
Mathematics Year 1, Calculus and Applications I

D.T. Papageorgiou
Problem Sheet 3

1. Sketch the functions y = x exp(−x), y = x2 exp(−x2), y = exp(x)
x .

2. Consider the function f(x) = exp(1/x), x 6= 0.

(a) What are the limits

lim
x→0+

f(x), lim
x→0−

f(x), lim
x→+∞

f(x), lim
x→−∞

f(x).

(b) Now define f(0) = 0. Is the function differentiable?

(c) Calculate limx→0−
dnf
dxn for any positive integer n.

(d) Sketch y = f(x).

3. Sketch the function y = x exp(1/x).

4. Show that the equation ex = ax has at least one solution for any number a, except
when 0 ≤ a < e.

5. Consider the function

f(x) =

{
exp(−1/x2) x 6= 0
0 x = 0

(a) Show that f(x) has a derivative at x = 0 and that f ′(0) = 0.

(b) Does f ′ have a derivative everywhere? If yes, what is it?

(c) Do any further derivatives of f(x) exist?

(d) Sketch the function.

6. Find the derivative of the function f(x) = xx, x > 0. Does the derivative at x = 0+
exist? Explain. Sketch the curve of f(x).

7. Calculate d
dx

(
xx

x)
.

8. Is the logarithm to base 2 of an irrational number ever rational? If yes, give an
example.

9. (a) Find lima→0
1
a log

(
ea−1
a

)
.

(b) Find lima→∞
1
a log

(
ea−1
a

)
.

10. Find the following limits

lim
x→1

x1/(1−x
2) lim

x→0
(tanx)x

lim
x→∞

[log x− log(x− 1)] lim
x→1

log x

ex − 1

lim
x→0

cosx− 1 + x2/2

x4

1



11. Suppose that f is continuous at x = x0, that f ′(x) exists for x in an interval about
x0, x 6= x0, and that limx→x0 f

′(x) = m. Prove that f ′(x0) exists and equals m.
[Hint. Use the mean value theorem.]

12. [This problem is an application from fluid dynamics concerning flow in a channel
with parallel walls driven by a pressure gradient parallel to the walls and the sliding
motion of one boundary.]

Take x to be along the direction of the flow and y to be perpendicular to the channel
boundaries that are located at y = 0 and y = h. A constant transpiration velocity V
is imposed in the y−direction (the walls support suction/injection as can be found in
control problems on airplane wings, for example), and the two-dimensional velocity
field is u = (u(y), V ). A constant pressure gradient −P < 0 acts to drive the flow,
and the Navier-Stokes equations of fluid motion reduce to the simple problem

V du
dy = P

ρ + ν d
2u
dy2

, (1)

u = 0 at y = 0, u = U at y = h. (2)

Here ρ is the fluid density, ν its kinematic viscosity and U the constant sliding speed
of the upper plane, and they are all constants. The boundary conditions (2) prescribe
the velocity u at the two boundaries and are know as no-slip conditions.

(a) Verify that the following expression satisfies (1)-(2)

u(y) =
P

ρV
y + U

(
1− Ph

ρUV

)(
1− eV y/ν

)
/(1− eR), (3)

where R = V h/ν is a constant called the Reynolds number.

(b) Now derive the solution (3). Write q(y) = du/dy to cast (1) into a simpler
equation. Integrate to find q(y) and then integrate again to find u(y); use the
boundary conditions (2) to fix the two constants of integration.

(c) Starting with the solution (3) show that in the limit V → 0, i.e. when the walls
are impermeable, the velocity field is

u(y) =
U

h
y +

1

2

Ph2

ρν

(
y

h
−
(y
h

)2)
. (4)

(d) The flow rate or mass flux along the channel per unit depth is given by Q =∫ h
0 ρu dy. Find Q for the flow (4).

If in turn U = 0 and P is a constant (e.g. the amount you can blow into a
tube), what happens to Q if the channel height is halved? [This explains why
it is much harder to blow up a balloon through a smaller and smaller tube!]

(e) Now consider the case when V � 1 and such that V � ν/h, V � Ph/ρU .
Show from (3) that the solution is zero everywhere except in a small region near
y = h and find an approximation of the solution in this region. [This solution
is called the asymptotic suction boundary layer.]
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