Mathematics Year 1, Calculus and Applications I

D.T. Papageorgiou Problem Sheet 3

- 1. Sketch the functions $y = x \exp(-x)$, $y = x^2 \exp(-x^2)$, $y = \frac{\exp(x)}{x}$ $\frac{p(x)}{x}$.
- 2. Consider the function $f(x) = \exp(1/x), x \neq 0$.
	- (a) What are the limits

$$
\lim_{x \to 0+} f(x), \qquad \lim_{x \to 0-} f(x), \qquad \lim_{x \to +\infty} f(x), \qquad \lim_{x \to -\infty} f(x).
$$

- (b) Now define $f(0) = 0$. Is the function differentiable?
- (c) Calculate $\lim_{x\to 0^-} \frac{d^n f}{dx^n}$ for any positive integer *n*.
- (d) Sketch $y = f(x)$.
- 3. Sketch the function $y = x \exp(1/x)$.
- 4. Show that the equation $e^x = ax$ has at least one solution for any number a, except when $0 \leq a < e$.
- 5. Consider the function

$$
f(x) = \begin{cases} \exp(-1/x^2) & x \neq 0\\ 0 & x = 0 \end{cases}
$$

- (a) Show that $f(x)$ has a derivative at $x = 0$ and that $f'(0) = 0$.
- (b) Does f' have a derivative everywhere? If yes, what is it?
- (c) Do any further derivatives of $f(x)$ exist?
- (d) Sketch the function.
- 6. Find the derivative of the function $f(x) = x^x, x > 0$. Does the derivative at $x = 0+$ exist? Explain. Sketch the curve of $f(x)$.
- 7. Calculate $\frac{d}{dx} (x^{x^x})$.
- 8. Is the logarithm to base 2 of an irrational number ever rational? If yes, give an example.
- 9. (a) Find $\lim_{a\to 0} \frac{1}{a}$ $rac{1}{a} \log \left(\frac{e^a-1}{a}\right)$ $\frac{-1}{a}$). (b) Find $\lim_{a\to\infty}\frac{1}{a}$ $rac{1}{a} \log \left(\frac{e^a-1}{a}\right)$ $\frac{-1}{a}$).
- 10. Find the following limits

$$
\lim_{x \to 1} x^{1/(1-x^2)} \qquad \lim_{x \to 0} (\tan x)^x
$$

$$
\lim_{x \to \infty} [\log x - \log(x - 1)] \qquad \lim_{x \to 1} \frac{\log x}{e^x - 1}
$$

$$
\lim_{x \to 0} \frac{\cos x - 1 + x^2/2}{x^4}
$$

- 11. Suppose that f is continuous at $x = x_0$, that $f'(x)$ exists for x in an interval about $x_0, x \neq x_0$, and that $\lim_{x\to x_0} f'(x) = m$. Prove that $f'(x_0)$ exists and equals m. [Hint. Use the mean value theorem.]
- 12. [This problem is an application from fluid dynamics concerning flow in a channel with parallel walls driven by a pressure gradient parallel to the walls and the sliding motion of one boundary.]

Take x to be along the direction of the flow and y to be perpendicular to the channel boundaries that are located at $y = 0$ and $y = h$. A constant transpiration velocity V is imposed in the y−direction (the walls support suction/injection as can be found in control problems on airplane wings, for example), and the two-dimensional velocity field is $u = (u(y), V)$. A constant pressure gradient $-P < 0$ acts to drive the flow, and the Navier-Stokes equations of fluid motion reduce to the simple problem

$$
V\frac{du}{dy} = \frac{P}{\rho} + \nu \frac{d^2u}{dy^2},\tag{1}
$$

$$
u = 0 \text{ at } y = 0, \qquad u = U \text{ at } y = h. \tag{2}
$$

Here ρ is the fluid density, ν its kinematic viscosity and U the constant sliding speed of the upper plane, and they are all constants. The boundary conditions (2) prescribe the velocity u at the two boundaries and are know as *no-slip conditions*.

(a) Verify that the following expression satisfies $(1)-(2)$

$$
u(y) = \frac{P}{\rho V} y + U \left(1 - \frac{Ph}{\rho UV} \right) \left(1 - e^{Vy/\nu} \right) / (1 - e^R),
$$
 (3)

where $R = V h / \nu$ is a constant called the *Reynolds number*.

- (b) Now derive the solution (3). Write $q(y) = du/dy$ to cast (1) into a simpler equation. Integrate to find $q(y)$ and then integrate again to find $u(y)$; use the boundary conditions (2) to fix the two constants of integration.
- (c) Starting with the solution (3) show that in the limit $V \to 0$, i.e. when the walls are impermeable, the velocity field is

$$
u(y) = \frac{U}{h}y + \frac{1}{2}\frac{Ph^2}{\rho\nu}\left(\frac{y}{h} - \left(\frac{y}{h}\right)^2\right).
$$
 (4)

- (d) The flow rate or mass flux along the channel per unit depth is given by $Q =$ $\int_0^h \rho u \, dy$. Find Q for the flow (4). If in turn $U = 0$ and P is a constant (e.g. the amount you can blow into a tube), what happens to Q if the channel height is halved? This explains why it is much harder to blow up a balloon through a smaller and smaller tube!]
- (e) Now consider the case when $V \gg 1$ and such that $V \gg \nu/h$, $V \gg Ph/\rho U$. Show from (3) that the solution is zero everywhere except in a small region near $y = h$ and find an approximation of the solution in this region. [This solution is called the asymptotic suction boundary layer.]