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2 System of Linear Equations

2.1 Introductions

Definition 2.1.1.

Given a system of linear equations in n unknowns we can write this in matrix form as follows:

AX =B
T1
Lo by a1l aiz ... Qin
2 bg . a21 as2 e a2n . )
where X = 3 and B = . are column matrices, and A = . is an m X n matriz
bm Am1 Am?2 e Amn
Tn

We can also use an Augmented Matrix to represent the system of linear equations:

al a12 ... ain | b
a21 CLQQ ce asn b2
aml am2 ... amn | by,

2.2 Matrix Algebra
Given A = [aij]lmxn, B = [bijlmxn
e Matrix Sum: C = A+ B, ¢;; = a;5 + by;
e Scalar Multiplication: AA = [Aa;;]
e Matrix Multiplication: A = [a;;]pxq, B = [bijlgxr = C = AB = [c;j]px, where ¢;; = > 1| airbi;
Theorem 2.2.4 Associativity of Matrix Multiplication.
Let A, B, C be matrices, and « € R = (AB)C = A(BC)

Proof
For A(BC) to be defined, we require the respective sizes of the matrices to be m x n, n X p, p X ¢ in which case the product
A(BQ) is also defined. Calculating the (i,7)'" element of this product, we obtain,

n b

Z aik[BCl, Z ik) Z brece;) = > > Gikbrece

k=1t=1
If we now calculate the (i, )" element of (AB)C we obtain the same result:
p P n
Z AB tctj = Z Zazkbkt Z Z aikbktctj
t=1 t—1 k=1 t=1 k=1

— A(BC) = (AB)C

2.3 Row Operations

Definition Elementary Row operation Are performed on an augmented matrix
There are three allowable operations:

e Multiply a row by any non zero number
e Add to any row a multiple of another row

e Interchange two rows



Remark 2.3.3
1. Performing row operations preserves the solutions of a linear system
2. Each row operation has an inverse row operation

Definition 2.3.5
Two systems of linear equations are equivalent if either :

1. They are both inconsistent

2. The augmented matrix of the first system can be obtained using row operations from the augmented matrix of the
second system and vice versa

Remark 2.3.6
Equivalently, by Remark 2.3.3 two systems of linear equations are equivalent <= they have the same set of solutions
If a row consists of mainly Os and 1s it becomes easier to read off the solutions to the equation

Definition 2.3.8
We say a matrix is in echelon formif it satisfies the following:

1. All of the zeros are at the bottom

2. The first non-zero entry in each row is 1

3. The first non-zero entry in row i is strictly to the left of the first non-zero entry in row i + 1
We say a matrix is in row reduced echelon form if it is in echelon form and:

e The first non-zero entry in row i appears in column j, then every other element in column j is zero

2.4 Elementary Matrices

Definition 2.4.1
Any matrix that can be obtained from an identity matrix by means of one elementary row operation is an elementary matrix

There are three types of elementary matrix:

e The general form of the elementary matrix which multiplies a row by any non-zero number, « is of the form

1 0 0
E(x)=1] 0 o 0
0 0 0

e The general form of the elementary matrix which adds a multiple of a row by any non-zero number « to another is of

the form
1 0 0 0
E.s(a)=1] 0 1 o 0
0 0 0 0

where all elements of row s are multiplied by a and added to row r

e The general form of the elementary matrix which interchanges two rows is of the form FE,; where r and s are the rows
to interchange.I’m not typing out another bloody matrix fuck you

Theorem 2.4.4
Let A be a m X n matrix and let F be an elementary m x n. The matrix multiplication FA applies the same elementary row
operation on A that was performed on the identity matrix to obtain F



2.5 More Matrices

Definition 2.5.1
We say a matrix is square if it has the same number of rows as it does columns(i.e, it’s a member of M, x,, (F) for some field )

Definition 2.5.2
A square matrix A = a;; € My, (F) is said to be:

1. upper triangular if a;; = 0 wherever ¢ > j. A has zeros for all its elements below the diagonal
2. lower triangular if a;; = 0 wherever ¢ < j. A has zeros for all its elements above the diagonal.
3. diagonmal if a;; = 0 wherever ¢ # j. This is to say A has zeros for all its elemetns except those on the main diagonal.

Definition 2.5.4
The n x n identity matrix is denoted by I,,. An identity matrix has all of its diagonal entries equal to 1 and all other
entries equal to 0. It is called the identity matrix because it is the multiplicative identity for n x n matrices

Definition 2.5.5
If, for a square matrix B, if there exists another square matrix B~! such that BB~! = I = B~!B, then we say that B is
invertible and B! is an inverse of B

Definition 2.5.6
A matrix without an inverse is called a singular matrix.

Theorem 2.5.8. The inverse of a given matrix is unique.
If3A4,B,C € M,(F)st AB=1=CA = B=C

Proof

Suppose that AB= BA =1 and AC = CA = I then

B =BI = B(AC) = (BA)C =IC =C

This theorem shows that if a matrix A is invertible, we can talk about the inverse of A, denoted by A~!. In some circum-
stances, we can say that a matrix is invertible, and we can find an expression for its inverse without knowing exactly what
the matrix is.

Definition 2.5.10.
If A=[aijlmxn then the Transpose of A is AT = [a;;]nxm

Theorem 2.5.13
Given an invertible square matrix A, then A7 is also invertible, and (AT)~1 = (A=1)"T

Proof
From the definition of the inverse

AA~L = I(AA_l)T = IT(A_l)TAT =1
Also
A1TA = I(A_lA)T = ITAT(A_l)T =71

Equation 8 and 8 prove that (A~1)7 is the unique inverse of A, as required

2.6 Inverse Row Operations

Theorem 2.6.1

Every elementary matrix is invertible and the inverse of also an elementary matrix.
Proof

Matrix multiplication can be used to check that

E(a)E(a™! = ET(O‘_I)ET( )=
E s(a)Ers(a™! = Ers(a™!)Eps (a)
ETS(a)Em( y=1
Alternatively, the results can be checked by the corresponding inverses.



Theorem 2.6.2
If the square matrix A an be row reduced to an identity matrix by a sequence of elementary row operations, then A is
invertible and the inverse of A is found by applying the same sequence of elementary row operations to I

Proof
Let A be a square matrix, then A can be row-reduced to I by a sequence of elementary row operations. Let E1, Fs, ..., E,
be the elementary matrices corresponding to the elementary row operation, so that

E,....EyE1A=1

But Theorem 2.6.1 states that matrices representing elementary row operations are invertible. Thus the above equation can
be rearranged to give

A7 = (BB E7Y) !

T

(E, ... E2Ey)I

2.7 Geometric Interpretations

As you have seen in the introductory module, vectors in R?/R3 can be represented as points in 2 or 4 dimensional space. In
this section we will at geometric interpretations of some of the things we have seen so far.

A system of linear equations in n unknowns specifies a set in n-space

Definition 2.7.4

Let T be a function from R™ to R™ then we say T is a linear transformation if for every v1,15 € R™ and every o, 5 € R
we have:

T(avy + Bry) = T (1) + BT (v2)

Proposition 2.7.4
Let A € M, xm(R) then it can be seen as a map from R™ to R™. A is a linear transformation.
Proof

Alavy + Bra) = A(awn) + A(Bre)
=aA(rn) + BA(v2)
By distributivity of matrix multiplication

Proposition 2.7.5
Let A € My xm(R). The following are equivalent:

(i) A is invertible with inverse A=1 = AT
(i) ATA =1, = AAT
(iii) A preserves inner products(i.e. for all z,y €= R"
(Pz) - (Py) =x-y)

Proof:
(i) < (ii) is just by definition
(i) < (iii)
First note that for z,y € R™ x-y as defined in the intro to maths course is just 2y as a matrix multiplication. So A preserves
inner products if and only if:

(Pz)-(Py) =x-y,y eR"
= (P2)"(Py)=a"y,y eR"
«— 2TPTPy=2"1,y,y € R*

< 2T(PTP-1,)y=0,y € R"

0
(i) = (iil) now trivial (iii) = (ii): Let z; = [ 1 | i.e column vector with 0’s everywhere except the i'h row where there

0
is a 1. Then we know for each z; (z;)T(PTP — I,)y = 0 so we can conclude that



(PTP—1I,)y=|:
0
Similarly taking y; to be the column vector with 0’s everywhere except the i*" row where there is a 1 we get (PTP —1Iy) =0
so PTp=1,
Definition 2.7.6
A matrix A € M,, ., is called Orthogonal if it is such that A~1 = AT

2.8 Fields

So far, for both matrices and linear equations we have only been using entries in R. However, we could have taken entries
from any field.
Every field has distinguished elements 0 - (additive identity) and 1 - (multiplicative identity).

Theorem 2.8.3

Let F, =0,1,...,p — 1, consider F, with addition defined by addition modulo p and multiplication as multiplication modulo
p. Then the structure ((F)p, +modps Xmodp is a field)

Proof:

A 1-4 are obvious frop properties of addition in Z

M1-3 are obvious from properties of addition in Z

M4: inverse: obviously for 0 < z < p we have ged(z,p) = 1 by Intro to Uni Maths we have:

Js,t € Z such that 1 = sz + tp then take 2! = s(mod p)

D1 obvious from properties of addition in Z

3 Vector Spaces

3.1 Introduction to Vector Spaces

Definition 3.1.1.

Let Z be a field. A vector space over F is a non-empty set V together with the following maps:
1. Addition

O:VxVe=V
(V1,V2)'—>V1 D vy

2. Scalar multiplication

O FxVe—=V
(fal/2)'_>f®y2

@ and ® must satisfy and following Vector Space axioms:

For Vector Addition: For Scalar Multiplication:

A1) Associative law: (uBv) Bw=u® (vBw) Ab) Distributive law

A2) Commutative law A6) Distributive law v2

A3) Additive identity: Oy v =v AT) Associative law

(
(
(
(A4

) (A5)
) (A6)
) (A7)
) (A8)

Additive inverse Identity for scalar mult.

Definition 3.1.2.

Let V be a vector space over F:
e Flements of V are called vectors
e Elements of I are called scalars

e We sometimes refer to V' as an F-vector space



3.2 Subspaces
Definition 3.2.1.

A subset W of a vector space V is subspace of V if
(S1) W is not empty(i.e e € W)
(S2) for v,w € W, then v ® w € W closed under vector addition

(S3) close under scalar multiplication.

Remark 3.2.3
Any subspace of V' that is not V or the zero vector space is called a proper subspace of V

Proposition 3.2.3.
Every subspace of an F-vector space V' must contain the zero vector

Theorem 3.1.
Let U, W be subspaces of V. Then U N'W is a subspace of V. In general, the intersection of any set of subspaces of a vector

space V is a subspace of V.

3.3 Spanning
Definition 3.3.1.

Let V be an F-vector space. Let ui,...,u, € V then:

e A Linear Combination of uq,...,u,, € is a vector of the form ajuy + ...+ apu., for scalars aq,...,a, € F. Note
we can also write ajuy + ... + Uy, as Zyil QU

e span of uy,...,u,, € is the set of linear combinations of uy, ..., u, €
Lemma 3.3.2
Let V be an F vector space, and uy, ..., u,, € V then Span(us,...,u,,) is a subspace of V.

Definition 3.3.2.
Let V an F vector space and suppose S C V is such that Span(S) = V then we say S spans V', or equivalently S is a spanning

set set for

3.4 Linear Independence

Definition 3.4.1.
Let V an F vector space. We say u1,...,u, € V are linearly independent if whenever

oy + ...+ apty, = Oy
then it must be that
ar=-=0a,=0

We say uq,...,uy, € is a linearly independent set

Alternatively, a set uy,...,u,, € is linearly dependent if ajuy + ...+ apu, = 0y where at least one «; # 0 and a set
is linearly independent if it is not linearly dependent.

Lemma 3.4.4 Let ,uq, ... ,, u, be linearly independent in an F-vector space V. Let v, 11 be such that pun+1 € Span(puq. ... ., uy,).
Then ,ui....,, Un41 is linearly independent



3.5 Bases
Definition 3.5.1.
e Let V be and F-vector space. A basis of V' is a linearly independent spanning set of V.
e If V has a finite basis then we say V is a finite dimensional vector space
Proposition 3.5.4 Let V be an F-vector space, let S = uy,...,u, € CV Then S is a basis of V <= every vector in V

has a unique expression as linear combination of elements of S

Remark 3.5.5 Let B = uy,...,u,, € be a basis for an F-vector space V. By proposition 3.5.4 we see that we have a bijective
map f from V to F™, for ,u = ajus +. ..+ @iy, we define f(,u) = (a1,..., ;) we ca;; (aq,. .., q,) the coordinates of ,u

Proposition 3.5.6 Let V be a non-trivial(i.e. not 0) F-Vector space and suppose V has finite spanning set .S then S contains
a linearly independent spanning set.

3.6 Dimensions

Lemma 3.6.1 Steinitz Fxzchange Lemma
Let B be a vector space over F. Take X C V and suppose u C Span(X) but v ¢ Span(X{,.) for some ,u € X. Let
Y = (X{nu) Uu. Then Span(X) = Span(Y).

Theorem 3.2.

Let V be a finite dimensional vector space over F. Let S, T be finite subsets of V. If S is LI and T spans V then |S| < |T].
That is, LI sets are at most big as spanning sets. The proof is simple but the way char* !* writes it is absolutely dogshirt.

Definition 3.6.1.

V a finite dimensional vector space.Let S, T be bases of V then S and T are both finite and |S| = |T)|
Lemma 3.6.8 Suppose dimV = n:

1. Any spanning set of size n is a basis
Any linearly independent set of size n is a basis
S is a spanning set <= it contains a basis(as a subset)

S is linearly independent <= it is contained in a basis

AT ol

Any subset of V' of size > n is linearly dependent

3.7 More subspaces
Definition 3.7.1.
Let V be a vector space U and W be subspace of V.

e The intersection of U and W is:
UNW=veV:veWand,ucU

e The sumof Uand Wis: U+ W =u4+w:ueUWeW

Proposition 3.7.5
Let V be a vector space over F. Let U and W be subspaces of V', suppose additionally:

e U = Span{uy,...,us}
e W = Span{wy,...,w,}
Then U + W = Span{us....,us,ws,...,w,} Proof is ez

Theorem 3.3.
Let V be a vector space over F, U and W subspaces of V. Then
dim(U + W) = dimU + dimW — dim(U UW)



3.8 Rank of Matrix
Definition 3.8.1.

Let A be an m X n matrix with entries from a field F. Define:

e The Row Space of A (RSp(A)) as the span of of the rows of A. This is a subspace of F"
e The Row Rank of A is dim(RSp(A))
e The Column Space of A (Csp(A)) as the span of the columns of A. This is a subspace of F™
e The Column Rank of A is dim(CSp(A))
Definition 3.8.2.
For any matrix A the row rank of A is equal to the column rank of A.
Definition 3.8.3.

Let A be a matrix. The rank of A written rank(A) or rk(A), is the row rank of A

Proposition 3.8.11
Let A be n x n matrix with entries in F, then the following statements are equivalent:

1. rank(A4)=n
2. The rows of A form a basis for F”
3. The columns of A form a basis for F™

4. A is invertible

4 Linear Transformation

Definition 4.0.1.

Suppose V, W are vector spaces over a field F. Let T : V' — W be a function from VtoW. we say:
e T preserves addition if for all 11,15 € V we have T'(v1 +1v2) = T'(11) + T(v2)
e T preserves scalar multiplicaion if for all v € V. A € F, T (\v) = (v)
e T is a linear tranformation (or linear map) if it:

1. preserves addition

2. preserves scalar multiplicaion

Proposition 4.1.3.
Let A be an m x n matrix over F. Define T : F" — F™, by T'(v) = Av

Proposition 4.1.4
Basic Properties of linear transformations

Let T : V — W be a linear map. Write Oy, Oy for the zero vectors in V' and W respectively, We have:
1. T(0y) = Oy
2. Suppose v = €111 + ...+ ey for ¢, € Fop; € V.o Then T(v) = MT (1) + ... +1 T(vk)

Proposition 4.1.6

Let V and W be vector spaces over F. Let vq,...,v, be a basis for V. Let wy,...,w, be any n vectors from W (not
necessarily distinct). Then this is a unique linear transformation T': V' — W such that T'(v;) = w; for all 1.

Remark 4.1.7

This shows that once we know what a linear transformations does to a basis we know what the transformation is.



4.1 Image and Kernel

Definition 4.1.1.

Let T: V — W be a linear transformation:
e The Image of T is the set ImT =T(v)eW:v eV CW
e The Kernel of T is the set KerT =v eV :T(v) =0y CV

Proposition 4.2.3
Let T : V — W be a linear transformation. Then:

1. ImT is a subspace of W
2. KerT is a subspace of W

Proposition 4.2.5
Let T : V — W to be a linear transformation and let vq,v5 € V. Then

T(n)=T(vrr) <= 11 — vy € KerT

Proposition 4.2.6

Let T : V — W be a linear transformation. Suppose that vy, ..., v, is a basis for V. Then ImT = SpanT (v1),...,T(vy)
Proposition 4.2.7

Let A be an m x no matrix. Let F" — F™ be given by T(v) = Av. Then:

1. KerT is the solution space to Av =0
2. ImT is the column space of A
3. dim(ImT') = rankA
Theorem 4.1.
The Rank Nullity theorem Let T : V — W be a linear tranformation. Then
dim(ImT) + dim(KerT) = dim(V)

Corollary 4.2.10
A system of linear equations in n unknowns with co-efficients in F:

4.2 Representing vectors and transformations with respect to a basis

Definition 4.3.1
For v € V with v =1 v1 + ... + A\, the vector of V wrt B is

Proposition 4.3.3 Let V' be an n-dimensional vector space overF with a basis B. Then the map:
T:V >F"
T(v)=[vls

is a bijective linear transformation

Definition 4.2.1.

The Matrix A constructed to map F” — F™ is the matrix of T with respect to B and Cm we wrute this .Ts[v]|p = [TV]c.
If V =W and B = C we sometimes write this simple as [T]p

Proposition 4.3.8 Let V' be a vector space. Let B = vy,...,v, and C' = wy,...,w, be bases for V. Then for j € 1,...,n
we can write v; = Ajj + ...+ A\pjwn
)\11 . )\1n

Let P be the matrix (\;;) = : :
Anl oo Ann
So the j column is [v;]c.

10



1. P =[X]c where X : V — V is the unique linear transformation such that X (w;) = v; for all j
2. For all v € V, P[v|p = [vj]c
3. P =¢ [Id]p where Id is the identity transformation of V

Definition 4.2.2.

P is the change of basis matrix from B to C.

WARNING. THIS IS CONFUSING BECAUSE OF 1 IN PROPOSITION 4.3.8 maps basis elements to
C to those of B- sometimes described the other way around

Proposition 4.3.10
Let V, B,C, P as above. Then:

1. P is invertible, and its inverse is the change of the basis matrix from C to B
2. T:V — V be a linear transformation, Then [T']¢ = P[T]|gP~!

Remark. 4.3.12

It is a fact that if P is the change of basis matrix ¢[/d]g from B to C' amd @ is the change of basis matrix p[Id]c(where
B,C,D and all basis for F” then QP =p [Id|cc[Id]g =p [Id]p, the change of basis matrix from B t D.

This gives us a quick method of calculating change of basis matrices for F”

11
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