f(xi−1). Can we get better still??



Chapter 8

Properties of the Definite
Integral; Fundamental Theorem
of Calculus

1)
∫ b
a cf(x)dx = c

∫ b
a f(x)dx c constant.

2)
∫ b
a (f(x) + g(x))dx =

∫ b
a f(x)dx+

∫ b
a g(x)dx

3) If c ∈ (a, b) (and here a < b), then∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx

4) If f(x) ≤ g(x) for x ∈ [a, b] then∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx

Hence
∫ b
a f(x)dx ≤

∫ b
a |f(x)|dx and

∣∣∣∫ ba f(x)dx
∣∣∣ ≤ ∫ ba |f(x)|dx

5)
∫ b
a f(x)dx = −

∫ a
b f(x)dx.

Proofs follow easily from RS definitions and the use of signed areas.

Theorem 1
Suppose g(x) is defined for all x ∈ [a, b] and is differentiable on [a, b]. Then∫ b

a
g′(x)dx = g(b)− g(a)

Proof. (Sketch)
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Let xi = a+ ih, h = b−a
n .

Upper RS

n∑
i=1

g′(xi)h ≈
n∑
i=1

g(xi + h)− g(xi)

Sh
· Sh︸ ︷︷ ︸

telescoping series

= g(b+ h)− g(a+ h)

As h→ 0 result follows.

Theorem: Fundamental Theorem of Calculus
Suppose F is differentiable on [a, b] and F ′ is integrable on [a, b]. Then∫ b

a
F ′(x)dx = F (b)− F (a).

If f is integrable on [a, b] and has anti-derivative F , then∫ b

a
f(x)dx = F (b)− F (a).

Useful Theorem:

d

dx

∫ g(x)

a
f(t)dt = f(g(x)) · g′(x).

Proof. Let F (x) =
∫ x
a f(t)dt. Then F ′(x) = f(x) - already proved.

Now
∫ g(x)
a f(t)dt = F (g(x)) by the definition of F .

⇒ d

dx

(∫ g(x)

a
f(t)dt

)
=

d

dx
F (g(x) = F ′(g(x)) · g′(x)

= f(g(x)) · g′(x).

Example

d

dx

(∫ x2

a
etdt

)
= ex

2 · 2x

or

∫ x2

a
etdt = et

∣∣x2
a

= ex
2 − ea same as before



Chapter 9

Some Applications

Mechanics - very elementary knowledge needed! Newton’s 2nd law says:
Force = mass × acceleration, Work = Force × distance.

MKS (meter-kilogram-second) system

mass kg

distance m

time s

force Newton, N = kg·m/s2

work Joule, J = N·m

Example 1 - Find the work done in lifting a 1kg book to a height of 1m above its
resting position.

W = force× distance = mg× d = 1kg× 9.8ms−2 × 1m = 9.8J

Example 2 - Work done in moving fluids.
Consider a water tank in the shape of an inverted cone. The tank is partially filled

to a height h. If it gets emptied by taking the water to the top first, find the work done
in pumping the water out.
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Think of a “slice” of water of thickness ∆x. Here is a cross section.

ri
xi

=
R

H
. Mass of water slice = ρπ

R2

H2
x2
i∆x.

Work done in moving this to the top is ∆W =

(
ρπ

R2

H2
x2
i∆x

)
︸ ︷︷ ︸

mass

g︸︷︷︸
gravity

· (H − xi).︸ ︷︷ ︸
distance moved

= Force× distance

Here, adding all the work done and sending ∆x→ 0 we get

W =

∫ h

0
ρgπ

R2

H2
x2(H − x)dx

= ρgπ
R2

H2

[
x3

3
H − x4

4

]h
0

= ρgπ
R2

H2

(
h3

3
H − h4

4

)
= ρgπ

R2

H2

h3

12
(4H − 3h)

Put some numbers in

R = 2m H = 5m h = 3m ρ = 103kg/m3 g = 9.8m/s2

W = 103 kg

m3
· 9.8m

s2
π

(
4

25

)
· 9

12
m3(20− 9)m

≈ 4.06× 104 ≈ 40kJ (kilo Joules)

This is approximately 10,000 calories.
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Example 3 Hooke’s law (linear springs)

When spring is extended to x units beyond its natural length, a force is needed to
keep it there, i.e. F must balance the tension in the string.

Hooke’s law tells us that for small extensions F ∝ x, i.e.

Force = kx, k a positive constant

Work done in stretching the string by x0 units =

∫ x0

0
kxdx =

kx0

2
· J

Example 4 Gravitational forces
Find the work done in moving a particle of mass m from the Earth’s surface to ∞.

Force on a particle is f(r) =
GMm

r2
M −mass of Earth

W =

∫ ∞
R

GMm
dr

r2
= GMm

[
−1

r

]∞
R

=
GMm

R

What velocity is needed for the particle to escape to ∞? By energy conservation:
Work done = kinetic energy.

⇒ GMm

R
=

1

2
mV 2

esc ⇒ Vesc =

(
2GM

R

)1/2

.

Here are some numbers.

Vesc =

(
2× 6.67× 10−11N ·m2/kg2 × 5.97× 1024kg

6.37× 106m

)1/2

≈ 11, 000m/s = 11km/s = 33× speed of sound

Note: R→ 0 Vesc → 0. This is impossible for a black hole (Einstein).
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Chapter 10

Improper Integrals

Definition∫ b
a f(x)dx is an improper integral if

(i) a = −∞ and/or b =∞ (ii) f(x)→ ±∞ in (a, b)

To find improper integrals we take the limit of proper integrals. If the limit is finite,
the integral converges, otherwise it diverges.

Example 1 ∫ ∞
1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx = lim

b→∞

(
−1

b
+ 1

)
= 1

Example 2 ∫ ∞
1

dx

x
= lim

b→∞
log(b) =∞ i.e. diverges.

Geometrically:

In general

lim
b→∞

∫ b

1
xrdx = lim

b→∞

(
br+1 − 1

r + 1

)
r 6= −1

So need r+1 < 0 for convergence, i.e. r < −1, (r = −1 is divergent - see log example
earlier).

67



68 CHAPTER 10. IMPROPER INTEGRALS

10.0.1 Comparison Theorem/Test

Suppose f and g satisfy:

(i) |f(x)| ≤ g(x) for all x ≥ a

(ii)
∫ b
a f(x)dx and

∫ b
a g(x)dx exist for every b > a.

Then

(a) If
∫∞
a g(x)dx is convergent, so is

∫∞
a f(x)dx

(b) If
∫∞
a f(x)dx is divergent, so is

∫∞
a g(x)dx

Similarly for
∫ b
−∞ f(x)dx and

∫∞
−∞ f(x)dx.

Intuitive “proof”: If f , g both positive then the picture is

Comparison test is useful if we cannot carry out the integral exactly. It will tell us
if it exists, then we can find it numerically etc. e.g∫ ∞

0

sin(x)

(1 + x)2
converges
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First thing to note is that
∫∞

0
dx

(1+x)2
converges by comparison to

∫∞
1

dx
x2

. Why? If

x ≥ 1, 1
(1+x)2

< 1
x2

. By the comparison test∫ ∞
0

sin(x)

(1 + x)2
dx converges since

| sin(x)|
(1 + x)2

≤ 1

(1 + x)2
<

1

x2
for x ≥ 1 (10.1)

e.g. ∫ ∞
1

dx√
1 + x2

is divergent∫ b

1

dx√
1 + x2

≥
∫ b

1

dx√
x2 + x2

=

∫ b

1

dx√
2x

Now

∫ ∞
1

dx

x
diverges ⇒ so does

∫ ∞
1

dx√
1 + x2

e.g.
∫∞

1
dx√
x

diverges. (Already saw this, and we can do it directly).

Here is a proof using the comparison theorem.

If x ≥ 1
1

x
≤ 1√

x
⇒
∫ b

1

1

x
dx <

∫ b

1

dx√
x
b > 1

and

∫ ∞
1

1

x
dx diverges

10.0.2 Improper integrals of unbounded functions

Without loss of generality, consider the situation where |f(x)| → ∞ as x → 0. Again,
take limits of bounded integrals. e.g.∫ 1

0

1

xp
dx

{
converges if p < 1

diverges if p ≥ 1

Proof. Left as an exercise.

Example 1 ∫ 1

0
log(x)dx exists

= lim
ε→0

∫ 1

ε
log(x)dx = lim

ε→0

{
[x log(x)]1ε −

∫ 1

ε
x

1

x
dx

}
= lim

ε→0
[−ε log(ε)− 1 + ε] = −1

Example 2

Show that the improper integral I = inf∞0
e−x√
x

dx converges.
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Write I = I1 + I2 where I1 =

∫ 1

0

e−x√
x

dx, I2 =

∫ ∞
1

e−x√
x

dx

I1 =

∫ 1

0

e−x√
x
<

∫ 1

0

1√
x

dx which is convergent∫ ∞
1

e−x√
x

dx <

∫ ∞
1

e−xdx which is also convergent

Example 3
Find the length of the curve y =

√
1− x2 for x ∈ [−1, 1].

Length L =

∫ 1

−1
(1 + y2)1/2dx =

∫ 1

−1

dx√
1− x2

improper at both ends∫ 0

−1

dx√
1− x2

= lim
p→−1

∫ 0

p

dx√
1− x2

= lim
p→−1

[
sin−1(0)− sin−1(p)

]
= 0−

(
−π

2

)
=
π

2∫ 1

0

dx√
1− x2

= lim
p→1

∫ 1

0
lim
p→0

[
sin−1(1)− sin−1(p)

]
=
π

2
⇒ π is the length



Chapter 11

Mean Value Theorem for
Integrals

Given a function f that is integrable on [a, b], we define its average 〈f〉[a,b] by the formula.

〈f(x)〉[a,b] =
1

b− a

∫ b

a
f(x)dx.

Since 〈f〉[a,b] is a number (constant), then we have

∫ b

a
f(x)dx =

∫ b

a
〈f〉[a,b]dx

Geometrically, the area of the shaded rectangle is equal to the area under y = f(x).
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Theorem 1 Let f be continuous on [a, b]. Then there exists a point x0 ∈ (a, b)
such that

f(x0) =
1

b− a

∫ b

a
f(x)dx.

Proof. Define F (x) =
∫ x
a f(t)dt. By the Fundamental Theorem of Calculus we have

F ′(x) = f(x) for all x ∈ (a, b). F is continuous at a and b (proof in exercises). By
MVT we have

F ′(x0) =
F (b)− F (a)

b− a
i.e.

f(x0) =

∫ b
a f(t)dt−

∫ a
a f(t)dt

b− a
=

1

b− a

∫ b

a
f(t)dt
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Techniques of Integration

Will assume familiarity with substitution and integration by parts.

12.0.1 Trigonometric Integrals∫
sinm(x) cosn(x)dx m, n integers

For:

n = 1 substitute u = sin(x) ⇒
∫

sinm(x) cos(x)dx =

∫
umdu

n = 1, m = −1

∫
cos(x)

sin(x)
dx = log | sin(x)|+ c

m, n 6= 1 Write in terms of sinp(x) cos(x) or similar, or use double angle formulae

Important - use trig formulas! - a reminder of double angle formulas:

cos(2x) = 2 cos2(x)− 1 = 1− 2 sin2(x)

sin(2x) = 2 sin(x) cos(x)

sin(x± y) = sin(x) cos(y)± cos(x) sin(y)

cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y)

From these we have

sin(x) cos(y) =
1

2
[sin(x+ y) + sin(x− y)]

sin(x) sin(y) =
1

2
[cos(x− y)− cos(x+ y)]

cos(x) cos(y) =
1

2
[cos(x+ y) + cos(x− y)]

Example 1∫
sin2(x) cos3(x)dx =

∫
sin2(x)(1− sin2(x)) cos(x)d ⇒︸︷︷︸

u=sin(x)

∫
u2(1− u2)du
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Example 2 ∫
sin2(x) cos2(x) =

∫
sin2(2x)

4
=

∫
1

4

1− cos(4x)

2
dx

Example 3

I =

∫
tan3(θ) sec3(θ)dθ

i) Write

∫
sin3(θ)

cos6(θ)
dθ =

∫
1− cos2(θ)

cos6(θ)
sin(θ)dθ ⇒︸︷︷︸

u=cos(θ)

= −
∫

1− u2

u6
du

ii) Notice
d

dθ
sec(θ) = tan(θ) sec(θ)∫

tan3(θ) sec3(θ)dθ =

∫
tan(θ) sec(θ)(sec2(θ)− 1) sec2(θ)dθ ⇒︸︷︷︸

u=sec(θ)

=

∫
(u2 − 1)u2du

Example 4 ∫
cos(3x) cos(5x)dx =

1

2

∫
(cos(8x) + cos(2x))dx etc

Trigonometric substitutions

(1) If
√
a2 − x2 appears in an integral, try x = a sin(θ), dx = a cos(θ)dθ,

√
a2 − x2 =

a cos(θ) (a > 0, θ acute).

(2) If
√
x2 − a2 occurs, try x = a sec(θ), dx = a tan(θ) sec(θ)dθ and

√
x2 − a2 =

a tan(θ).

(3) If
√
a2 + x2 or a2 + x2 occur, try x = a tan(θ), dx = a sec2(θ)dθ,

√
a2 + x2 =

a sec(θ). Also x = a sinh(θ), dx = a cosh(θ)dθ,
√
a2 + x2 = a cosh(θ).
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Example 5 ∫
x2

(1 + x2)3/2
dx x = tan(θ) dx = sec2(θ)dθ

⇒
∫

tan2(θ) sec2(θ)

sec3(θ)
dθ =

∫
tan(θ) sin(θ)dθ

Better by parts:∫
x

(1 + x2)3/2
· xdx = −(1 + x2)−1/2 · x+

∫
1√

1 + x2
dx

= − x√
1 + x2

+ sinh−1(x) + c

12.0.2 Recursion formulas

Let In =

∫
sinn(x)dx.

Then In = − 1

n
sinn−1(x) cos(x) +

n− 1

n
In−2

Proof.

In =

∫
sinn−1 x sin(x)dx integrate by parts

= − cos(x) sinn−1(x) +

∫
(n− 1) sinn−2(x) cos2(x)dx

In = − cos(x) sinn−1(x) + (n− 1)

∫
(− sinn(x) + sinn−2(x))dx

⇒ In = − cos(x)(sin(x))n−1 − (n− 1)In + (n+ 1)In−2

In = − 1

n
sinn−1(x) cos(x) +

n− 1

n
In−2

Example 6 Show that
∫ π/2

0 sin5(x) = 8
15

Solution: Use recursion above, and keep track of the limits.

I5 = −1

5
XXXXsin4(x)︸ ︷︷ ︸

0

cos(x)

∣∣∣∣∣∣
π/2

0

+
4

5
I5−2

=
4

5

−1

3
XXXXsin2(x)︸ ︷︷ ︸

0

cos(x)

∣∣∣∣∣∣
π/2

0

+
2

3
I1


=

4

5
· 2

3

∫ π/2

0
sin(x)dx =

8

15
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Chapter 13

Applications of Integration

13.1 Length of curves

Start with something we have already seen. Given y = f(x), find the length of the graph
of the function. Do something similar to Riemann sums but for the length. Partition
(x0, x1, . . . , xn), x0 = a, xn = b.

For the ∆ABC (AB)2 = (xi − xi−1)2 + (f(xi) − f(xi−1))2. But length of curve

segment AB ≈
√

(xi − xi−1)2 + (f(xi)− f(xi−1))2.

Total length ≈
n∑
i=1

√
(xi − xi−1)2 + (f(xi)− f(xi−1))2

=
n∑
i=1

(xi − xi−1)

√
1 +

(
f(xi)− f(xi−1)

xi − xi−1

)2

.

Now let xi − xi−1 = h = b−a
n := ∆x.

Total length = lim
n→∞, (h→0, ∆x→0)

∑
∆x

√
1 +

(
f(xi)− f(xi−1)

xi − xi−1

)2

L =

∫ b

a

[
1 + (f ′(x))2

]1/2
dx
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In parametric form this is

L =

∫ t1

t0

[(
dx

dt

)2

+

(
dy

dt

)2
]1/2

dt

Example Find the length of the parabola y = x2, 0 ≤ x ≤ 1.

Clearly L >
√

2 = 1.4142 . . . , y = f(x) = x2, f ′(x) = 2x.

L =

∫ 1

0
(1 + 4x2)1/2dx

Substitution 2x = tan(θ)

{
x = 0, θ = 0

x = 1, θ = a tan(2)

2dx = sec2(θ)dθ see Fig 13.1 below

L =

∫ a tan(2)

0

1

2
sec3(θ)dθ

Figure 13.1:



13.2. VOLUMES AND VOLUMES OF REVOLUTION 79

Method 1 ∫
sec3(θ)dθ =

∫
cos(θ)

cos4(θ)
dθ =

∫
cos(θ)

(1− sin2(θ))2
dθ

u = sin(θ) =

∫
du

(1− u2)2
partial fractions

=
A

1 + u
+

B

(1 + u)2
+

C

(1− u)
+

D

(1− u2)

= etc . . . etc

or write in terms of x again.

Method 2∫
sec3(θ)dθ =

∫
sec(θ) sec2(θ)dθ integrate by parts

= tan(θ) sec(θ)−
∫

tan(θ)

d
dθ

(sec(θ))︷ ︸︸ ︷
sec(θ) tan(θ) dθ

= tan(θ) sec(θ)−
∫

sec3(θ)(1− cos2(θ))dθ move −
∫

sec3(θ)dθ to other side

2

∫
sec3(θ)dθ = tan(θ) sec(θ) +

∫
sec(θ)dθ)

i.e.

∫
sec3(θ)dθ =

1

2
[tan(θ) sec(θ) + log(sec(θ) + tan(θ))] (see HW3)∫ 1

0
(1 + 4x2)1/2dx =

1

4
[tan(θ) sec(θ) + log(sec(θ) + tan(θ))]

a tan(2)
0

=
1

4

[
2×

√
1 + 4x2 + log

(
2x+

√
1 + 4x2

)]1

0
=

1

4

[
2
√

5 + log
(

2 +
√

5
)]

= 1.4789

13.2 Volumes and Volumes of Revolution
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A plane cuts a solid V - cross sectional area is Rx say. Then the volume of a slide is
Rxdx. So if Px is a family of parallel planes with common axis x, and the area of V cut
by Px is A(x), then the volume of V is∫ b

a
A(x)dx

where the solid V lies between planes Pa and Pb.

Example 1 Volume of a sphere of radius r. Pick planes along the x-axis.

∆OAB


OA = r

OB = x

AB = (r2 − x2)1/2

So A(x) =π(r2 − x2), V =

∫ r

−r
π(r2 − x2)dx =

4

3
πr3

Example 2 Volume of conical solids, with circular base of radius r and height h.
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Take x to be upwards as shown, so Px cuts the cone in circular areas.
Geometry - ∆ABB′ and ∆OAB.

Similar ∆s - we are after DE, the radius of the circle cut by Px.

DE

OB
=
AE

AB
=
AF

AC
→ i.e.→ DE

r
=
h− x
h

⇒ DE =
h− x
h

r

A(x) = π
r2

h2
(h− x)2

Volume =

∫ h

0
π
r2

h2
(h− x)2dx

= −π r
2

h2

(h− x)3

3

∣∣∣∣h
0

=
1

3
πr2h

Example 3 A sphere of radius r is cut into 3 pieces with the two cuts symmetrically
placed about the centre. Where should the cuts be in order to get three equal volumes?
Complete for homework.

13.2.1 Volumes of revolution

Given a area bounded by x = a, x = b, y = f(x), y = 0.
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The volume of the solid produced by revolving y = f about the x-axis (as shown) is
given by

V =

∫ b

a
π(f(x))2dx.

This follows immediately by the slice method seen earlier.

Example 4 The region between the graphs of sin(x) and x for [0, π2 ], is revolved about
the x-axis. Sketch the resulting solid and find its volume.

V =

∫ π/2

0
π(x2 − sin2(x))dx =

π4

24
− π2

4
show this

If we revolve about the y-axis, what is the volume? Consider a non-negative function
f(x) on [a, b].
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Revolving the element about the y-axis gives a shell of volume

2πx︸︷︷︸
(a)

(b)︷︸︸︷
f(x) dx︸︷︷︸

(c)

⇒ V =

∫ b

a
2πxf(x)dx.

Where (a) - circumference of cylindrical shell, (b) - radius of shell, (c) - thickness of
shell. Note that this can be done by the slice method but with planes along the y-axis
and parallel to the x-axis.

13.3 Surface Areas of Revolution

As we revolve about the x-axis, the area of the surface area swept out is a strip of length
≈ 2πf(xi) and thickness ∆li. Now

∆li =
[
(xi − xi−1)2 + (f(xi)− f(xi−1))2

]1/2
≈
[
1 + (f ′(xi))

2
]1/2

∆x as seen earlier.

Therefore, in the limit, area S is

S =

∫ b

a
2πf(x)

√
1 + (f ′(x))2dx
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Example 5 Sphere radius r

y = (r2 − x2)1/2 i.e. f(x) = (r2 − x2)1/2

f ′(x) = − x

(r2 − x2)1/2
⇒ S =

∫ r

−r
2π(r2 − x2)1/2 ·

[
1 +

x2

(r2 − x2)

]1/2

dx

= 2πr

∫
−rrdx = 4πr2

Example 6 Torus of cross-sectional radius r and radius a > r.

Revolve about the x-axis to get a torus.

Circle equation is x2 + (y − a)2 = r2, i.e. y = a±
√
r2 − x2

Upper semi-circle: f+(x) = a+
√
r2 − x2

Lower semi-circle: f−(x) = a−
√
r2 − x2
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⇒ S = S+ + S− =

∫ r

−r
2πf+(x)

(
1 + (f ′+(x))2

)1/2
dx

+

∫ r

−r
2πf−(x)

(
1 + (f ′−(x))2

)1/2
dx

f ′+ = − x√
−r2 − x2

= −f ′−

⇒ 1 + f ′2+ = 1 + f ′2− =
r2

(r2 − x2)

Put together - don’t integrate separately!

S = 2π

∫ r

r

[
a+

√
r2 − x2 + 1−

√
r2 − x2

]
· r

r2 − x2

1/2
dx

= 4πar

∫ r

−r

dx√
r2 − x2

Put x = r sin(θ) and show that
∫ r
−r

dx√
r2−x2 = π.

⇒ Storus = 4π2ar = (2πa)× (2πr)

13.4 Centres of Mass

1D case - straightforward.

If centre of mass is at x = x̄, then we must have a zero total moment. i.e.

∑
mk(x̄− xk) = 0 i.e. x̄ =

∑n
k=1mkxk∑n
k=1mk
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2D case - discrete masses.

n masses of mass mk and coordinates (xk, yk). Find the center of mass, assume it
is (x̄, ȳ). There are two degrees of freedom, so without loss of generality we need to
have zero moments about the x-axis and the y-axis. What do I mean by this? Here is a
schematic.

For balance I need:

(1)
∑
mi(x̄− xi) = 0

(2)
∑
mi(ȳ − yi) = 0

}
⇒ (x̄, ȳ) =

(∑
mixi∑
mi

,

∑
miyi∑
mi

)
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Note: If the masses are places symmetrically and are equal, centre of mass is on the
line of symmetry. e.g.

Exercise: if m1 = m2 = m3 = m, find the centre of mass. What happens if
m1 = m2 6= m3?

Now consider a continuous mass distribution, i.e. a place of a certain spatial density.

General theory - divide it into small rectangles
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Moment about y-axis is xiρ(xi, yi)∆x∆y

Add all of them up (like a Riemann sum)
∑
i

∑
j

xiρ(xi, yi)∆x∆y

Moment about the whole plate about the y-axis x̄

∫∫
Area

ρ(x, y)dxdy

In the limit

∫∫
A
xρ(x, y)dxdy = x̄

∫∫
A
ρdxdy

Similarly

∫∫
A
yρ(x, y)dxdy = ȳ

∫∫
A
ρ(x, y)dxdy

You will see how to work with double integrals in term 2 and further. For the
moment, we will consider the centre of mass of regions bounded by one or more graphs
y = f(x).

Case 1 Region {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}

Consider a partition of [a, b] as shown. For rectangle Ri, the centre of mass is (by
symmetry):

x∗i =
1

2
(xi−1 + xi) y∗i =

1

2
f(x∗i )
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Moment of Ri about y-axis My(Ri) = ρf(x∗i )∆x︸ ︷︷ ︸
mass

· x∗i︸︷︷︸
distance

Moment of Ri about x-axis Mx(Ri) = ρf(x∗i )∆x ·
1

2
f(x∗i )

Physics M(R1 ∪R2 ∪R3 · · · ∪Rn) =

n∑
i=1

M(Ri)

Moment of the union of rectangles = sum of moments of the individual rectangles (Archimedes)

⇒ My = lim
n→∞

ρx∗i f(x∗i )∆x =

∫ b

a
ρxf(x)dx

Mx = lim
n→∞

ρ
1

2
f(x∗i )

2∆x =
1

2

∫ b

a
ρ(f(x))2dx.

Now for a balance of moments, if the total mass of R is m (note m =
∫ b
a ρf(x)dx).

Then

x̄ =

∫ b
a xf(x)dx∫ b
a f(x)dx

ȳ =
1
2

∫ b
a (f(x))2dx∫ b
a f(x)dx

.

Note: density ρ cancels out, so take ρ = 1 w.l.o.g.

Example 7 Half disk

By symmetry x̄ = 0.

ȳ =
1
2

∫ 1
−1(1− x2)dx

π/2
=

1

π
(2− 2

3
) =

4

3π
≈ 0.424

(Note: If we found it to be > 1
2 then we know it’s wrong! Why?)
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Case 2: R = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ f(x)}

Centre of mass of “rectangle” Ri is x∗i as before, and 1
2(f(x∗i ) + g(x∗i )), area of

rectangle (f(x∗i )− g(x∗i ))∆x. So as before we find

x̄ =

∫ b
a x(f(x)− g(x))dx∫ b
a (f(x)− g(x))dx

ȳ
1
2

∫ b
a (f(x)2 − g(x)2)dx∫ b
a (f(x)− g(x))dx

Example 8 Region between y = x and y = x2, 0 ≤ x ≤ 1. Find centre of mass

x̄ =

∫
01x(x− x2)dx∫ 1
0 (x− x2)dx

=
1/12

1/6
=

1

2

ȳ =
1
2

∫ 1
0 (x2 − x4)dx

1/6
=

1/15

1/6
=

2

5
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At x =
1

2

f(1
2) = 1 1− 2

5 = 3
5

g(1
2) = 1

4
2
5 −

1
4 = 3

20

}
⇒ closer to top curve

Is this expected or not?

Note: If f(x) = xm, g(x) = xm, for some m,n, the centre of mass could be outside the
region. (This is ok.)

Theorem of Pappus
Let R be a region that lies on one side of a line l.

A = area of R

V = Volume obtained by rotating about l

d = distance travelled by the centre of mass when R is rotated about l

Then V = Ad

Example 9 Volume of a cylinder radius r. Take the function y = r, 0 ≤ x ≤ l.
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Rotate about x-axis.

Area = rl ȳ =
1

2
r (by symmetry)

⇒ d =
1

2
r · 2π = πr

V = rl · πr =πr2l as known

13.5 Length of curves and areas using polar coordinates

Recall

L =

∫ b

a

[(
dx

dt

)2

+

(
dy

dt

)2
]1/2

dt for parametric curved (x(t), y(t)).

Now in polar coordinates we have curves r = f(θ) so we use θ as a parameter.

x = r cos(θ) = f(θ) cos(θ) y = r sin(θ) = f(θ) sin(θ)

L =

∫ β

θ=α

[
(f ′ cos(θ)− f sin(θ))2 + (f ′ sin(θ) + f cos(θ))2

]1/2
dθ

=

∫ β

α

√
(f ′(θ))2 + (f(θ))2dθ

=

∫ β

α

[(
dr

dθ

)2

+ r2

]1/2

dθ
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Another way using infinitesimals.

Pythagoras: (dr)2 + r2(dθ)2 = (ds)2

ds =

[(
dr

dθ

)2

+ r2

]1/2

dθ

⇒ L =

∫ β

α

[(
dr

dθ

)2

+ r2

]1/2

dθ

Example 10 Find the length of the cardioid r = 1 + cos(θ), 0 ≤ θ ≤ 2π.

L =

∫ 2π

0

√
(1 + cos(θ))2 + sin2)θ)dθ =

∫ 2π

0

√
2 + 2 cos(θ)dθ

Now cos(θ) = 2 cos2

(
θ

2

)
− 1 ⇒ (1 + cos(θ)) = 2 cos2

(
θ

2

)
⇒
√

2(1 + cos(θ) = 2

∣∣∣∣cos

(
θ

2

)∣∣∣∣
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We need to do this because 1 + cos(θ) can be positive but cos
(
θ
2

)
is negative, e.g. for

π ≤ θ ≤ 2π. So need to write this integral as

L =

∫ π

0
2 cos

(π
2

)
dθ +

∫ 2π

π

(
−2 cos

(
θ

2

))
dθ = 8

Otherwise

∫ 2π

0
2 cos

(
θ

2

)
dθ = 0 which is absurd!

Area in polar coordinates in a region inside the graph of f(θ) on [α, β].

Use segments of angles ∆θi, and f constant.

Approximate by r = f(θi)− constant.

∆A =
1

2
(f(θi))

2∆θi

⇒ A =
1

2

∫ β

α
f(θ)2dθ =

1

2

∫ β

α
r2dθ

In Multi-variable Calculus you will see a more general construction.
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Note:

Example 11 Find the area enclosed by the four-petaled rose r = cos(2θ).

r ≥ 0 ⇒ −π
2
≤ 2θ ≤ π

2
− π

4
≤ θ ≤ π

4

A =
1

2

∫ π
4

−π
4

cos2(2θ)dθ =
1

2

∫ π
4

−π
4

1 + cos(4θ)

2
dθ

=
1

4

π

2
=
π

8
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Part IV

Series, Power Series and Taylor’s
Theorem
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Chapter 14

Series

Definition
Given a sequence {an}n≥1 of real numbers, define the sequence of partial sums

by

SN = a1 + a2 + · · ·+ aN =
N∑
n=1

an.

If SN → S as N →∞, we say the series converges to the sum S. Write

S = lim
N→∞

N∑
n=1

an =
∞∑
n=1

an.

Example 1
The geometric series

∑∞
n=0 x

n. (x 6= 1)

SN = 1+(x+ · · ·+ xN )

xSN = (x+ · · ·+ xN ) + xN+1

Subtract SN =
1− xN + 1

1− x

If |x| < 1, lim
N→∞

SN =
1

1− x
=

∞∑
n=1

xn,

hence the series converges. If x ≥ 1, the series diverges.

Example 2

∞∑
n=1

1

n(n+ 1)
SN =

N∑
n=1

1

n(n+ 1)
=

N∑
n=1

(
1

n
− 1

n+ 1

)
Telescoping series ⇒ SN = 1− 1

N+1 → 1 as N →∞. Series converges to 1.

99
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14.1 Partial sums and geometric series

14.1.1 Series of positive terms

Note negative terms have the same theory.
Since terms are positive, the sequence SN is an increasing sequence of numbers.

Hence if the sequence of partial sums is bounded above then the series converges. If the
sequence SN is unbounded above, then

∑
→∞.

Theorem 1
The series

∑∞
n=1

1
n diverges to +∞.

Proof. It is enough to prove that the partial sums are not bounded above.
Consider

S2K = 1 +
1

2
+

1

3
+ · · ·+ 1

2K

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·+

(
1

2K−1 + 1
+ · · ·+ 1

2K

)
≥ 1 +

12

+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·+

(
1

2K
+ · · ·+ 1

2K

)
= 1 +

1

2
+

2

4
+

4

8
+ · · ·+ 2K−1

2K
= 1 +

1

2
K

Partial sums unbounded for K large ⇒ series diverges.

Theorem 2
If α > 1 is a rational number, then

∞∑
n=1

1

nα
converges.

Proof. Partial sums are increasing, so enough to prove that they are bounded above.
Compare SN ≤ S2N−1, note N ≤ 2N − 1.

SN ≤ S2N−1 = 1 +
1

2α
+

1

3α
+ · · ·+ 1

(2N − 1)α

= 1 +

(
1

2α
+

1

3α

)
+

(
1

4α
+

1

5α
+

1

6α
+

1

7α

)
+ · · ·+

(
1

2(N−1)α
+ · · ·+ 1

(2N − 1)α

)
≤ 1 +

2

2α
+

4

4α
+ · · ·+ 2N−1

2(N−1)α

= 1 +
1

2α−1
+

(
1

2α−1

)2

+ · · ·+
(

1

2α−1

N−1
)

=
1−

(
1

2α−1

)N(
1− 1

2α−1

) ≤ 1

1− 1
2α−1

if
1

2α−1
< 1
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i.e. α > 1, which is the assumption of the theorem.

Note: We will see a much easier proof later.

14.1.2 Elementary algebraic rules for series

If
∑∞

n=1 an and
∑∞

n=1 bn converge, then
∑∞

n=1(αan + βbn) also converges for any con-
stants α, β.

Theorem 3 - Necessary condition for convergence.
If the series

∑∞
n=1 an converges, then an → 0 as n→∞.

Proof. Let the sum be S, i.e.
∑∞

1 an = S. Then SN =
∑N

n=1 an → S as N → ∞, and

N → ∞, and SN−1 =
∑N−1

n=1 an → S as N → ∞. Now aN = SN − SN−1 → S − S = 0
as N →∞.

Example 3

∞∑
n=1

(−1)n = −1 + 1− 1 + 1 . . . diverges by the theorem above, an 6→ 0 as n→∞.

Note: Theorem 3 provides a necessary but not sufficient condition, e.g.
∑∞

n=1
1
n has

an → 0 but diverges.

Preposition: (follows from what we have shown).
If
∑∞

n=1 an converges, then for every N the series
∑∞

n=N → 0 as N → ∞. Intu-
itively, the “tail” of the series must go to zero if the series converges.

14.2 Cauchy sequences and convergence of series

Definition - Cauchy sequence
We say that the sequence of numbers Skk=1,2,... is a Cauchy sequence, if given

any ε > 0 we can find an N such that for any m > N and n > N

|Sm − Sn| < ε

Intuition: as k increases, Sm and Sn get arbitrarily close. Cauchy sequences do not
require all positive terms or any other special assumptions.

Connection with series: we have the following results for Cauchy sequences.

(1) Any convergent sequence is a Cauchy sequence.

(2) Any Cauchy sequence is bounded.
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Theorem 4
Every Cauchy sequence converges. (Proof by use of the Bolzano-Weierstrass the-
orem seen in Analysis).

Theorem 5 (The alternating series test)
Suppose {an}n≥1 is a decreasing sequence of positive numbers with an → 0 as
n→∞. Then the series

∑∞
n=1(−1)n−1an = a1 − a2 + a3 − a4 + . . . converges.

Proof. We will show that the sequence Sk of partial sums is a Cauchy sequence, i.e.
given any ε > 0 we need to find N such that for all n > m > N , |Sn − Sm| < ε.

Consider any n > m. Then since an is decreasing

0 ≤ am+1 − am+2 + am+3 − · · ·+ an ≤ am+1

Since an → 0 as n→∞, given ε, I can find N such that for any n > N , an < ε.

Now for any n > m > N .

|Sn − Sm| = |(a1 − a2 + a3 − a4 + . . . an)− (a1 − a2 + . . . am)|
= |am+1 − am+2 + am+3 − . . . an|
≤ am+1 < ε since m > N

⇒ Sk is a Cauchy sequence and the Theorem follows.

Example 4

∞∑
n=1

(−1)n−1

n
converges since |an| =

1

n
→ 0 and it is an alternating series.

In fact,
∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · = log(2) (we will see this later)

14.3 Convergence tests

Theorem 6 (Comparison test)
Let

∑∞
n=1 bn be convergent with bn non-negative. If |an| ≤ bn (n = 1, 2, . . . ), then∑∞

n=1 an converges.
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Proof. Let sk =
∑k

j=1 aj , i.e. k-partial sum of
∑
an. For n > m we have

|sn − sm| = |am+1 + am+2 + · · ·+ an|
≤ |am+1|+ |am+2|+ · · ·+ |an| triangle inequality

≤ bm+1 + bm+2 + · · ·+ bn by assumption

≤
∞∑

i=m+1

bi < ε for m large enough since
∑

bi converges

(More precisely, given ε > 0, there is N such that
∑∞

i=m+1 bi < ε for all m > N).

Hence {sk} is Cauchy ⇒
∑∞

i=1 an converges.

Example 5 Show that
∞∑
n=1

(−1)n

n3n+1

converges.

With an = (−1)n

n3n , compare with
∑∞

n=1 bn with bn = 1
3n .

n3n+1 > 3n ⇒ |an| =
1

n3n
<

1

3n

By comparison test
∑∞

n=1 an converges.

Example 6 Prove that if α is any positive number and |x| < 1, then the series

∞∑
n=1

nαxn converges.

First we note that nαxn → 0 as n→∞. In fact,

|nαxn| = nα|x|n = nαen log |x|

and since log |x| < 0, the exponential decay term dominates over any power of n.

Hence nα+2xn → 0 as n → ∞ and the sequence {nα+2xn} is bounded. Hence there
exists a constant C such that

|nα+2 + xn| ≤ C i.e. |nαxn| ≤ C

n2
n ≥ 1

But
∑∞

n=1
1
n2 converges, hence so does

∑
nαxn by the comparison test. Note: it is

much easier to use the Ratio Test (below).
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14.3.1 Absolute and conditional convergence

A series
∑∞

n=1 an is said to be absolutely convergent if the series
∑∞

n=1 |an| is conver-
gent. A series that converges but does not do so absolutely is said to be conditionally
convergent.

Theorem 7
Every absolutely convergent series is convergent.

Proof. Comparison test with bn = |an|.

Example 7
∞∑
n=1

(−1)n−1

n

is conditionally convergent.

Example 8 Discuss the convergence of

∞∑
n=1

(−1)n
√
n

n+ 4
.

Series is not absolutely convergent since
√
n

n+4 = 1√
n+4/

√
n

. Now for n ≥ 1,

1√
n+ 4/

√
n
≥ 1

5
√
n

and since
∑ 1√

n
diverges, we are done.

For the alternating series test to apply we need to show that
√
n

n+4 is decreasing.

If f(x) =

√
x

x+ 4
⇒ f ′(x) =

4− x
2
√
x(x+ 4)2

< 0 for x > 4.

So series terms decrease for n > 4. We only care about what happens beyond the 1st
three terms - all the action is in the tail. Hence the series converges by the alternating
series test, but it is not absolutely convergent.

14.3.2 The Integral Test

Theorem 8
Let f(x) be a function which is defined for all x ≥ 1, and is positive and decreasing.
Then the series

∞∑
n=1

f(n)

converges if and only if the improper integral
∫∞

1 f(x)dx converges.

To see this, consider the diagram:
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For the partial sums f(2) + f(3) + · · ·+ f(n) we have

f(2) ≤
∫ 2

1
f(x)dx, f(3) ≤

∫ 3

2
f(x)dx etc.

⇒ f(2) + f(3) + · · ·+ f(n) ≤
∫ n

1
f(x)dx

By assumption, i.e. that limn→∞
∫ n

1 f(x)dx converges,
∑n

k=2 f(k) ≤
∫∞

1 f(x)dx, i.e
the partial sums sk are bounded and so the series converges. Have proved this for one
of the “ifs”, i.e. when

∫∞
1 f(x) <∞.

Conversely, assume that f(1) + · · ·+ f(n) approach a limit for large n. Consider the
dashed rectangles in the diagram above.

f(1) ≥
∫ 2

1
f(x)dx, f(2) ≥

∫ 3

2
f(x)dx etc

⇒f(1) + f(2) + · · ·+ f(n− 1) ≥
n

inf
1
f(x)dx

So if the partial sums are bounded by L say, (we know this is true since by assumption∑∞
n=1 f(n) converges) we have ∫ n

1
f(x)dx ≤ L (*)

Claim that this implies that
∫∞

1 f(x)dx exists. Give me any number b, however large
you wish. Then I can find an integer n > b so that∫ b

1
f(x)dx ≤

∫ n

1
f(x)dx ≤ L by (*)

Hence
∫ b

1 f(x)dx is bounded above for all b. Now send b to infinity.
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Example 9 Show that

1 +
1

2
+ · · ·+ 1

n
≥ log(n+ 1)

and so obtain a new way of showing that
∑∞

n=1
1
n diverges.

Solution Take f(x) = 1
x in the integral test. Hence

1 +
1

2
+ · · ·+ 1

n
≥
∫ n+1

1

dx

x
= log(n+ 1)

⇒ lim
n→∞

∫ n+1

1

dx

x
diverges, and by the integral test, so does

∞∑
1

1

n
.

Example 10 For what values of p do the series

∞∑
n=1

1

np

converge/diverge?

Solution Let f(x) = 1
xp and consider∫ n

1

dx

xp
=
n1−p

1− p
− 1

1− p

(have shown this already when we did improper integrals.)

Hence lim
n→∞

∫ n

1

dx

xp
exists if p > 1 and diverges if p ≤ 1.

Hence

∞∑
n=1

1

np
converges for p > 1, and diverges otherwise.

Example 11 Show that
∫∞
n=2

1

n
√

log(n)
diverges but

∑∞
n=2

1
n(log(n))2

converges.

Solution
Use the integral test by considering∫ ∞

2

dx

x
√

log(x)
= lim

b→∞

∫ b

2

dx

x
√

log(x)
= lim

b→∞

∫ b

2
(log(x))−1/2 1

x
dx

(of the form

∫
f ′(g(x))g′(x)dx since

d

dx
(log(x)) =

1

x
)

= lim
b→∞

[
2(log(x))1/2

]b
2

= lim
b→∞

[
2(log(b))1/2 − 2

√
log(2)

]
=∞
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Note that we can do this generally, i.e.

lim
b→∞

∫ b

2

dx

x(log(x))p
= lim

b→∞

[
(log(x))1−p

(1− p)

]b
2

= lim
b→∞

[
(log(b))1−p

1− p
− (log(2))1−p

1− p

]
converges if p > 1, so for p = 2 it converges. p = 1 must be done separately, i.e. consider.

lim
b→∞

∫ b

2

dx

x log(x)
= lim

b→∞
[log(log(x))]b2 −→∞

Hence by the integral test, the series

∞∑
n=2

1

n(log(n))p

converges for p > 1 and diverges otherwise.

14.3.3 The Ratio Test

Theorem 9
Let

∑
n = 1∞an be a series satisfying

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

Then:

1. If L < 1 the series converges absolutely.

2. If L > 1 the series diverges.

3. If L = 1 the test is inconclusive.

Example 12 Prove that the series

∞∑
n=0

xn

n!

converges for all values of x. By the ratio test:

an =
xn

n!
, lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x|n+1

(n+ 1)!

n!

|x|n

= lim
n→∞

|x|
n+ 1

= 0

In fact we will see that
∑∞

n=0
xn

n! = ex.
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Proof. By assumption
∣∣∣an+1

an

∣∣∣ is close to L for large n.

Case (1), L < 1. Then pick ε > 0 so small that L + ε < 1, and for sufficiently large
N we have ∣∣∣∣an+1

an

∣∣∣∣ < (L+ ε) if n > N.

Now start with aN+K . By the above bound

|aN+K | < (L+ ε)|aN+K−1| < (L+ ε)2|aN+K−2| < · · · < (L+ ε)K |aN |.

Hence,

∞∑
j=1

|aN+j | < |aN |
∞∑
j=1

(L+ ε)j

which is bounded since the series
∑∞

j=1(L+ ε) is a geometric series ( (L+ ε) < 1. Hence

|aN+1|+ |aN+2|+ . . . converges

⇒ |a1|+ · · ·+ |aN |+ |aN+1|+ |aN+2|+ . . .

=

∞∑
n=1

|an| also converges

(We only added a finite number of terms). This proves absolute convergence in case
(1) L < 1.

In case (2), L > 1, pick L + ε > 1 now and we have |aN+K | > (L + ε)N |aN | which
diverges now as a geometric series. To prove that if L = 1 the test is inconclusive, it is
sufficient to pick an example, i.e.

∞∑
n=1

1

np

∣∣∣∣an+1

an

∣∣∣∣ ( n

n+ 1

)p
=

(
1

1 + 1/n

)p
p is fixed, remember, so limn→∞

(
1

1+1/n

)p
= 1p = 1. But p > 1, we have convergence

but p ≤ 1 divergence. Hence, test is inconclusive.

Using this proof, we have a practical way of estimating errors in truncating series.
Suppose ∣∣∣∣ anan−1

∣∣∣∣ < r < 1 for n > N.

Then
∞∑
n=1

an −
N∑
n=1

an =

∞∑
n=N+1

an

is the error. But |aN+1| < r|aN | and generally |aN+K | < |aN |rK . So

∞∑
k=1

|aN+K | ≤ |aN |
∞∑
k=1

rk = |aN |
r

1− r
.

So the error is ≤ |aN | r1−r .
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Example 12 What is the error made in approximating

∞∑
n=1

1

n!
by

4∑
n=1

1

n!

Solution: We have an
an−1

= 1
n .

In the example, the truncation is N = 4, so if n > 4,
∣∣∣ an
an−1

∣∣∣ < 1
5 .

The error is ≤ |a4| · 1/5
1−1/5 = 1

4! ·
1
4 = 1

96 < 0.0105

14.3.4 The Root Test

Theorem 10
For the given series

∑∞
n=1 an, suppose that limn→∞ |an|1/n = L. Then

1. If L < 1 the series converges absolutely.

2. If L > 1 the series diverges.

3. If L = 1 the test is inconclusive.

Proof. Similar to that for the ratio test.
Case (1), pick ε > 0 so that L + ε < 1 and for large N , |an|1/n < (L + ε) < 1 for

n > N . Hence
|an| < (L+ ε)n for n > N.

Now compare
∞∑

n=N+1

|an| with

∞∑
n=N+1

(L+ ε)n.

The latter converges (geometric series with L + ε < 1) hence
∑∞

n=N+1 |an| converges
⇒
∑∞

n=1 |an| converges.

Case (2) is simply
∑∞

n=N+1 |an| >
∑∞

n=N+1(L+ε)n where now L+ε > 1, i.e. diverges.

Case (3), consider
∑∞

n=1 an with an = n. Clearly series diverges but limn→∞ n
1/n = 1.

(Why!?)
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Examples:

1.

∞∑
n=1

1

nn
converges, |an|1/n =

1

n
→ 0.

2.

∞∑
n=1

3n

n2
diverges. (We already know this by other methods.)

i.e. an =
3n

n2
6→ 0 as n→∞

|an|1/n =
3

(n1/n)2
→ 3 as n→∞.

3.

∞∑
n=1

nn

n!
(again we have seen this before in HW3)

Use ratio test

∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)n+1

(n+ 1)!

n!

nn
= (1 +

1

n
)n

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = e > 1 diverges.

4.

∞∑
n=1

1

n2 − log(n)
.

Intuition: large n series ≈
∑ 1

n2
<∞

1

n2 − log(n)
can be bounded below by

1

αn2
with 0 < α < 1

⇒
∞∑
1

1

n2 − log(n)
<

∞∑
1

1

αn2
<∞ (Why!?)
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14.3.5 Testing convergence for
∑∞

n=1 an
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Chapter 15

Power Series

15.1 Convergence tests and radius of convergence

Definition
Let x be a real number (can extend to complex numbers also) and {an}n≥0 be a

sequence of numbers. Then we can form the power series
∑∞

n=0 anx
n. The

partial sums sN =
∑N

n=1 anx
n are degree N polynomials.

e.g. The geometric series 1+x+x2+. . . converges for |x| < 1. Hence 1
1−x =

∑∞
n=0 x

n

if |x| < 1.

Theorem 1 Assume that there is a number R > 0 such that
∑

n=0 |an|Rn con-
verges. Then for all |x| < R, the series

∑∞
n=0 anx

n converges absolutely.

Proof.

|an| |x|n ≤ |an|Rn

Hence, absolute convergence by the comparison test with the given series.

Definition
The greatest value of R for which we get convergence is called the radius of

convergence and
∑

n=0 anx
n converges absolutely if |x| < R. x = ±R must be

tested separately.

113
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Theorem 2 - Ratio Test for power series

Let
∑∞

n=0 anx
n be a power series and assume that limn→∞

∣∣∣an+1

an

∣∣∣ = L exists.

Let R = 1
L . (If L = 0 let R =∞, if L =∞ let R = 0.)

Then

(i) If |x| < R the series converges absolutely.

(ii) If |x| > R the power series diverges.

(iii) If x = ±R, could converge or diverge.

Proof. Ratio test for series of numbers∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣ |x| −−−→n→∞
L|x| by hypothesis.

For convergence, L|x| < 1, ⇒ |x| < 1
L = R. Of course R is the radius of convergence

defined earlier.

Theorem 3 - Root test for power series
Let

∑∞
n=0 anx

n be a power series, and assume that limn→∞ |an|1/n = L exists.
Then the radius of convergence of the power series is R = 1/L

Proof. For
∑∞

n=0 anx
n use the root test.

lim
n→∞

|an|1/n|x| = L|x| ⇒ |x| < 1

L
= R for convergence.

Examples:

(i) Determine the radius of convergence of

∞∑
n=0

np

(n+ 1)!
xn where p > 0 is given.

Solution: Ratio test∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)p

(n+ 1)!

n!

np
=

(
1 +

1

n

)p 1

n1
→ 0 as n→∞.

Hence L = limn→∞

∣∣∣an+1

an

∣∣∣ = 0 and the radius of convergenceR =∞, i.e.
∑∞

n=0
np

(n+1)!x
p

converges for all x.
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(ii)
∑∞

n=0
xn

n Ratio test - (will do it directly now, without the L intermediate step.)

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)

n

xn

∣∣∣∣ = lim
n→∞

n

n+ 1
|x| = |x|.

Hence convergence if |x| < 1. Radius of convergence is R = 1.

x = 1
∑ 1

n
diverges

x = −1
∑ (−1)n

n
diverges by alternating series test.

Note: Instead of
∑∞

n=0 anx
n, could define power series centered at points other

than 0, i.e.
∞∑
n=0

an(x− x0)n.

Everything is the same, simply substitute x− x0 = y.

(iii) For what x does the power series

∞∑
n=0

4n√
2n+ 5

(x+ 5)n

converge? Use ratio test,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

{
4

√
2n+ 5

2(n+ 1) + 5
|x+ 5|

}
= 4|x+ 5|.

Convergence if |x+ 5| < 1
4 . i.e.

−1

4
< x+ 5 <

1

4

−21

4
< x < −19

4

15.2 Differentiation and integration of power series

For polynomials of degree n, i.e. a0 + a1x+ · · ·+ anx
n := fn(x), we can differentiate or

integrate so that

dfn
dx

=

n∑
k=1

KaKx
K−1 and

∫
fndx =

n∑
K=0

aKx
K+1

K + 1
.

Question is, can we do this for power series? The answer is YES if |x| < R, i.e. we are
within the radius of convergence. We have the following very important theorems.
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Theorem 4 Let f(x) =
∑∞

n=0 anx
n be a power series which converges absolutely

for |x| < R. Then f(x) is differentiable for |x| < R, and

f ′(x) =
∞∑
n=1

nanx
n−1.

Theorem 5 Let f(x) =
∑∞

n=0 anx
n be a power series that converges absolutely

for |x| < R. Then in the interval |x| < R, we have∫
fdx =

∑
n=0

anx
n+1

n+ 1
.

Conclusion: For a power series within its radius of convergence, we can differentiate or
integrate term by term.

Note f(x) =
∑∞

n=0 anx
n can be differentiated an infinite number of times as long as

|x| < R, and the derivatives will exist. The function is smooth.
The way to show this is to consider each differentiated series as a new power series.

For example

dk

dxk

(∑
anx

n
)

=
∑

n(n− 1) . . . (n− (k − 1))xn−kan

=
∑ n!

(n− k)
!anx

n−k.

Ratio test

lim
n→∞

(n+ 1)!

(n+ 1− k)!

(n− k)!

n!

∣∣∣∣an+1

an

∣∣∣∣ |x|
= lim
n→∞

(
n+ 1

n+ 1− k

) ∣∣∣∣an+1

an

∣∣∣∣ |x| = L|x|

as for the undifferentiated power series.

dk

dxk

(∑
anx

n
)

converges for |x| < R. k is arbitrary so can be differentiated as many times as we want.
Similarly, integrate as many times as needed.

Example Write down power series for

x

1 + x2
and log

(
1 + x2

)
.
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Solution Recall geometric series 1 + r + r2 + · · · = 1
1−r for |r| < 1. If r = −x2 we have

x(1− x2 + x4 − x6 + . . . ) =
1

1 + x2
· x.

Hence
x

1 + x2
=

∞∑
n=0

(−1)nx2n+1 |x| < 1 for convergence.

Now for the log
(
1 + x2

)
we observe that

d

dx
log
(
1 + x2

)
=

2x

1 + x2
so log

(
1 + x2

)
= 2

∫
x

1 + x2
.

If |x| < 1 we can integrate term by term, i.e.

log
(
1 + x2

)
= 2

∫
(x− x3 + x5 . . . )dx

= x2 − x4

2
+
x6

3
− x8

4
+ . . .

(Constant of integration is zero). Convergence for |x| < 1 and also x = 1 since it is
alternating in the latter case ⇒ log(2) = 1− 1

2 + 1
3 −

14
+ . . . .

Theorem 6 - Algebraic operations Let f(x) =
∑∞

n=0 anx
n be a power series with

radius of convergence R1, and g(x) =
∑∞

n=0 bnx
n is another power series with

radius of convergence R2. Let

R = min(R1, R2).

Then

(1) f(x) + g(x) =
∑∞

n=0(an + bn)xn for |x| < R.

(2) cf(c) =
∑∞

n=0 canx
n for |x| < R1 (c 6= 0).

(3) f(x)g(x) =
∑∞

n=0 (
∑n

m=0 ambn−m)xn for |x| < R
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Chapter 16

Taylor Series

This is a power series that represents a function f(x) by using its derivatives at a single
point. Intuitive construction: Assume the power series exists and identify the coefficients.
Take a fixed point x = x0. If

f(x) =

∞∑
n=0

an(x− x0)n

converges for |x− x0| small enough we can find the coefficients as follows:

Re-write as:

f(x) = a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + . . .

f ′(x) = a1 + 2a2(x− x0) + 3a3(x− x0)2 + . . .

f ′′(x) = 2a2 + 3 · 2a3(x− x0) + . . .

f ′′′(x) = 3 · 2 · 1a3 + . . .

f (k)(x) :=
dkf

dxk
= k!ak +O(x− x0).︸ ︷︷ ︸

(*)

(*) - This means “terms of order (x− x0)” or smaller for (x− x0) small.

So we can see immediately that by putting x = x0 in the formula of f (k)(x) we find

ak =
1

k!
f (k)(x0)⇒

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n (Note 0! = 1).

This is the Taylor series about the point x = x0. If x0 = 0 we get the Maclaurin
series

f(x) =
∞∑
n=0

f (n)(0)

n!
xn.

119
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In both formulas we have assumed that f(x) is infinitely differentiable on some
interval containing the point x = x0. This of course can happen for many functions, e.g.
f(x) = sin(x), f(x) = ex, f(x) = cos(x) ...
Example 1 Maclaurin series for f(x) = sin(x)⇒ f(0) = 0

f ′(x) = cos(x)

f (2)(x) = − sin(x)

f (3)(x) = − cos(x)

f (4)(x) = sin(x)

repeatsy

f ′(0) = 1

f (2)(0) = 0

f (3)(0) = −1

f (4)(0) = 0

f(x) = sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ . . .

=

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

Example 2

f(x) = ex ⇒ f (k)(x) = ex i.e. f (k)(0) = 1

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . .

16.1 Taylor’s theorem with remainder

We have left an important detail out! In sending the sum to ∞, we assume that there
is convergence, and the convergence is to the function f(x). We have the following:

Theorem 1 (Taylor’s) Let f be a function defined on a closed interval between
two numbers x0 and x. Assume that the function has n + 1 derivatives on the
interval and that they are all continuous. Then

f(x) = f(x0)+f ′(x0)(x− x0) +
f (2)(x0)

2!
(x− x0) + . . .

+
f (n)(x0)

n!
(x− x0)n +Rn

where the remainder Rn is given by

Rn =

∫ x

x0

(x− t)n

n!
f (n+1)(t) dt.

Proof. Use integration by parts. From the fundamental theorem of calculus we have

f(x) = f(x0) +

∫ x

x0

f ′(t)dt.
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Now ∫ x

x0

f ′(t)dt =

∫ x

x0

f ′(t) d(−(x− t))

and use integration by parts.∫ x

x0

f ′(t)dt =
[
+(t− x)f ′(t)

]x
x0
−
∫ x

x0

(t− x)f ′′(t)dt

= (x− x0)f ′(x0) +

∫ x

x0

(x− t)f (2)(t)dt.

One more ∫ x

x0

(x− t)f (2)(t)dt = − (

x
− t)2f (2)(t)|xx0 +

∫ x

x0

(x− t)2

2
f (3)(t)dt

=
(x− x0)2

2
f (2)(x0) +

∫ x

x0

(x− t)2

2
f (3)(t)dt.

Repeat n times to get the result.

Alternative form of the remainder

Rn =

∫ x

x0

(x− t)n

n!
f (n+1)(t)dt.

Use the Integral MVT - Problem 10, sheet 3.

Since x− t ≥ 0, g(t) :=
(x− t)n

n!
≥ 0

⇒ Rn = f (n+1)(c)

∫ x

x0

(x− t)n

n!
dt

⇒ Rn =
f (n+1)(c)

(n+ 1)!
(x− x0)n+1

Where c is a number between x0 and x.

Since x− t ≥ 0, g(t) :=
(x− t)n

n!
≥ 0.

⇒ Rn = f (n+1)(c)

∫ x

x0

(x− t)n

n!
dt.

Convergence to f(x) if Rn → 0 as n→∞.

16.1.1 Summary and link with power series

(1) If f(x) =
∑∞

n=0 an(x − x0)n is a convergent power series on an open interval
centered at x0, then f(x) is infinitely differentiable and

an =
f (n)(x0)

n!
.

i.e. We get Taylor’s formula.
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(2) If f is infinitely differentiable on an open interval centered at x0, and if Rn → 0
as n→∞ for all x in the interval, then the Taylor series of f converges an equals
the function, i.e.

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n.

Here is a very useful alternative of Taylor’s theorem that we use in Numerical Anal-
ysis. Put x = x0 + h (and after that x0 → x if you want)

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2!
f (2)(x0) + · · ·+ hn

n!
f (n)(x0) +Rn(x0, h)

Rn =

∫ x0+h

x0

(x0 + h− t)n

n!
f (n+1)(t)dt

=
h(n+1)

(n+ 1)!
f (n+1)(c)

where c is between x0 and x0 + h.

16.2 Examples, bounding the remainder, estimates

Will do this with x0 = 0 (Maclaurin), other cases follow. Use form

Rn =
f (n+1)(c)

(n+ 1)!
xn+1

c is a number between 0 and x. If |f (n+1)(x′)| ≤Mn+1 for all x′ between 0 and x. Then

|Rn| ≤Mn+1
|x|n+1

(n+ 1)!

Example 3

f(x) = sin(x) = x− x3

3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
+R2n+3

where |R2n+3| =

∣∣∣∣∣f (2n+3)(x)

(2n+ 3)!
x2n+3

∣∣∣∣∣ ≤ |x|2n+3

(2n+ 3)!
.

Hence sin(0.1) ≈ 0.1− 10−3

6 with an error which is less than

(0.1)7

7!
=

10−7

5040
< 10−10.

Example 4 Compute sin
(
π
6 + 0.2

)
to an accuracy of 10−4.

Solution Even though sin(x) = x− x3

3! + x5

5! + . . . will converge if we take enough terms,
since π

6 + 0.2 is not small, we will need a lot of terms to get to the required accuracy.
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It is much better to expand about π
6 using the formula

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + · · ·+ hn

n!
f (n)(x) +Rn

where Rn =
f (n+1)

(n+ 1)!
hn+1.

Now h = 0.2, f (n+1) = sin or cos.

⇒ |Rn| ≤
(0.2)n+1

(n+ 1)!
⇒ R3 ≤

0.24

24
=

16× 10−4

24
< 10−4

⇒ sin
(π

6
+ 0.2

)
≈ sin

(π
6

)
+ 0.2 cos

(π
6

)(0.2)2

2!

(
− sin

(π
6

))
+

(0.2)3

3!

(
− cos

(π
6

))
.

16.3 Exponentials and logarithms. Binomial theorem

16.3.1 The exponential ex

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+

ec

(n+ 1)!
xn+1︸ ︷︷ ︸

remainder

If x < 0 then c < 0 and |Rn| ≤ |x|
n+1

(n+1)! .

If x > 0 and such that x ≤ b, say. Then

|Rn| ≤ eb
bn+1

(n+ 1)!
→ 0 as n→∞

Example 5 Compute e to 3 decimals. Showed earlier (see chapter on logarithms) that
2 < e < 4. From results above, |Rn| ≤ e

(n+1)! ≤
4

(n+1)! .

Need 4
(n+1)! to be less than 10−3.

Try n = 4, 5, 6 → 4

5!
=

1

5× 3× 2
=

1

30
> 10−3

4

6!
=

1

6× 5× 3× 2
=

1

180
> 10−3

|R6| ≤
4

7!
=

1

7× 6× 5× 3× 2
=

1

1260
< 10−3.

So

e ≈ 1 + 1 +
1

2
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+ R6︸︷︷︸
<10−3

.
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16.3.2 The Logarithm

Expansion of log(1 + x) = x − x2

2 + x3

3 − · · · + (−1)n−1 xn

n + Rn+1. Need to show this.
One way is Taylor’s theorem - exercise. Another way is to use the identity (telescoping
product)

(1− t+ t2 − · · ·+ (−1)n−1tn−1)(1 + t) = 1 + (−1)n−1tn

⇒ 1

1 + t
= (1− t+ t2 − · · ·+ (−1)n−1tn−1) + (−1)n

tn

(1 + t)
. (*)

In the interval −1 < x ≤ 1 (why?). Integrate (*) between 0 and x.

log(1 + x) = x− x2

2
+
x3

3
− · · ·+ (−1)n−1x

n

n
+Rn

where Rn = (−1)n
∫ x

0

tn

1 + t
dt

Need to estimate this:

(i) Consider 0 ≤ x ≤ a ≤ 1. Here 1 + t ≥ 1⇒ tn

1+t ≤ t
n.

|Rn| ≤
xn+1

n+ 1
≤ an+1

n+ 1
→ 0 as n→∞.

(ii) Now take −1 < a < 0 and consider x in the interval a ≤ x ≤ 0. Hence
1 + t ≥ 1 + a > 0 since t is in the interval (x, 0).

∣∣∣∣ tn

1 + t

∣∣∣∣ ≤ (−t)n

1 + a
(t ≤ 0 remember)

So |Rn| ≤
∫ 0

x

(−t)n

1 + a
dt =

(−x)n+1

(n+ 1)(1a)
≤ |a|n+1

(n+ 1)(1 + a)
→ 0 as n→∞

Exercise: Calculate log | · | to 3 decimals.

16.3.3 Binomial Expansion

If |x| < 1 we have (for any real α)

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 + . . .

=
∞∑
n=0

α(α− 1) . . . (α− n+ 1)

n!
xn.

Can prove |Rn| → 0 as n→∞ for |x| < 1, hence convergence.
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16.3.4 Alternatives to L’Hôpital

Sometimes easier to use Taylor’s theorem instead of differentiating many times.

Example 6

lim
x→∞

sin(x)− x
tan(x)− x

= lim
x→0

sin(x) cos(x)− x cos(x)

sin(x)− x cos(x)

= lim
x→0

(
x− x3

6 + . . .
)(

1− x2

2 + . . .
)
− x

(
1− x2

2 + . . .
)

x− x3

6 + · · · − x
(

1− x2

2 + . . .
)

= lim
x→0

−x3

6 + . . .
1
3x

3 + . . .
= −1

2
.

Example 7

lim
x→1

log(x)

ex − e
put x = 1 + y

= lim
y→0

log(1 + y)

e(ey − 1)
= lim

y→0

y − y2

2 + y3

3 + . . .

e(1 + y + · · · − 1

=
1

e
.

16.3.5 L’Hôpital’s Rule derived from Taylor’s Theorem

Consider F (x) = f(x)
g(x) and consider limx→a F (x) in cases where f(a) = g(a) = 0. Assume

that the first (k − 1) derivatives of f and g also vanish at x = a. i.e.

f (i)(a) =g(i)(a) = 0 i = 1, . . . , k − 1

Then f(a+ h) = f(a) + f ′(a)h+ · · ·+ f (k−1)(a)
hk−1

(k − 1)!
+ f (k)(c1)

hk

k!

g(a+ h) = g(a) + g′(a)h+ · · ·+ g(k−1)(a)
hk−1

(k − 1)!
+ g(k)(c1)

hk

k!

where c1, c2 are numbers between a and a+ h.

⇒ F (a+ h) =
f (k)(c1)

g(k)(c1)
, send h→ 0, c1, c2 → a so get result.

An example of a function that does not have a Maclaurin series. Consider

f(x) =

{
e−1/x2 x 6= 0

0 x = 0.
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f(x) and all its derivatives are continuous everywhere. (You have shown this in the

problem sheets). In addition, f (n)(0) = 0 for all n. So the (Taylor) Maclaurin expansion
is

f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .

The approximating polynomial

Pn(x) = f(0) + xf ′(0) + · · ·+ f (n)(0)

n!
xn.

But this is exactly zero for all n. Hence the remainder Rn cannot go to zero. In fact

it must be equal to exp
(
−1/x2

)
! Reason: e−1/z2 z complex is not analytic. In fact,

z = iy gives f = e1/y2 →∞ as y → 0. You will see more in Complex Analysis.
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Fourier Series
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Chapter 17

Orthogonal and orthonormal
function spaces

Will see how to represent fairly arbitrary functions (e.g. they can be discontinuous) with
approximations of smooth functions.

Definition 1
If f , g are real values functions that are Riemann integrable on [a, b], then we

define the inner produce of f and g, denotes by (f, g), by

(f, g) :=

∫ b

a
f(x)g(x)dx

Note (f, f)1/2 =

(∫ b

a
f2dx

)1/2

:= ||f || ≥ 0.

Definition 2
Let S = {φ0, φ1, φ2, . . . } be a collection of functions that are Riemann integrable

on [a, b]. If

(φn, φm) = 0 whenever m 6= n

then S is an orthonormal system on [a, b]. If in addition, ||φn|| = 1, i.e.∫ b
a φ

2
ndx = 1, then S is said to be orthonormal on [a, b].

Note: Can easily go from orthogonal to orthonormal by considering φn
||φn|| . The or-

thonormal trigonometric system will be used

S = {φ0, φ1, φ2, . . . } where

φ0(x) =
1√
2π
, φ2n−1 =

cos(nx)√
π

, φ2n =
sin(nx)√

π
(n = 1, 2, . . . )

129
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i.e. the system is {
1√
2π
,
cos(x)√

π
,
sin(x)√

π
,
cos(2x)√

π
,
sin(2x)√

π
, . . .

}
.

S defined above is orthonormal on any interval of length 2π, e.g. [0, 2π], [−π, π] etc..
(You have already shown this in HW sheet 3).



Chapter 18

Periodic functions and periodic
extensions

A function f(x) is periodic with period T if

f(x+ T ) = f(x)

for all values of x. It follows that a T periodic function is also mT periodic for any
integer m, i.e.

f(x±mT ) = f(x).

e.g. sin(x) is 2π-periodic but also 4π, 6π etc. Geometrically f(x) is T periodic if a shift
by T units reproduces the shape of the function.

Start with any continuous function f(x) in an interval a ≤ x < b. Can extend this
periodically to have period T = b− a.

Figure 18.1: Function on [a, b) extended periodically and the new function is discontin-
uous at x = a+mT for any integer m.
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Example 1 Extend f(x) = x defined on [0, 1) periodically.

This is known as f(x) = [x] + x.

Example 2 Extend periodically f(x) = cos(x) on
[
−π

2 ,
π
2

]
.

From the examples, we see that the function can be discontinuous at some points
x = ξ, i.e.

lim
x→ξ+

f(x) 6= lim
x→ξ−

f(x).

Definition
At points of discontinuity define

f(ξ) =
1

2
[f(ξ+) + f(ξ−)] .

e.g. for f(x) = [x] + x, f(n) = 1
2 for all integers n.

Conclusion: Given a function defined on a closed interval [a, b], extend it periodically
and at points of discontinuity prescribe the value 1

2 (f(a) + f(b)).

e.g. y = x 0 ≤ x ≤ 1
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18.0.1 Integrals over a period

For a periodic function f(x) of period T and for arbitrary values of a, we have∫ T−a

−a
f(x)dx =

∫ T

0
f(x)dx.

In fact, ∫ β

α
f(x)dx =

∫ β+T

α+T
f(x)dx.

Proof. ∫ β

α
f(x)dx︸ ︷︷ ︸

sub x = y − T

=

∫ β+T

α+T
f(y − T )dy =

∫ β+T

α+T
f(y)dy =

∫ β+T

α+T
f(x)dx
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Chapter 19

Trigonometric polynomials

Start with an oscillation sin(ωx). Here ω is the frequency. The period is T = 2π
ω . This is

a “pure” harmonic oscillation. Signals - e.g. sound, electromagnetic waves, water waves,
are not pure oscillations, they contain higher harmonics.

Lets add another oscillation of frequency 2ω, i.e. sin(2ωx), whose period is T2 =
2π
2ω = π

ω . This is called the 1st harmonic.

Signal could be
S2(x) = A1 sin(ωx) +A2 sin(2ωx).

S2(x) has period T = 2π
ω overall. 1st harmonic has period T

2 . Can add more and more
higher frequencies and in fact can produce a wave (oscillation) that is a trigonometric
polynomial defined by

Sn(x) =
1

2
a0 +

n∑
k=1

[ak cos(kωx) + bk sin(kωx)] .

The constant 1
2a0 is included (1

2 is useful as we will see later.)

Note: Went from ω1 = ω to ω2 = 2ω etc. i.e. all the frequencies have ratios that are
rational. If ω1

ω2
is irrational, we get quasi-periodic oscillations.

19.1 Euler’s relation

Useful to use Euler’s relation

cos(θ) + i sin(θ) = eiθ

and since

cos(θ)− i sin(θ) = e−iθ (take complex conjugate)

cos(θ) =
1

2

(
eiθ + e−iθ

)
sin(θ) =

1

2i

(
eiθ − e−iθ

)
.
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So, can represent everything as complex and find real expressions by taking real or
imaginary parts. e.g.

d

dx
aeiω(x−φ) = aiωeiω(x−φ).

Can also integrate∫
einxdx =

∫
(cos(nx) + i sin(nx)) dx =

[
sin(nx)

n
− i cos(nx)

n

]
=

1

in
einx.

19.1.1 Orthogonality ∫
−π
πeinxdx =

{
0 n 6= 0

2π n = 0
.

For any integers m, n we have∫ π

−π
einxe−imx =

{
0 n 6= m

2π n = m
(easier than HW3.)

19.2 Complex notation for trigonometric polynomials

Start with the polynomial (have set ω = 1).

Sn(x) =
1

2
a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx)) .

Use the relations found earlier

Sn(x) =
1

2
a0 +

n∑
k=1

ak

(
eikx + e−ikx

2

)
+ bk

(
eikx − e−ikx

2i

)

=
1

2
a0 +

n∑
k=1

1

2
(ak − ibk) eikx +

n∑
k=1

1

2
(ak + ibk) e

−ikx.

Can now write this as a single complex series as follows

Sn(x) =
n∑

k=−n
γke

ikx (19.1)

where
γ0 = 1

2a0

γk = 1
2 (ak − ibk)

γ−k = 1
2 (ak + ibk)

 k = 1, 2, . . . , n.

Notice that γk = γ∗−k, (or γ∗k = γ−k), where ∗ denotes complex conjugate. This is not
accidental. Sn(x) in equation (19.1) is real. Hence it must equal its complex conjugate.
Calculate
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Sn(x) =
n∑

k=−n
γke

ikx, Sn(x)∗ =
n∑

k=−n
γ∗ke
−ikx.

Change indexing, put k = −l to find

Sn(x)∗ =
−n∑
l=n

γ∗−le
ilx =

n∑
l=−n

γ∗−le
ilx

=
n∑

k=−n
γ∗−ke

ikx.

In the last step above, I just changed the dummy l to k. Comparing the two, we see
that they are equal iff

γk = γ∗−k i.e. γ∗k = γ−k, identical statements.

Conversely, if we are given a complex form

f(x) =
n∑

k=−n
γke

ikx,

then f(x) is real if and only if γk = γ∗−k, i.e.

γk + γ−k = γk + γ∗k = real

and γk − γ−k = γk − γ∗k = pure imaginary.

Example 1 Take Sn(x) = cos(x) + 1
2 sin(x) + 3 cos(2x). Express as a complex trigono-

metric series

Sn =
1

2

(
eix + e−ix

)
− i

4

(
eix − e−ix

)
+

3

2

(
e2ix + e−2ix

)
=

(
1

2
− i

4

)
eix +

(
1

2
+
i

4

)
e−ix +

3

2
e2ix +

3

2
e−2ix

=

2∑
k=−2

γke
ikx

where

γ0 = 0
γ1 =

1

2
− i

4

γ2 =
3

2

γ−1 =
1

2
+
i

4
= γ∗1

γ−2 =
3

2
= γ∗2 .
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Chapter 20

Fourier series

Consider the trigonometric polynomial

f(x) = SN (x) =
1

2
a0 +

N∑
n=1

an cos(nx) + bn sin(nx).

There are 2N + 1 coefficients to determine. Use orthogonality on the interval [−π, π] for
sin(mx), cos(nx) etc.

Find for all n (including n = 0) (See HW3)

an =
1

π

∫ π

−π
f(x) cos(nx)dx

bn =
1

π

∫ π

−π
f(x) sin(nx)dx.

Big question is: starting with fairy arbitrary functions f(x) (e.g. they are discontinuous),
can we represent them by SN by letting N →∞?

Orthogonality properties:
If m,n are integers, then∫ π

−π
sin(mx) sin(nx)dx =

∫
−π
π cos(mx) cos(nx)dx =

{
0 m 6= n

π if m = n 6= 0∫ π

−π
sin(mx) cos(nx) = 0.

Complex form ∫ π

−π
eimxe−inxdx =

{
0 m 6= n

2π m = n.
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Theorem 1
The Fourier series 1

2a0 +
∑∞

n=1 (an cos(nx) + bn sin(nx)) (or
∑∞

n=−∞ αne
inx),

formed by the Fourier coefficients an = 1
π

∫ π
−π f(x) cos(nx)dx and bn =

1
π

∫ π
−π f(x) sin(nx)dx converges to the value f(x) for any piecewise continuous

function f(x) of period 2π which has piecewise continuous derivatives of first and
second order.a At any discontinuities, the value of the function must be defined
by f(x) = 1

2 [f(x+)f(x−)].

aCan relax the assumption of the second derivative. It is enough to have f ′(x) be piecewise
continuous, i.e. the function is piecewise smooth. If f(x) is continuous, the convergence is
absolute and uniform. If it is discontinuous, absolute and uniform convergence everywhere except
at the discontinuity.

For the proof we will need some additional Lemmas.

20.1 Fourier series theorem, Riemann-Lebesgue Lemma

20.1.1 A trigonometric formula

We will prove the following - needed later

cn(x) =
1

2
+ cos(x) + cos(2x) + · · ·+ cos(nx)

=
sin
(
n+ 1

2

)
x

2 sin
(

1
2x
) .

Clearly 1
2x 6= 0, ±π, ±2π, . . . i.e. x = 0, ±2π, ±4π, . . . If we define cn(x) at these

points by n+ 1
2 , then the function is continuous everywhere (show this?).

Use cos(kx) = 1
2

(
eikx + e−ikx

)
to re-write

cn(x) =
1

2

n∑
k=−n

eikx =
1

2

(
e−inx + eixe−inx + (eix)2e−inx + · · ·+ einx

)
i.e. a geometric progression with ratio r = eix = cos(x) + i sin(x). Now r = 1 only if
x = 0,±2π, . . . , i.e. the exceptional points that we excluded (treated separately). Sum
it up to find

cn(x) =
1

2
e−inx

1− µ2n+1

1− µ
=

1

2

[
e−inx − ei(n+1)x

] 1

1− eix
.

Multiply top and bottom by e−
1
2
ix

⇒ cn(x) =
1

2

[
e−i(n+ 1

2
)x − ei(n+ 1

2
)x
]

e−
1
2
ix − e

1
2
ix

⇒ cn(x) =
sin
(
(n+ 1

2)x
)

2 sin
(

1
2x
) .
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Integrate from 0 to π we find∫ π

0

sin
(
(n+ 1

2)t
)

2 sin
(

1
2 t
) dt =

∫ π

0

(
1

2
+

n∑
k=1

cos(kt)

)
dt =

π

2
.

Lemma 1 (Riemann-Lebesgue)
If the function g(x) is integrable on [a, b], (e.g. it is piecewise continuous), then

Iλ =

∫ b

a
g(x) sin(λx)dx

tends to zero as λ→∞.

Proof. (Will do it when g′ is also piecewise continuous. For the general case see HW
problems).

Can use integration by parts

Iλ =

∫ b

a
g(x) sin(λx)dx =

[
−cos(λx)

λ
g(x)

]b
a

+

∫ b

a

cos(λx)

λ
g′(x)dx

=
1

λ

[
g(a) cos(λa)− g(b) cos(λb) +

∫ b

a
cos(λx) + g′(x)dx

]
⇒ |Iλ| ≤

1

λ
M

for some constant M , and the result follows.

Lemma 2 ∫ ∞
0

sin(z)

z
dz =

π

2
.

Proof. Show improper integral exists, i.e.

I = lim
M→∞

∫ M

0

sin(z)

z
dz exists.

(Note z = 0 is not a problem. Why?) Consider 0 < M < N and calculate

IN − IM =

∫ N

M

sin(z)

z
dz = −cos(z)

z

∣∣∣∣N
M

−
∫ N

M

cos(z)

z2
dz

=
cos(M)

M
− cos(N)

N
−
∫ N

M

cos(z)

z2
dz.

⇒ |IN − IM | ≤
1

M
+

1

N
+

∫ N

M

dz

z2
=

2

M

hence convergence since |IN − IM | can be made arbitrarily small (Cauchy).
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In fact, letting N → ∞, we see that |I − IM | ≤ 2
M so IM approaches its limit

algebraically. Now take p > 0 arbitrary and pick M = λp.

IM = Iλp =

∫ λp

0

sin(z)

z
dz

z=λx︷︸︸︷
=

∫ p

0

sin(λx)

λx
(λdx)

=

∫ p

0

sin(λx)

x
dx

where we have now fixed the integration range to [0, p]. As M → ∞, λp → ∞ i.e.
λ→∞, and by the estimate above∣∣∣∣I − ∫ p

0

sin(λx)

x
dx

∣∣∣∣ ≤ 2

M
=

2

λp

i.e. lim
λ→∞

∫ p

0

sin(λx)

x
dx = I (20.1)

for all p sufficiently big. Cannot apply Riemann-Lebesgue directly. Consider the function

h(x) =

{
1
x −

1
2 sin(x/2) x 6= 0

0 x = 0.

Fact: h(x) is continuous and also has a continuous first derivative for 0 ≤ x < 2π. (Proof
see HW5). Now we use the Riemann-Lebesgue Lemma 1 to see that for 0 ≤ p < 2π∫ p

0
sin(λx)

(
1

x
− 1

2 sin(x/2)

)
dx → 0 as λ→ 0.

Note: The convergence is uniform for 0 ≤ p ≤ π since |h(x)| and |h′(x)| are both
bounded in this interval. From (20.1) we have immediately,

lim
λ→∞

∫ p

0

sin(λx)

2 sin(x/2)
dx = I.

Pick λ = n+ 1
2 and p = π, we have shown already that

∫ π

0

sin
(
(n+ 1

2)x
)

2 sin(x/2)
dx =

π

2

independent of n. Hence we have proved:

I =

∫ ∞
0

sin(z)

z
dz =

π

2
.
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20.1.2 Proof of Theorem 1

Start with nth “Fourier polynomial”

Sn(x) =
1

2
a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx))

and substitute the formulas for ak, bk, change order of summation and integration (finite
sum, so ok), to find

Sn(x) =
1

π

∫ π

−π
f(t)

[
1

2
+

n∑
k=1

(cos(kt) cos(kx) + sin(kt) sin(kx))

]
dt

=
1

π

∫ π

−π
f(t)

[
1

2
+

n∑
k=1

cos(k(t− x))

]
dt

=
1

π

∫ π

−π
f(t)

sin
[
(n+ 1

2)(t− x)
]

2 sin
(

1
2(t− x)

) dt

substitute ξ = t− x⇒ =
1

π

∫ π−x

−π−x

f(x+ ξ) sin
(
(n+ 1

2)ξ
)

2 sin
(

1
2ξ
) dξ

=
1

π

∫ π

−π
f(x+ ξ)

sin
(
(n+ 1

2)ξ
)

2 sin
(

1
2ξ
) dξ (20.2)

by using properties of integrals of periodic functions discussed earlier. Note that x is a
fixed number. We will prove that (and this proves the Theorem):

lim
n→∞

1

π

∫ π

−π

∫ π

−π
f(x+ ξ)

sin
(
(n+ 1

2)ξ
)

2 sin
(

1
2ξ
) dξ = f(x).

At all points x ∈ [−π, π], even points of discontinuity, we have

f(x) =
1

2

[
f(x+) + f(x−)

]
.

We have proven already that ∫ π

0

sin
(
(n+ 1

2)t
)

2 sin
(

1
2 t
) dt =

π

2

and by change of variables t = t′ we also find∫ 0

−π

sin
(
(n+ 1

2)t′
)

2 sin
(

1
2 t
′
) dt′ =

π

2
.

Hence

f(x) =
1

π

∫ π

0
f(x+)

sin
(
(n+ 1

2)t
)

2 sin
(

1
2 t
) dt+

1

π

∫ 0

−π
f(x−)

sin
(
(n+ 1

2)t
)

2 sin
(

1
2 t
) dt.
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Using this identity gives

Sn(x)− f(x) =
1

π

∫ π

0

[
f(x+ ξ)− f(x+)

] sin
(
(n+ 1

2)ξ
)

2 sin
(

1
2ξ
) dξ

+
1

π

∫ 0

−π

[
f(x+ ξ)− f(x−)

] sin
(
(n+ 1

2)ξ
)

2 sin
(

1
2ξ
) dξ

What is left to do is to prove the following: (see HW)

(i) Prove
f(x+ ξ)− f(x+)

sin
(

1
2ξ
)

is piecewise continuous and so is the 1st derivative, on 0 ≤ ξ ≤ π.

(ii) Prove
f(x+ ξ)− f(x−)

sin
(

1
2ξ
)

is piecewise constant along with its 1st derivative on −π ≤ ξ ≤ 0.

Then by Riemann-Lemma, Sn → f(x) as n→∞, i.e. convergence (uniform away from
discontinuities).

20.2 Examples, sine and cosine series

Will consider f(x) to be 2π-periodic.

(i) If f(x) is even, i.e. f(−x) = f(x), then

1

π

∫ π

−π
f(x) sin(nx)dx = bn = 0.

So f(x) has only a cosine series. If f(x) is odd, f(−x) = −f(x) then an = 0 and
f(x) has a sine series.

(ii) If a function is defined on [0, π] by an expression f(x), then it can be extended as
an even or odd function on [−π, π]. e.g.

f(x) = π − x 0 ≤ x ≤ π
(A) Extend to an even function

f(x) =

{
π − x 0 ≤ x ≤ π
π + x −π ≤ x ≤ 0.
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(B) Extend to an odd function, f(−x) = −f(x)

f(x) =


π − x 0 < x < π

−π − x −π < x < 0

0 x = 0, π,−π.

Consider the second function on [−π, π]. It is

f(x) =


π − x x > 0

0 x = 0

−π − x x > 0.

(20.3)

Here it is periodically extended:

Aside: General result for odd functions f(x):

an = 0 bn =
1

π

∫ π

−π
f(x) sin(nx)dx =

2

π

∫ π

0
f(x) sin(nx)dx (show this!)

Similarly for f(x) even:

bn = 0 an =
2

π

∫ π

0
f(x) cos(nx)dx.
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Hence for (20.3),

bn =
2

π

∫ π

0
(π − x) sin(nx)dx

=
2

π

{[
(π − x)

(
−cos(nx)

n

)]π
0

−
∫ π

0

cos(nx)

n
dx

}
=

2

π

{[
−(π − x)

cos(nx)

n
− sin(nx)

n2

]π
0

}
=

2

π

[π
n

]
=

2

n
convergence is uniform as long as ε < |x| ≤ π

⇒ f(x) = 2

(
sin(x) +

sin(2x)

2
+

sin(3x)

3
+ . . .

)
.

This now gives us for free the Fourier series of the function

φ(x) = x − π < x < π.

This is also odd of course, but we get φ(x) from f(x) by (i) shifting the latter to the
right by π (ii) reflecting about x = 0.

⇒ φ(x) = f(−(x− π)) = f(π − x)

= 2

[
sin(π − x) +

sin(2(π − x))

2
+

sin(3(π − x))

3
+ . . .

]
= 2

[
+ sin(x)− sin(2x)

2
+

sin(3x)

3
− . . .

]
= 2

∞∑
k=1

(−1)k+1 sin(kx)

k
.

Convergence is uniform as long as |x| < π− ε for any small ε > 0. In particular, putting
x = π

2 we recover the Leibnitz series

π

2
= 2

(
1− 1

3
+

1

5
− 1

7
+ . . .

)
Note: Cannot differentiate d

dx2
∑∞

k=1(−1)k+1 sin(kx)
k and get a convergent series. Rea-

son: derivative of φ(x) does not satisfy conditions of Fourier Theorem.
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Example 2:

f(x) = |x| − π ≤ x ≤ π

Function is now continuous but has discontinuous derivatives at a set of finite points
±nπ.

Even function ⇒ f(x) =
1

2
a0 +

∑
n=1

an cos(nx)

and

an =
2

π

∫ π

0
x cos(nx)dx

=
2

π

{
x

sin(nx)

n

∣∣∣∣π
0

+
cos(nx)

n2

∣∣∣∣π
0

}
=

2

π
(cos(nπ)− 1)

1

n2

⇒ an =

{
0 n even n 6= 0

− 4
πn2 n odd

a0 =
2

π

∫ π

0
x dx = π

⇒ |x| = 1

2
π − 4

π

(
cos(x) +

cos(3x)

32
+

cos(5x)

52
+ . . .

)
.

Convergence is uniform at all x. Put x = 0 we find a formula for π2, i.e.

π2

8
=
∞∑
n=0

1

(2n+ 1)2
= 1 +

1

32
+

1

52
+ . . .

Example 3

f(x) = sgn(x) =


−1 for − π < x < 0

0 x = 0

+1 0 < x < π
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Clearly f(x) is odd ⇒ f(x) =
∑
bn sin(nx)

bn =
2

π

∫ π

0
sin(nx)dx =

2

π

[
−cos(nx)

n

]π
0

=
2

π

(1− cos(nπ))

n
=

{
0 n even
4
nπ n odd

⇒ sgn(x) =
4

π

(
sin(x) +

sin(3x)

3
+ . . .

)
.

Check: function f(x) = 0 at x = nπ, uniform convergence elsewhere. Putting x = π
2

again gives
π

2
= 2

(
1− 1

3
+

1

5
− 1

7
+ . . .

)
. Leibnitz

Note: d
dx |x| = sgn(x) two series agree everywhere except at discontinuities. Ques-

tion: why can I differentiate |x| series but not φ(x)? Former is sectionally or piecewise
continuous.

20.3 Complex form of Fourier series

Have already shown that for f(x) real

f(x) =
1

2
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx))

=
∞∑

n=−∞
γne

inx, −π < x < π

where
γn = 1

2 (an − ibn)

γ−n = 1
2 (an + ibn)

}
for n = 1, 2, . . .

γn =
1

2
(an − ibn) =

1

2
· 1

π

∫ π

−π
(f(x) cos(nx)− if(x) sin(nx)) dx

=
1

2π

∫ π

−π
f(x)e−inxdx.
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Similarly

γ−n =
1

2π

∫ π

−π
f(x)e+inxdx.

(Clearly γ∗n = γ−n since f(x) is real).

Hence,

f(x) =

∞∑
n=−∞

γ)neinx − π < x < π

where

γn =
1

2π

∫ π

−π
f(x)e−inxdx n = 0,±1,±2, . . .

Note: If the period is 2L instead of 2π

f(x) =

∞∑
−∞

γne
inπx/L|x| < L, γn =

1

2L

∫ L

−L
f(x)e−inπx/Ldx n = 0,±1,±2, . . .

20.4 Fourier series on 2L−periodic domains

The set of functions

1√
2L
,

1√
L

cos
(nπx
L

)
,

1√
L

n = 1, 2, . . .

are orthonormal on [−L,L] (and in fact on any interval [a, a+ 2L] since the function is
periodic). In addition,∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
d =

∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx

=

{
L m = n

0 m 6= n

and

∫ L

−L
sin
(nπx
L

)
cos
(mπx

L

)
dx = 0

⇒ f(x) =
1

2
a0 +

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
where an =

1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx.

The complex form is

f(x) =
∞∑

n=−∞
γne

inπx/L |x| ≤ L (20.4)

γn =
1

2L

∫ L

−L
f(x)e−inπx/Ldx n = 0, ±1, ±2, . . . (20.5)
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20.5 Parseval’s theorem

If f(x) is represented by its Fourier series

f(x) =
1

2
a0 +

∞∑
n=1

+
∞∑
n=1

an cos(nx) + bn sin(nx), −π ≤ x ≤ π

then we have
1

π

∫ π

−π
f2dx =

1

2
a2

0 +
∞∑
n=1

(a2
n + b2n).

Proof. Easier to use complex notation

f(x) =

∞∑
n=−∞

γne
−inx where

γn =
1

2
(an − ibn)

γ−n =
1

2
(an + ibn) = γ∗n

γ0 =
1

2
a0

(f(x))2 =

( ∞∑
n=−∞

γne
−inx

)( ∞∑
m=−∞

γme
−imx

)
.

Integrate and use orthogonality - see earlier∫ π

−π
[f(x)]2 dx = 2π

∞∑
−∞

γnγ−n = 2π

∞∑
−∞
|γn|2

⇒ 1

π

∫ π

−π
f2dx =

1

2
a2

0 +
∞∑
n=1

(a2
n + b2n)

as needed.
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Example 4 Compute the Fourier series of cos(x/2) over (−π, π]. Use Parseval’s theorem
to deduce the value of

∞∑
n=1

1

(4n2 − 1)2
.

Function is even ⇒

cos
(x

2

)
=

1

2
a0 +

∞∑
n=1

an cos(nx) − π ≤ x ≤ π

a0 =
2

π

∫ π

−π
cos
(x

2

)
dx =

4

π

an =
2

π

∫ π

0
cos
(x

2

)
cos(nx)dx

=
2

π

∫ π

0

1

2

[
cos

(
(n+

1

2
)x

)
+ cos

(
(n− 1

2
)x

)]
dx

=
1

π

[
sin
(
(n+ 1

2)π
)

n+ 1
2

+
sin
(
(n− 1

2)π
)

n− 1
2

]

=
1

π

[
cos(nπ)

n+ 1
2

− cos(nπ)

n− 1
2

]
=

(−1)n

π

[
2

2n+ 1
− 2

2n− 1

]
=

(−1)n

π

−4

4n2 − 1
.

By Parsevel’s theorem

1

π

∫ π

−π
cos2(

x

2
)dx =

1

2
a2

0 +
∞∑
n=1

a2
n

=
8

π2
+

16

π2

∞∑
1

1

(4n2 − 1)2

LHS = 1 ⇒
∞∑
n=1

1

(4n2 − 1)2
=
π2 − 8

16
.
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20.6 Fourier transforms as limits of Fourier series

We discussed 2π periodic functions in detail. Consider now f(x) periodic on [−L,L]
with L arbitrary. We have shown that

f(x) =

∞∑
n=−∞

γne
inπx/L − L ≤ x ≤ L

where γn =
1

2L

∫ L

−L
f(t)e−inπt/Ldt n = 0,±1,±2, . . .

Put γn into the sum to find

f(x) =
∞∑

n=−∞

{
1

2L

∫ L

−L
f(t)e−inπt/Ldt

}
einπx/L.

This is exact, we want to send L→∞.

f(x) =
1

2π

∞∑
n=−∞

h

(∫ L

−L
f(t)e−inhtdt

)
einhx

where h = π
L . In the limit L→∞, h→ 0 but nh := ωn = O(1).

f(x) =
1

2π

∞∑
n=−∞

h

(∫ L

−L
f(t)e−iωntdt

)
eiωnx.

This is of the form
∑∞

n=−∞G(ωn)h. Now h = ωn+1 − ωn = (n+ 1)h− nh := δω

⇒ Riemann sum

∞∑
n=−∞

G(ωn)δω →
∞∑
−∞

G(ω)dω.

This gives, sending L→∞,

f(x) =
1

2π

∫ ∞
−∞

{∫ ∞
−∞

f(t)eiωtdt

}
eiωxdω

where f(x) is defined on R.

This gives the Fourier Transform pair

f(x) =
1

2π

∫ ∞
−∞

f̂(k)eikxdk

f̂(K) =

∫ ∞
−∞

f(x)e−ikxdx

Very useful in many applications. You will use them a lot to solve differential equa-
tions.
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APPENDIX: List of Asynchronous Recordings mapped to chapters and sections

1. Recording 1 - Chapter 1

2. Recording 2 - Chapter 2.1

3. Recording 3 - Chapter 2.2

4. Recording 4 - Chapter 2.3

5. Recording 5 - Chapter 3

6. Recording 6 - Chapter 4

7. Recording 7 - Chapter 5.1, 5.2

8. Recording 8 - Chapter 5.3, 5.4

9. Recording 9 - Chapter 5.5

10. Recording 10 - Chapter 6

11. Recording 11 - Chapter 7

12. Recording 12 - Chapter 8

13. Recording 13 - Chapter 9

14. Recording 14 - Chapter 10

15. Recording 15 - Chapter 12

16. Recording 16 - Chapter 13.1

17. Recording 17 - Chapter 13.2

18. Recording 18 - Chapter 13.3

19. Recording 19 - Chapter 13.4

20. Recording 20 - Chapter 13.4

21. Recording 21 - Chapter 13.5

22. Recording 22 - Chapter 14.1

23. Recording 23 - Chapter 14.2

24. Recording 24 - Chapter 14.3

25. Recording 25 - Chapter 14.3

26. Recording 26 - Chapter 15.1

27. Recording 27 - Chapter 15.2

28. Recording 28 - Chapter 16.1

29. Recording 29 - Chapter 16.2
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30. Recording 30 - Chapter 16.3

31. Recording 31 - Chapter 17

32. Recording 32 - Chapter 18

33. Recording 33 - Chapter 19.1, 19.2

34. Recording 34 - Chapter 20.1

35. Recording 35 - Chapter 20.2

36. Recording 36 - Chapter 20.2

37. Recording 37 - Chapter 20.3, 20.4

38. Recording 38 - Chapter 20.5

39. Recording 39 - Chapter 20.1

40. Recording 40 - Chapter 20.6

41. Recording 41 - Chapter 20.7


