
Mathematics Year 1, Calculus and Applications I

D.T. Papageorgiou

Problem Sheet 7
Problems 3, 4, 5 and 6 are possible candidates for questions to be discussed in tutorials

1. The following functions are defined on the interval [0, π]. In each case (i) find the even
and odd extensions of the given functions on [−π, π] and extend them periodically
with period 2π on the real line; (ii) sketch these over the interval −4π < x < 4π
making sure you include the assumed values of the function at any discontinuities;
(iii) find the Fourier series for both even and odd extensions and state whether the
convergence of the series is uniform or not. [You can state theorems without proof.]

f(x) = cosx, f(x) = x2, f(x) = ex, f(x) = ex − 1.

By inspecting your sketches, which of the Fourier series can be differentiated term-
by-term to yield the Fourier series of new functions? Explain using theorems without
proofs.

2. Obtain the Fourier series of the function f(x) = πx on the interval 0 ≤ x ≤ 1 as a
sine series and a cosine series (extend the function appropriately and note that the
interval is 2−periodic not 2π−periodic).

3. (a) Sketch the function f(x) = | sinx| defined on −π ≤ x ≤ π, and show that its
Fourier series is given by

| sinx| = 2

π
− 4

π

∞∑
n=1

cos 2nx

4n2 − 1

(b) What value does the Fourier series converge to at x = 0, π,−π?

(c) Use the series result to show that
∑∞

n=1
1

4n2−1 = 1
2 .

(d) Use your results to also show that

∞∑
n=1

1

4(2n− 1)2 − 1
=

1

4 · 1
+

1

4 · 32 − 1
+

1

4 · 52 − 1
+ . . . =

π

8

4. (a) Consider the function f(x) = x cosx on −π < x < π. Sketch the function. Is it
even or odd?

(b) Find the Fourier series of f(x) extended periodically over the whole of the real
line. What values does the series converge to at x = −π,+π?

(b) Now introduce the function φ(x) = x on −π < x < π. Write down the Fourier
series for φ(x) (extended periodically on the real line) and hence show that the
Fourier series of χ(x) := x(1 + cosx) (extended periodically on the real line) is
given by

χ(x) =
3

2
sinx+ 2

(
sin 2x

1 · 2 · 3
− sin 3x

2 · 3 · 4
+

sin 4x

3 · 4 · 5
+ . . .

)
(1)

1



(c) What values do you expect the Fourier series of χ(x) to converge to at the end
points x = −π and x = π? Is the periodic extension of χ continuous at the end
points? Is the convergence uniform or not?

(d) Does the periodically extended function χ(x) have continuous derivatives of any
order on the closed interval [−π, π] (clearly the problematic points are the end
points, so you may find it useful to carry out a local one-sided Taylor series
expansion).

By considering the Fourier series (1) can you think of a series comparison test
that would establish its absolute convergence for all x ∈ [−π, π]?

5. Consider the function f(x) = cosαx for −π < x < π, where α is not an integer.

(a) Show that the Fourier series of f(x) = cosαx is

cosαx =
2α sinαπ

π

(
1

2α2
− cosx

α2 − 12
+

cos 2x

α2 − 22
+ . . .

)
(2)

(b) Confirm that the periodic extension of the function remains continuous at x =
±π. Hence, select x = π in (2) to show that the following expression holds

cotπx =
2x

π

(
1

2x2
+

1

x2 − 12
+

1

x2 − 22
+ . . .

)
. (3)

This expression resolves cotπx into partial fractions!

(c) Re-write (3) in the form

π

(
cotπx− 1

πx

)
= −2x

(
1

12 − x2
+

1

22 − x2
+ . . .

)
, (4)

and take x to lie in the interval 0 ≤ x ≤ β < 1. Show that the series (4)
converges uniformly in the given interval and can therefore be integrated term-
by-term (consider the nth term and bound its absolute value by the term of a
known convergent series).

(d) Integrate (4) from 0 to x and show that (careful with improper integrals at
x = 0)

log

(
sinπx

πx

)
= lim

n→∞
log

n∏
k=1

(
1− x2

k2

)
. (5)

(e) Show that (5) is equivalent to (exponentiate both sides)

sinπx = πx

(
1− x2

12

)(
1− x2

22

)(
1− x2

32

)
. . .

Show how your expression above can be used to produce the so-called Wallis’s
product

π

2
=
∞∏
n=1

2n

2n− 1
· 2n

2n+ 1
=

2

1
· 2

3
· 4

3
· 4

5
. . .
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6. (You may have never seen a partial differential equation but you have learned plenty
to be able to solve the following Calculus problem.)

The evolution of the wave amplitude u(x, t) in a nonlinear system is given by1

ut + uux = u+ εuxx, (6)

where ε > 0 and subscripts denote partial derivatives, e.g. ut = ∂u
∂t , uxx = ∂2u

∂x2
,

etc. The wave amplitude is a function of time t and a single spatial variable x. In
addition, the motion is spatially periodic, that is

u(x+ 2π, t) = u(x, t), x ∈ [−π, π].

Define the L2−norm (or “energy” norm) of a function f(x, t) by

‖f‖ =

(
1

2π

∫ π

−π
f2(x, t)dx

)1/2

.

(i) Show that
1

2π

∫ π

−π
uut dx =

1

2

d

dt
‖u‖2.

(ii) By multiplying (6) by u(x, t) and integrating over −π ≤ x ≤ π, show that

1

2

d

dt
‖u‖2 = ‖u‖2 − ε‖ux‖2.

(iii) Use Parseval’s Theorem to find an upper bound of ‖u‖2−ε‖ux‖2 involving ‖u‖2,
and hence show that when ε > 1 then u(x, t)→ 0 as t→∞ starting from fairly
arbitrary initial conditions u(x, 0) = u0(x).

1This equation is called the Burgers-Sivashinsky equation that has been analysed by J. Goodman 1994
Stability of the Kuramoto-Sivashinsky and related systems, Communications on Pure and Applied Mathe-
matics, Vol. XLVII, 293–306.
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