
Mathematics Year 1, Calculus and Applications I

D.T. Papageorgiou

Problem Sheet 6
Starred problems 3, 8, 9, 15 and 16 are possible candidates for questions to be discussed

in tutorials

1. Let {rn} denote the rational numbers in the interval (0, 1) arranged in the sequence
whose first few terms are 1

2 ,
1
3 ,

2
3 ,

1
4 ,

2
4 ,

3
4 , . . .. Prove that the series

∑∞
1 rn diverges.

2. Determine the convergence or divergence of the following infinite series:

(a)
∞∑
n=1

(n!)2

(2n)!
(b)

∞∑
n=1

(n!)2

(2n)!
5n (c)

∞∑
n=1

(
n

n+ 1

)n2

(d)
∞∑
n=1

(
n

n+ 1

)n2

4n

(d)

∞∑
n=1

(−1)n−1√
n

(e)

∞∑
n=1

1

n

(√
n+ 1−

√
n
)

(f)

∞∑
n=2

1

(log n)logn

(g)
∞∑
n=1

2n

(2n+ 1)!
, (h)

∞∑
1

2n
2

n!
, (i)

∞∑
n=1

(
1

n
− 1√

n

)

3. *

(a) Prove that the series

∞∑
n=1

1

n(n+ 1)
=

1

1 · 2
+

1

2 · 3
+ . . . = 1.

Use the result to prove that
∑∞

n=1
1
n2 converges, and obtain upper and lower

bounds for this sum.

(b) Find the sum of the series
∑∞

n=1
n

(n+1)! .

(c) Find the sum
∑∞

n=1
1+n
2n . [Hint: Differentiate a certain power series, justifying

any operations.]

4. Suppose that {an} is a decreasing sequence of positive terms such that
∑∞

n=1 an
converges. Prove that nan → 0 as n → ∞. [Hint - consider the sum an+1 + an+2 +
. . .+ a2n.]

5. (a) For what values of α do the following series converge or diverge

(i)
∞∑
n=2

1

n(log n)α
(ii)

∞∑
n=3

1

n log n(log log n)α

(b) Show that the following series converges

∞∑
n=2

log(n+ 1)− log n

(log n)2
.

6. For what values p > 0 does the series
∑∞

n=1

(
1− 1

np

)n
converge.
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7. This problem follows closely the derivation in class for the power series expansion for
log(1 + x).

(a) Write down the sum of the geometric series
∑n

k=0 r
k.

(b) Use (a) to show that

1

1 + t2
= 1− t2 + t4 − . . .+ (−1)n−1t2n−2 + (−1)n

t2n

1 + t2
.

(c) Use (b) to show that

tan−1 x = x− x3

3
+
x5

5
− . . .+ (−1)n−1

x2n−1

2n− 1
+Rn, (1)

where Rn is the remainder which you should express as an integral involving x.

(d) Show that the power series for tan−1 x converges absolutely for x in the closed
interval [−1, 1].

(e) Use the power series to show that π
4 = 1− 1

3 + 1
5 −

1
7 + . . .. How many terms do

we have to keep in this series in order to estimate π with accuracy to 10 decimal
places, i.e. with error less than 10−10?

8. * Following up from the calculation of π above, here is a much more efficient way.

(a) Starting from the addition formula for the tangent

tan(x+ y) =
tanx+ tan y

1− tanx tan y
,

introduce the inverse functions x = tan−1 u and y = tan−1 v to show that

tan−1 u+ tan−1 v = tan−1
(
u+ v

1− uv

)
. (2)

(b) Show that choosing (u+v)/(1−uv) = 1 in expression (2), we have the following
formula for π,

π

4
= tan−1 u+ tan−1 v, (3)

and that restricting u and v to be in the interval (0, 1) we can express them as
the one-parameter family

u =
1− p
1 + p

, v = p, 0 < p < 1, (4)

or equivalently

u =
n−m
n+m

, v =
m

n
, 0 < m < n, (5)

where we picked p to be the rational number p = m/n.

Use your earlier findings regarding the power series for tan−1 x (equation (1))
to explain why the choices (4)-(5) are useful.
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(c) Hence show that (first derived and used by Euler)

π

4
= tan−1

1

2
+ tan−1

1

3
. (6)

Noting that
1
3
+ 1

7

1− 1
21

= 1
2 , show that tan−1 1

2 = tan−1 1
3 + tan−1 1

7 , which when

combined with (6) gives the formula (used by Jurij Vega, 1754-1802, a Slovenian
mathematician who got 140 digits accuracy to π using this formula)

π

4
= 2 tan−1

1

3
+ tan−1

1

7
, (7)

and on use of
1
5
+ 1

8

1− 1
40

= 1
3 and previous results we also have

π

4
= 2 tan−1

1

5
+ tan−1

1

7
+ 2 tan−1

1

8
. (8)

(d) If we use the expressions (6), (7) and (8), respectively, how many terms in the
expansion (1) do we need to compute π to 10 decimals accuracy? Compare with
your answer to question 8(e).

9. *

Binomial Theorem. Let f(x) = (1+x)s where s is a real number. Use induction
arguments to show that f (n)(x) = s(s − 1) . . . (s − n + 1)(1 + x)s−n and hence
write down the Taylor series for f(x) including the remainder term. Hence show
that (1 + x)s converges uniformly (i.e. it is analytic) for |x| < 1.

(a)(b) Use the Binomial Theorem to compute (126)1/3 and
√

96 to 4 decimals.

(c) Write out the Maclaurin series for 1/
√

1 + x2 using the binomial series. What

is d20

dx20

(
1√

1+x2

)∣∣∣
x=0

?

(d) Find the Maclaurin series for g(x) =
√

1 + x +
√

1− x, and hence calculate
g(20)(0) and g(2001)(0).

10. Find the radius of convergence of the following series:

(1)
∞∑
n=1

(2n)!

(n!)2
xn (2)

∞∑
n=1

nn

(n!)
xn (3)

∞∑
n=1

(n!)3

(3n)!
xn (4)

∞∑
n=1

n5n

(2n)!n3n
xn

(5)
∞∑
n=1

(3n)!

(n!)2
xn (6)

∞∑
n=1

sin(nπ/2)

2n
xn (7)

∞∑
n=1

log n

2n
xn (8)

∞∑
n=1

1 + cos 2πn

3n
xn

(9)

∞∑
n=1

nxn (10)

∞∑
n=1

sin(2πn)

n!
xn (11)

∞∑
n=1

n2xn (12)

∞∑
n=1

cosn2

nn
xn

(13)
∞∑
n=1

n

log n
xn (14)

∞∑
n=1

(−1)n

n!− 1
xn (15)

∞∑
n=1

n!

nn
xn (16)

∞∑
n=1

(−1)n + 1

n!
xn

You may use Stirling’s formula

n! = (2πn)1/2 nn e−n eθ/12n, 0 ≤ θ ≤ 1,

in its appropriate form for large n.

[Answers: (1) 1/4, (2) 1/e, (3) 27, (4) 4/e2, (5) 0, (6) 2, (7) 2, (8) 3, (9) 1, (10) ∞,
(11) 1, (12) ∞, (13) 1, (14) ∞, (15) e, (16) ∞.]
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11. Find the Taylor series of the function f(x) =
∫ x
1 log t dt for x near 1. Do the same

for the function x log x and compare the two. What do you conclude?

12. Find the first four non-vanishing terms of the Maclaurin series for the following
functions:

(a) x cotx (b) esinx, (c)

√
sinx√
x

(d) ee
x
, (e) secx, (f) log sinx− log x

13. Consider the function h(x) defined on the interval [−π, π] and given by

h(x) =

{ 1
x −

1
2 sin(x/2) x 6= 0

0 x = 0

Use a Maclaurin expansion to show that h(x) is continuous and has a continuous first
derivative at x = 0.

14. Let f(x) =
∑∞

n=0 anx
n and g(x) = f(x)/(1− x).

(a) By multiplying the power series of f(x) and 1/(1 − x), show that g(x) =∑∞
n=0 bnx

n, where bn = a0+. . .+an is the nth partial sum of the series
∑∞

n=0 an.

(b) Suppose that the radius of convergence of f(x) is greater than 1 and that f(1) 6=
0. Show that limn→∞ bn exists and is not equal to zero. What does this tell you
about the radius of convergence of g(x)?

(c) Let ex

1−x =
∑∞

n=0 bnx
n. What is limn→∞ bn?

15. *

(a) Write the Maclaurin series for the functions 1/
√

1− x2 and sin−1 x. For what
values of x do they converge?

(b) Find the terms up to and including x3 in the series for sin−1(sinx) by substi-
tuting the series for sinx into the series for sin−1 x.

(c) Use the substitution method from part (b) to obtain the first five terms of the
series for sin−1 x by using the relation sin−1(sinx) = x and solving for a0 to a5.

(d) Find the terms up to and including x5 of the Maclaurin series for the inverse
function g(s) of f(x) = x3 + x. [Hint: Use the relation g(f(x)) = x and solve
for the coefficients in the series for g.]

16. * (This problem will guide you through an example of the use of power series to solve
differential equations.)

Consider the differential equation

d2y

dx2
+ y = 0. (9)

(i) Verify that y = A sinx + B cosx where A,B are arbitrary constants, is the
general solution of (9).
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(ii) Look for a solution of (9) in the form of a power series

y(x) =
∞∑
n=0

anx
n,

and by equating different powers of x determine all possible values of an.

(iii) Use your results to (i) and (ii) to find power series expansions for sinx and cosx.
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