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2 System of Linear Equations

2.1 Introductions

Definition 2.1.1.

Given a system of linear equations in n unknowns we can write this in matrix form as follows:

AX = B

where X =


x1

x2

x3

...
xn

 and B =


b1
b2
...
bm

 are column matrices, and A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

am1 am2 . . . amn

 is an m× n matrix

We can also use an Augmented Matrix to represent the system of linear equations:
a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
am1 am2 . . . amn bm


2.2 Matrix Algebra

Given A = [aij ]m×n, B = [bij ]m×n

• Matrix Sum: C = A+B, cij = aij + bij

• Scalar Multiplication: λA = [λaij ]

• Matrix Multiplication: A = [aij ]p×q, B = [bij ]q×r ⇒ C = AB = [cij ]p×r where cij =
∑q

k=1 aikbkj

Theorem 2.2.4 Associativity of Matrix Multiplication.

Let A,B,C be matrices, and α ∈ R =⇒ (AB)C = A(BC)

Proof
For A(BC) to be defined, we require the respective sizes of the matrices to be m× n, n× p, p× q in which case the product
A(BC) is also defined. Calculating the (i, j)th element of this product, we obtain,

[A(BC)]ij =

n∑
k=1

aik[BC]kj =

n∑
k=1

aik)(

p∑
t=1

bktctj) =

n∑
k=1

p∑
t=1

aikbktctj

If we now calculate the (i, j)th element of (AB)C we obtain the same result:

[(AB)C]ij =

p∑
t=1

[AB]itctj =

p∑
t−1

(

n∑
k=1

aikbkt)ctj =

p∑
t=1

n∑
k=1

aikbktctj

=⇒ A(BC) = (AB)C

2.3 Row Operations

Definition Elementary Row operation Are performed on an augmented matrix
There are three allowable operations:

• Multiply a row by any non zero number

• Add to any row a multiple of another row

• Interchange two rows
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Remark 2.3.3

1. Performing row operations preserves the solutions of a linear system

2. Each row operation has an inverse row operation

Definition 2.3.5
Two systems of linear equations are equivalent if either :

1. They are both inconsistent

2. The augmented matrix of the first system can be obtained using row operations from the augmented matrix of the
second system and vice versa

Remark 2.3.6
Equivalently, by Remark 2.3.3 two systems of linear equations are equivalent ⇐⇒ they have the same set of solutions
If a row consists of mainly 0s and 1s it becomes easier to read off the solutions to the equation

Definition 2.3.8
We say a matrix is in echelon formif it satisfies the following:

1. All of the zeros are at the bottom

2. The first non-zero entry in each row is 1

3. The first non-zero entry in row i is strictly to the left of the first non-zero entry in row i+ 1

We say a matrix is in row reduced echelon form if it is in echelon form and:

• The first non-zero entry in row i appears in column j, then every other element in column j is zero

2.4 Elementary Matrices

Definition 2.4.1
Any matrix that can be obtained from an identity matrix by means of one elementary row operation is an elementary matrix

There are three types of elementary matrix:

• The general form of the elementary matrix which multiplies a row by any non-zero number, α is of the form

Er(α) =


1 . . . 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . α . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 . . . 0


• The general form of the elementary matrix which adds a multiple of a row by any non-zero number α to another is of
the form

Ers(α) =


1 . . . 0 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 1 . . . α . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 0 . . . 0


where all elements of row s are multiplied by α and added to row r

• The general form of the elementary matrix which interchanges two rows is of the form Ers where r and s are the rows
to interchange.I’m not typing out another bloody matrix fuck you

Theorem 2.4.4
Let A be a m×n matrix and let E be an elementary m×n. The matrix multiplication EA applies the same elementary row
operation on A that was performed on the identity matrix to obtain E
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2.5 More Matrices

Definition 2.5.1
We say a matrix is square if it has the same number of rows as it does columns(i.e, it’s a member of Mn×n(F) for some field F)

Definition 2.5.2
A square matrix A = aij ∈ Mn×n(F ) is said to be:

1. upper triangular if aij = 0 wherever i > j. A has zeros for all its elements below the diagonal

2. lower triangular if aij = 0 wherever i < j. A has zeros for all its elements above the diagonal.

3. diagonal if aij = 0 wherever i ̸= j. This is to say A has zeros for all its elemetns except those on the main diagonal.

Definition 2.5.4
The n × n identity matrix is denoted by In. An identity matrix has all of its diagonal entries equal to 1 and all other
entries equal to 0. It is called the identity matrix because it is the multiplicative identity for n× n matrices

Definition 2.5.5
If, for a square matrix B, if there exists another square matrix B−1 such that BB−1 = I = B−1B, then we say that B is
invertible and B−1 is an inverse of B

Definition 2.5.6
A matrix without an inverse is called a singular matrix.

Theorem 2.5.8. The inverse of a given matrix is unique.
If ∃A,B,C ∈ Mn(F ) s.t AB = I = CA =⇒ B = C
Proof
Suppose that AB = BA = I and AC = CA = I then

B = BI = B(AC) = (BA)C = IC = C

This theorem shows that if a matrix A is invertible, we can talk about the inverse of A, denoted by A−1. In some circum-
stances, we can say that a matrix is invertible, and we can find an expression for its inverse without knowing exactly what
the matrix is.

Definition 2.5.10.
If A = [aij ]m×n then the Transpose of A is AT = [aij ]n×m

Theorem 2.5.13
Given an invertible square matrix A, then AT is also invertible, and (AT )−1 = (A−1)−T

Proof
From the definition of the inverse

AA−1 = I(AA−1)T = IT (A−1)TAT = I
Also

A−1A = I(A−1A)T = ITAT (A−1)T = I

Equation 8 and 8 prove that (A−1)T is the unique inverse of AT , as required

2.6 Inverse Row Operations

Theorem 2.6.1
Every elementary matrix is invertible and the inverse of also an elementary matrix.
Proof
Matrix multiplication can be used to check that

Er(α)Er(α
−1 = Er(α

−1)Er(α) = I
Ers(α)Ers(α

−1 = Ers(α
−1)Ers(α) = I

Ers(α)Ers(α) = I
Alternatively, the results can be checked by the corresponding inverses.

4



Theorem 2.6.2
If the square matrix A an be row reduced to an identity matrix by a sequence of elementary row operations, then A is
invertible and the inverse of A is found by applying the same sequence of elementary row operations to I

Proof
Let A be a square matrix, then A can be row-reduced to I by a sequence of elementary row operations. Let E1, E2, . . . , Er

be the elementary matrices corresponding to the elementary row operation, so that

Er . . . E2E1A = 1

But Theorem 2.6.1 states that matrices representing elementary row operations are invertible. Thus the above equation can
be rearranged to give

A−1 = (E−1
1 E−1

2 . . . E−1
r )−1

(Er . . . E2E1)I

2.7 Geometric Interpretations

As you have seen in the introductory module, vectors in R2/R3 can be represented as points in 2 or 4 dimensional space. In
this section we will at geometric interpretations of some of the things we have seen so far.

A system of linear equations in n unknowns specifies a set in n-space
Definition 2.7.4
Let T be a function from Rn to Rm then we say T is a linear transformation if for every ν1, ν2 ∈ Rn and every α, β ∈ R
we have:

T (αν1 + βν2) = αT (ν1) + βT (ν2)

Proposition 2.7.4
Let A ∈ Mn×m(R) then it can be seen as a map from Rn to Rm. A is a linear transformation.
Proof

A(αν1 + βν2) = A(αν1) +A(βν2)
=αA(ν1) + βA(ν2)

By distributivity of matrix multiplication

Proposition 2.7.5
Let A ∈ Mn×m(R). The following are equivalent:

(i) A is invertible with inverse A−1 = AT

(ii) ATA = In = AAT

(iii) A preserves inner products(i.e. for all x, y ∈= Rn

(Px) · (Py) = x · y)

Proof:
(i) ⇐⇒ (ii) is just by definition
(ii) ⇐⇒ (iii)
First note that for x, y ∈ Rn x ·y as defined in the intro to maths course is just xT y as a matrix multiplication. So A preserves
inner products if and only if:

(Px) · (Py) = x · y, y ∈ Rn

⇐⇒ (Px)T (Py) = xT y, y ∈ Rn

⇐⇒ xTPTPy = xT Iny, y ∈ Rn

⇐⇒ xT (PTP − In)y = 0, y ∈ Rn

(ii) =⇒ (iii) now trivial (iii) =⇒ (ii): Let xi =



0
...
1
...
0

 i.e column vector with 0’s everywhere except the ith row where there

is a 1. Then we know for each xi (xi)
T (PTP − In)y = 0 so we can conclude that

5



(PTP − In)y =

0
...
0


Similarly taking yi to be the column vector with 0’s everywhere except the ith row where there is a 1 we get (PTP − IN ) = 0
so PTP = In
Definition 2.7.6
A matrix A ∈ Mn×n is called Orthogonal if it is such that A−1 = AT

2.8 Fields

So far, for both matrices and linear equations we have only been using entries in R. However, we could have taken entries
from any field.
Every field has distinguished elements 0 - (additive identity) and 1 - (multiplicative identity).

Theorem 2.8.3
Let Fp = 0, 1, . . . , p− 1, consider Fp with addition defined by addition modulo p and multiplication as multiplication modulo
p. Then the structure ((F )p,+modp,×modp is a field)
Proof:
A 1-4 are obvious frop properties of addition in Z
M1-3 are obvious from properties of addition in Z
M4: inverse: obviously for 0 ≤ x < p we have gcd(x, p) = 1 by Intro to Uni Maths we have:

∃s, t ∈ Z such that 1 = sx+ tp then take x−1 = s(mod p)

D1 obvious from properties of addition in Z

3 Vector Spaces

3.1 Introduction to Vector Spaces

Definition 3.1.1.

Let Z be a field. A vector space over F is a non-empty set V together with the following maps:

1. Addition

⊕ : V × V 7→ V
(ν1, ν2) 7→ ν1 ⊕ ν2

2. Scalar multiplication

⊙ : F × V 7→ V
(f, ν2) 7→ f ⊙ ν2

⊕ and ⊙ must satisfy and following Vector Space axioms:

For Vector Addition:

(A1) Associative law: (u⊕ v)⊕ w = u⊕ (v ⊕ w)

(A2) Commutative law

(A3) Additive identity: 0V ⊕ v = v

(A4) Additive inverse

For Scalar Multiplication:

(A5) Distributive law

(A6) Distributive law v2

(A7) Associative law

(A8) Identity for scalar mult.

Definition 3.1.2.

Let V be a vector space over F:

• Elements of V are called vectors

• Elements of F are called scalars

• We sometimes refer to V as an F-vector space
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3.2 Subspaces

Definition 3.2.1.

A subset W of a vector space V is subspace of V if

(S1) W is not empty(i.e e ∈ W )

(S2) for v, w ∈ W , then v ⊕ w ∈ W closed under vector addition

(S3) close under scalar multiplication.

Remark 3.2.3
Any subspace of V that is not V or the zero vector space is called a proper subspace of V

Proposition 3.2.3.
Every subspace of an F -vector space V must contain the zero vector

Theorem 3.1.

Let U,W be subspaces of V . Then U ∩W is a subspace of V . In general, the intersection of any set of subspaces of a vector
space V is a subspace of V .

3.3 Spanning

Definition 3.3.1.

Let V be an F-vector space. Let u1, . . . , um ∈ V then:

• A Linear Combination of u1, . . . , um ∈ is a vector of the form α1u1 + . . .+ αmum for scalars α1, . . . , αm ∈ F. Note
we can also write α1u1 + . . .+ αmum as

∑m
i=1 αiu1

• span of u1, . . . , um ∈ is the set of linear combinations of u1, . . . , um ∈

Lemma 3.3.2
Let V be an F vector space, and u1, . . . , um ∈ V then Span(u1, . . . , um) is a subspace of V .

Definition 3.3.2.

Let V an F vector space and suppose S ⊂ V is such that Span(S) = V then we say S spans V , or equivalently S is a spanning
set set for

3.4 Linear Independence

Definition 3.4.1.

Let V an F vector space. We say u1, . . . , um ∈ V are linearly independent if whenever

α1u1 + . . .+ αmum = 0V
then it must be that
α1 = · · · = αm = 0

We say u1, . . . , um ∈ is a linearly independent set

Alternatively, a set u1, . . . , um ∈ is linearly dependent if α1u1 + . . . + αmum = 0V where at least one αi ̸= 0 and a set
is linearly independent if it is not linearly dependent.

Lemma 3.4.4 Let nu1, . . . ,n un be linearly independent in an F-vector space V . Let vn+1 be such that nun+1 /∈ Span(nu1. . . . ,n un).
Then nu1. . . . ,n un+1 is linearly independent
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3.5 Bases

Definition 3.5.1.

• Let V be and F-vector space. A basis of V is a linearly independent spanning set of V .

• If V has a finite basis then we say V is a finite dimensional vector space

Proposition 3.5.4 Let V be an F-vector space, let S = u1, . . . , um ∈ ⊆ V Then S is a basis of V ⇐⇒ every vector in V
has a unique expression as linear combination of elements of S

Remark 3.5.5 Let B = u1, . . . , um ∈ be a basis for an F-vector space V. By proposition 3.5.4 we see that we have a bijective
map f from V to Fm, for nu = α1u1+ . . .+αmum we define f(nu) = (α1, . . . , αm) we ca;; (α1, . . . , αm) the coordinates of nu

Proposition 3.5.6 Let V be a non-trivial(i.e. not 0) F-Vector space and suppose V has finite spanning set S then S contains
a linearly independent spanning set.

3.6 Dimensions

Lemma 3.6.1 Steinitz Exchange Lemma
Let B be a vector space over F. Take X ⊆ V and suppose u ⊆ Span(X) but u /∈ Span(X{nu) for some nu ∈ X. Let
Y = (X{nu) ∪ u. Then Span(X) = Span(Y ).

Theorem 3.2.

Let V be a finite dimensional vector space over F. Let S, T be finite subsets of V . If S is LI and T spans V then |S| ≤ |T |.
That is, LI sets are at most big as spanning sets. The proof is simple but the way char* !* writes it is absolutely dogshirt.

Definition 3.6.1.

V a finite dimensional vector space.Let S, T be bases of V then S and T are both finite and |S| = |T |
Lemma 3.6.8 Suppose dimV = n:

1. Any spanning set of size n is a basis

2. Any linearly independent set of size n is a basis

3. S is a spanning set ⇐⇒ it contains a basis(as a subset)

4. S is linearly independent ⇐⇒ it is contained in a basis

5. Any subset of V of size > n is linearly dependent

3.7 More subspaces

Definition 3.7.1.

Let V be a vector space U and W be subspace of V .

• The intersection of U and W is:
U ∩W = ν ∈ V : ν ∈ Wandnu ∈ U

• The sum of U and W is: U +W = u+ w : u ∈ U,W ∈ W

Proposition 3.7.5
Let V be a vector space over F. Let U and W be subspaces of V , suppose additionally:

• U = Span{u1, . . . , us}

• W = Span{w1, . . . , wr}
Then U +W = Span{u1. . . . , us, w1, . . . , wr} Proof is ez

Theorem 3.3.

Let V be a vector space over F, U and W subspaces of V . Then

dim(U +W ) = dimU + dimW − dim(U ∪W )
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3.8 Rank of Matrix

Definition 3.8.1.

Let A be an m× n matrix with entries from a field F. Define:

• The Row Space of A (RSp(A)) as the span of of the rows of A. This is a subspace of Fn

• The Row Rank of A is dim(RSp(A))

• The Column Space of A (Csp(A)) as the span of the columns of A. This is a subspace of Fm

• The Column Rank of A is dim(CSp(A))

Definition 3.8.2.

For any matrix A the row rank of A is equal to the column rank of A.

Definition 3.8.3.

Let A be a matrix. The rank of A written rank(A) or rk(A), is the row rank of A

Proposition 3.8.11
Let A be n× n matrix with entries in F, then the following statements are equivalent:

1. rank(A)=n

2. The rows of A form a basis for Fn

3. The columns of A form a basis for Fn

4. A is invertible

4 Linear Transformation

Definition 4.0.1.

Suppose V,W are vector spaces over a field F. Let T : V → W be a function from V toW. we say:

• T preserves addition if for all ν1, ν2 ∈ V we have T (ν1 + ν2) = T (ν1) + T (ν2)

• T preserves scalar multiplicaion if for all ν ∈ V , λ ∈ F, T (λν) = (ν)

• T is a linear tranformation (or linear map) if it:

1. preserves addition

2. preserves scalar multiplicaion

Proposition 4.1.3.
Let A be an m× n matrix over F. Define T : Fn → Fm, by T (ν) = Aν

Proposition 4.1.4
Basic Properties of linear transformations

Let T : V → W be a linear map. Write 0V , 0W for the zero vectors in V and W respectively, We have:

1. T (0V ) = 0W

2. Suppose ν = ϵ1ν1 + . . .+ ϵkνk for ϵi ∈ F, νi ∈ V . Then T (ν) = λ1T (ν1) + . . .+k T (νk)

Proposition 4.1.6
Let V and W be vector spaces over F. Let ν1, . . . , νn be a basis for V . Let w1, . . . , wn be any n vectors from W (not
necessarily distinct). Then this is a unique linear transformation T : V → W such that T (νi) = wi for all i.
Remark 4.1.7
This shows that once we know what a linear transformations does to a basis we know what the transformation is.
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4.1 Image and Kernel

Definition 4.1.1.

Let T : V → W be a linear transformation:

• The Image of T is the set ImT = T (ν) ∈ W : ν ∈ V ⊆ W

• The Kernel of T is the set KerT = ν ∈ V : T (ν) = 0W ⊆ V

Proposition 4.2.3
Let T : V → W be a linear transformation. Then:

1. ImT is a subspace of W

2. KerT is a subspace of W

Proposition 4.2.5
Let T : V → W to be a linear transformation and let ν1, ν2 ∈ V . Then

T (ν1) = T (ν2) ⇐⇒ ν1 − ν2 ∈ KerT

Proposition 4.2.6
Let T : V → W be a linear transformation. Suppose that ν1, . . . , νn is a basis for V. Then ImT = SpanT (ν1), . . . , T (νn)
Proposition 4.2.7
Let A be an m× no matrix. Let Fn → Fm be given by T (ν) = Aν. Then:

1. KerT is the solution space to Aν = 0

2. ImT is the column space of A

3. dim(ImT ) = rankA

Theorem 4.1.

The Rank Nullity theorem Let T : V → W be a linear tranformation. Then

dim(ImT ) + dim(KerT ) = dim(V )

Corollary 4.2.10
A system of linear equations in n unknowns with co-efficients in F:

4.2 Representing vectors and transformations with respect to a basis

Definition 4.3.1
For ν ∈ V with ν =1 ν1 + . . .+ λnνn the vector of V wrt B is

[ν]B =

λ1

...
λn


Proposition 4.3.3 Let V be an n-dimensional vector space overF with a basis B. Then the map:

T : V → Fn

T(ν) = [ν]B

is a bijective linear transformation

Definition 4.2.1.

The Matrix A constructed to map Fn → Fm is the matrix of T with respect to B and Cm we wrute this cTB [ν]B = [Tν]C .
If V = W and B = C we sometimes write this simple as [T ]B

Proposition 4.3.8 Let V be a vector space. Let B = ν1, . . . , νn and C = w1, . . . , wn be bases for V. Then for j ∈ 1, . . . , n
we can write νj = λij + . . .+ λnjwn

Let P be the matrix (λij) =

 λ11 . . . λ1n

...
...

λn1 . . . λnn


So the jth column is [νj ]C .
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1. P = [X]C where X : V → V is the unique linear transformation such that X(wj) = νj for all j

2. For all ν ∈ V, P [ν]B = [νj ]C

3. P =C [Id]B where Id is the identity transformation of V

Definition 4.2.2.

P is the change of basis matrix from B to C.

WARNING. THIS IS CONFUSING BECAUSE OF 1 IN PROPOSITION 4.3.8 maps basis elements to
C to those of B- sometimes described the other way around

Proposition 4.3.10
Let V,B,C, P as above. Then:

1. P is invertible, and its inverse is the change of the basis matrix from C to B

2. T : V → V be a linear transformation, Then [T ]C = P [T ]BP
−1

Remark. 4.3.12
It is a fact that if P is the change of basis matrix C [Id]B from B to C amd Q is the change of basis matrix D[Id]C(where
B,C,D and all basis for Fn then QP =D [Id]CC [Id]B =D [Id]B , the change of basis matrix from B t D.
This gives us a quick method of calculating change of basis matrices for Fn
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