Mathematics Year 1, Calculus and Applications I

D.T. Papageorgiou

Problem Sheet 6

Starred problems 3, 8, 9, 15 and 16 are possible candidates for questions to be discussed in tutorials

- 1. Let $\{r_n\}$ denote the rational numbers in the interval (0,1) arranged in the sequence whose first few terms are $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \dots$ Prove that the series $\sum_{n=1}^{\infty} r_n$ diverges.
- 2. Determine the convergence or divergence of the following infinite series:

$$(a) \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} \quad (b) \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} 5^n \quad (c) \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} \quad (d) \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} 4^n$$

$$(d) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} \quad (e) \sum_{n=1}^{\infty} \frac{1}{n} \left(\sqrt{n+1} - \sqrt{n}\right) \quad (f) \sum_{n=2}^{\infty} \frac{1}{(\log n)^{\log n}}$$

$$(g) \sum_{n=1}^{\infty} \frac{2^n}{(2n+1)!}, \quad (h) \sum_{n=1}^{\infty} \frac{2^{n^2}}{n!}, \quad (i) \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{\sqrt{n}}\right)$$

3. *

(a) Prove that the series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \ldots = 1.$$

Use the result to prove that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, and obtain upper and lower bounds for this sum.

- (b) Find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$.
- (c) Find the sum $\sum_{n=1}^{\infty} \frac{1+n}{2^n}$. [Hint: Differentiate a certain power series, justifying any operations.]
- 4. Suppose that $\{a_n\}$ is a decreasing sequence of positive terms such that $\sum_{n=1}^{\infty} a_n$ converges. Prove that $na_n \to 0$ as $n \to \infty$. [Hint consider the sum $a_{n+1} + a_{n+2} + \ldots + a_{2n}$.]
- 5. (a) For what values of α do the following series converge or diverge

(i)
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\alpha}} \qquad (ii) \quad \sum_{n=3}^{\infty} \frac{1}{n \log n(\log \log n)^{\alpha}}$$

(b) Show that the following series converges

$$\sum_{n=2}^{\infty} \frac{\log(n+1) - \log n}{(\log n)^2}.$$

6. For what values p > 0 does the series $\sum_{n=1}^{\infty} \left(1 - \frac{1}{n^p}\right)^n$ converge.

- 7. This problem follows closely the derivation in class for the power series expansion for log(1 + x).
 - (a) Write down the sum of the geometric series $\sum_{k=0}^{n} r^k$.
 - (b) Use (a) to show that

$$\frac{1}{1+t^2} = 1 - t^2 + t^4 - \ldots + (-1)^{n-1} t^{2n-2} + (-1)^n \frac{t^{2n}}{1+t^2}.$$

(c) Use (b) to show that

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} + R_n,$$
(1)

where R_n is the remainder which you should express as an integral involving x.

- (d) Show that the power series for $\tan^{-1} x$ converges absolutely for x in the closed interval [-1, 1].
- (e) Use the power series to show that $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$ How many terms do we have to keep in this series in order to estimate π with accuracy to 10 decimal places, i.e. with error less than 10^{-10} ?
- 8. * Following up from the calculation of π above, here is a much more efficient way.
 - (a) Starting from the addition formula for the tangent

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \, \tan y},$$

introduce the inverse functions $x = \tan^{-1} u$ and $y = \tan^{-1} v$ to show that

$$\tan^{-1} u + \tan^{-1} v = \tan^{-1} \left(\frac{u+v}{1-uv} \right).$$
⁽²⁾

(b) Show that choosing (u+v)/(1-uv) = 1 in expression (2), we have the following formula for π ,

$$\frac{\pi}{4} = \tan^{-1}u + \tan^{-1}v, \tag{3}$$

and that restricting u and v to be in the interval (0,1) we can express them as the one-parameter family

$$u = \frac{1-p}{1+p}, \qquad v = p, \qquad 0 (4)$$

or equivalently

$$u = \frac{n-m}{n+m}, \qquad v = \frac{m}{n}, \qquad 0 < m < n, \tag{5}$$

where we picked p to be the rational number p = m/n.

Use your earlier findings regarding the power series for $\tan^{-1} x$ (equation (1)) to explain why the choices (4)-(5) are useful.

(c) Hence show that (first derived and used by Euler)

$$\frac{\pi}{4} = \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}.$$
(6)

Noting that $\frac{\frac{1}{3}+\frac{1}{7}}{1-\frac{1}{21}} = \frac{1}{2}$, show that $\tan^{-1}\frac{1}{2} = \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7}$, which when combined with (6) gives the formula (used by Jurij Vega, 1754-1802, a Slovenian mathematician who got 140 digits accuracy to π using this formula)

$$\frac{\pi}{4} = 2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7},\tag{7}$$

and on use of $\frac{\frac{1}{5} + \frac{1}{8}}{1 - \frac{1}{40}} = \frac{1}{3}$ and previous results we also have

$$\frac{\pi}{4} = 2\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + 2\tan^{-1}\frac{1}{8}.$$
(8)

- (d) If we use the expressions (6), (7) and (8), respectively, how many terms in the expansion (1) do we need to compute π to 10 decimals accuracy? Compare with your answer to question 8(e).
- 9. *

Binomial Theorem. Let $f(x) = (1+x)^s$ where s is a real number. Use induction arguments to show that $f^{(n)}(x) = s(s-1) \dots (s-n+1)(1+x)^{s-n}$ and hence write down the Taylor series for f(x) including the remainder term. Hence show that $(1+x)^s$ converges uniformly (i.e. it is analytic) for |x| < 1.

- (b) Use the Binomial Theorem to compute $(126)^{1/3}$ and $\sqrt{96}$ to 4 decimals.
- (c) Write out the Maclaurin series for $1/\sqrt{1+x^2}$ using the binomial series. What is $\frac{d^{20}}{dx^{20}} \left(\frac{1}{\sqrt{1+x^2}}\right)\Big|_{x=0}$?
- (d) Find the Maclaurin series for $g(x) = \sqrt{1+x} + \sqrt{1-x}$, and hence calculate $g^{(20)}(0)$ and $g^{(2001)}(0)$.
- 10. Find the radius of convergence of the following series:

$$(1) \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} x^n \quad (2) \sum_{n=1}^{\infty} \frac{n^n}{(n!)} x^n \quad (3) \sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)!} x^n \quad (4) \sum_{n=1}^{\infty} \frac{n^{5n}}{(2n)! n^{3n}} x^n$$

$$(5) \sum_{n=1}^{\infty} \frac{(3n)!}{(n!)^2} x^n \quad (6) \sum_{n=1}^{\infty} \frac{\sin(n\pi/2)}{2^n} x^n \quad (7) \sum_{n=1}^{\infty} \frac{\log n}{2^n} x^n \quad (8) \sum_{n=1}^{\infty} \frac{1+\cos 2\pi n}{3^n} x^n$$

$$(9) \sum_{n=1}^{\infty} n x^n \quad (10) \sum_{n=1}^{\infty} \frac{\sin(2\pi n)}{n!} x^n \quad (11) \sum_{n=1}^{\infty} n^2 x^n \quad (12) \sum_{n=1}^{\infty} \frac{\cos n^2}{n^n} x^n$$

$$(13) \sum_{n=1}^{\infty} \frac{n}{\log n} x^n \quad (14) \sum_{n=1}^{\infty} \frac{(-1)^n}{n! - 1} x^n \quad (15) \sum_{n=1}^{\infty} \frac{n!}{n^n} x^n \quad (16) \sum_{n=1}^{\infty} \frac{(-1)^n + 1}{n!} x^n$$

You may use Stirling's formula

$$n! = (2\pi n)^{1/2} n^n e^{-n} e^{\theta/12n}, \qquad 0 \le \theta \le 1,$$

in its appropriate form for large n.

[Answers: (1) 1/4, (2) 1/e, (3) 27, (4) $4/e^2$, (5) 0, (6) 2, (7) 2, (8) 3, (9) 1, (10) ∞ , (11) 1, (12) ∞ , (13) 1, (14) ∞ , (15) e, (16) ∞ .]

- 11. Find the Taylor series of the function $f(x) = \int_1^x \log t \, dt$ for x near 1. Do the same for the function $x \log x$ and compare the two. What do you conclude?
- 12. Find the first four non-vanishing terms of the Maclaurin series for the following functions:

(a)
$$x \cot x$$
 (b) $e^{\sin x}$, (c) $\frac{\sqrt{\sin x}}{\sqrt{x}}$
(d) e^{e^x} , (e) $\sec x$, (f) $\log \sin x - \log x$

13. Consider the function h(x) defined on the interval $[-\pi, \pi]$ and given by

$$h(x) = \begin{cases} \frac{1}{x} - \frac{1}{2\sin(x/2)} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Use a Maclaurin expansion to show that h(x) is continuous and has a continuous first derivative at x = 0.

- 14. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and g(x) = f(x)/(1-x).
 - (a) By multiplying the power series of f(x) and 1/(1-x), show that $g(x) = \sum_{n=0}^{\infty} b_n x^n$, where $b_n = a_0 + \ldots + a_n$ is the *n*th partial sum of the series $\sum_{n=0}^{\infty} a_n$.
 - (b) Suppose that the radius of convergence of f(x) is greater than 1 and that $f(1) \neq 0$. Show that $\lim_{n\to\infty} b_n$ exists and is not equal to zero. What does this tell you about the radius of convergence of g(x)?

(c) Let
$$\frac{e^x}{1-x} = \sum_{n=0}^{\infty} b_n x^n$$
. What is $\lim_{n \to \infty} b_n$?

15. *

- (a) Write the Maclaurin series for the functions $1/\sqrt{1-x^2}$ and $\sin^{-1} x$. For what values of x do they converge?
- (b) Find the terms up to and including x^3 in the series for $\sin^{-1}(\sin x)$ by substituting the series for $\sin x$ into the series for $\sin^{-1} x$.
- (c) Use the substitution method from part (b) to obtain the first five terms of the series for $\sin^{-1} x$ by using the relation $\sin^{-1}(\sin x) = x$ and solving for a_0 to a_5 .
- (d) Find the terms up to and including x^5 of the Maclaurin series for the inverse function g(s) of $f(x) = x^3 + x$. [Hint: Use the relation g(f(x)) = x and solve for the coefficients in the series for g.]
- 16. * (This problem will guide you through an example of the use of power series to solve differential equations.)

Consider the differential equation

$$\frac{d^2y}{dx^2} + y = 0. (9)$$

(i) Verify that $y = A \sin x + B \cos x$ where A, B are arbitrary constants, is the general solution of (9).

(ii) Look for a solution of (9) in the form of a power series

$$y(x) = \sum_{n=0}^{\infty} a_n x^n,$$

and by equating different powers of x determine all possible values of a_n .

(iii) Use your results to (i) and (ii) to find power series expansions for $\sin x$ and $\cos x$.