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1 Introduction

Dr Charlotte Kestner
ckestner@ic.ac.uk
Huxley 620

1.1 Why Linear Algebra

Mathematics: linear (easy?) vs non-linear (non-linear)

Often first step is to tackling a problem is to try and linearise it. For example Taylor expansions:

Briefly a function or “transformation” L is linear if L(af1 + bf2) = aLf1 + bLf2, this makes linear
transformations easier to handle than non-linear ones. In the linear algebra part of this course we will go
through some of the mathematics developed to help us deal with such linear transformations.

1.2 Linear Algebra and Groups

– Course is in 2 sections: lin algebra & groups.
– Lin Alg all of first term and some of second term.
– lecturer switch in Jan (David Evans will take over from me).
– Test regime: 3 blackboard tests, 1 mid module, 1 Jan test (this is for MY half).
– For more details see ”‘module information sheet”’ on blackboard.
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2 Systems of Linear Equations

2.1 Introduction

This section is all about methods for solving systems of linear equations. A system of linear equations is
a set of equations in the same variables. For example:

−x+ y + 2z = 2

3x− y + z = 6

−x+ 3y + 4z = 4

This system has three equations and three unknowns, but in general this could be different. For example:

w − x+ y + 2z = 2

w + 3x− y + z = 6

In general a system of m linear equations in n unknowns will have the form:

a11x1 + a12x2 + a13x3 + . . .+ a1nxn = b1

a21x1 + a22x2 + a23x3 + . . .+ a2nxn = b2
... =

...

am1x1 + am2x2 + am3x3 + . . .+ amnxn = bm

Definition 2.1.1 Given a system of m linear equations in n unknowns we can write this in matrix form
as follows:

AX = B

where X =


x1
x2
...
xn

 and B =


b1
b2
...
xm

 are column matrices, and

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn

 is an m× n matrix.

We can also use an Augmented Matrix to represent the system of linear equations:


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

am1 am2 · · · amn bm
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Example 2.1.2.

w − x+ y + 2z = 2

w + 3x− y + z = 6

Could be written as (
1 −1 1 2
1 3 −1 1

)
w
x
y
z

 =

(
2
6

)

The Augmented matrix would be: (
1 −1 1 2 2
1 3 −1 1 6

)

Remark 2.1.3 You should have seen some matrix multiplication already (e.g. in the first problem class).
Notice that matrix multiplication is defined precisely so that the above equation works out.

2.2 Matrix Algebra

We will very briefly go over Matrix algebra. You should make sure you go over the exercises on Problem
sheet 0. For the moment we will mostly assume that the matrices take their values in R (at the end of this
section we will see that we could have chosen to take values from any Field F ).

If we want to add two matrices, they must have the same size and shape (the same order). Then we
can simply add corresponding elements. Formally:

Definition 2.2.1. Given m×n matrices, A = [aij ]m×n and if B = [bij ]m×n, then the (matrix) sum

of A and B is the m× n matrix C = [cij ]m×n where cij = aij + bij .

We can also multiply by a scalar product (any element of the field - here R):

Definition 2.2.2. Let A = [aij ] be any matrix, and let λ ∈ R. Then the scalar multiple of A by
λ, denoted by λA, is obtained by multiplying every element of A by λ. Thus if A = [aij ]m×n then

λA = [λaij ]m×n.

See the handout sheet for properties of matrix addition and scalar multiplication.

We can also multiply two matrices together.

Definition 2.2.3. Let A = (aij)p×q and B = (bij)q×r. Then the matrix product of A and B,
denoted by AB, is the matrix C, where

C = (cij)p×r, where cij =
∑q

k=1 aikbkj

Hopefully you will have done lots of examples of this in the problems class. Let’s have look at some
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properties of matrix multiplication.

Theorem 2.2.4. Matrix multiplication is associative. That is
Let A, B, C be matrices, and α ∈ R, then (AB)C = A(BC).

Proof For A(BC) to be defined, we require the respective sizes of the matrices to be m × n, n ×
p, p × q in which case the product A(BC) is also defined. Calculating the (i, j)th element of this
product, we obtain,

[A(BC)]ij =
n∑
k=1

aik[BC]kj =
n∑
k=1

aik(

p∑
t=1

bktctj)

=
n∑
k=1

p∑
t=1

aikbktctj

If we now calculate the (i, j)th element of (AB)C we obtain the same result:

[(AB)C]ij =

p∑
t=1

[AB]itctj =

p∑
t=1

(

n∑
k=1

aikbkt)ctj

=

p∑
t=1

n∑
k=1

aikbktctj

Consequently, we see that A(BC) = (AB)C.

Example 2.2.5. Matrix multiplication is not commutative (i.e. AB 6= BA)

Proof: To show this we just need one counterexample. Lets try to make it as simple as possible.

• 1× 1 matrices - multiplying these is just like multiplying elements of R and that is commu-
tative!

• So we have to look at the 2× 2 matrices.

AB =

(
a11 a12
∗ ∗

)(
∗ b12
∗ b22

)
=

(
∗ a11b12 + a12b22
∗ ∗

)
BA =

(
b11 b12
∗ ∗

)(
∗ a12
∗ a22

)
=

(
∗ b11a12 + b12a22
∗ ∗

)
Set a11 = b12 = a12 = b22 = b11 = 1...get AB = BA only if a22 = 1

• *****MENTIMETRE*********Is there another way of seeing this in full generality?

Exercise 2.2.6. Let A,B be matrices with entries in R. Show λAB = A(λB).

Proof This splits into two cases:

• AB is not defined therefore λAB is not either. Also B is the same order as λB thus A(λB) is
also not defined.

• In the case where AB is defined let cij =
∑q

k=1 aikbkj be such that cij is the ijth entry of
AB. Then the ijth entry of λAB is λcij .
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The ijth entry of A(λB) is
dij =

∑q
k=1 aikλbkj

= λ
∑q

k=1 aikbkj
= λcij

As the two matrices have the same entries they are equal.

2.3 Row Operations

Recall the definition of an Augmented Matrix from the first lecture. Here’s an example to help.

Exercise 2.3.1. Find the Augmented matrix for the following system of linear equations

−x+ y + 2z = 2

3x− y + z = 6

−x+ 3y + 4z = 4 −1 1 2
3 −1 1
−1 3 4

 x
y
z

 =

 2
6
4


 −1 1 2 2

3 −1 1 6
−1 3 4 4


From School you know how to solve systems of linear equations. There are 3 operations you can do:

• multiply an equation by a non-zero factor.

• Add a multiple of one equation to another

• Swap equations around.

In the augmented matrix format we can do these operations more efficiently.

Definition 2.3.2. Elementary row operations (e.r.o’s) are performed on an augmented matrix.
There are three allowable operations:

• Multiply a row by any (non-zero) number

• Add to any row a multiple of another row

• Interchange two rows

Note that the elementary row operations amount to the actions we could take on the original equa-
tions.

Remark 2.3.3 1. Performing row operations preserves the solutions of a linear system.

2. Each row operation has an inverse row operation.
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Example 2.3.4.

3x− 2y + z = −6 (1)

4x+ 6y − 3z = 5 (2)

−4x+ 4y = 12 (3)

First multiply (3) by 1
4 :

−x+ y = 3 (4)

Then add 3× (4) to (1) and 4× (4) to (2)

y + z = 3 (5)

10y − 3z = 17 (6)

Then take 10× (5) from (6)

−13z = −13 (7)

So z = 1. Plug this into (5):

y + 1 = 3

So y = 2. Plug this into (4):

−x+ 2 = 3

So x = −1

 3 −2 1 −6
4 6 −3 5
−4 4 0 12

 R3 7→ 1
4
R3−−−−−−→ 3 −2 1 −6

4 6 −3 5
−1 1 0 3

 R2 7→R2+4R3−−−−−−−−→
R1 7→R1+3R3 0 1 1 3

0 10 −3 17
−1 1 0 3

 R2 7→R2−10R1−−−−−−−−−→ 0 1 1 3
0 0 −13 −13
−1 1 0 3

 R2 7→− 1
13
R2−−−−−−−→ 0 1 1 3

0 0 1 1
−1 1 0 3

 R1 7→R1−R2−−−−−−−→ 0 1 0 2
0 0 1 1
−1 1 0 3

 R3 7→−R3+R1−−−−−−−−−→ 0 1 0 2
0 0 1 1
1 0 0 −1

 R1 7→R2, R2 7→R3−−−−−−−−−−−−→
R3 7→R1 1 0 0 −1

0 1 0 2
0 0 1 1


We can read this off: 1 0 0

0 1 0
0 0 1

 x
y
z

 =

 −1
2
1


So we get x = −1, y = 2, z = 1.

Definition 2.3.5. Two systems of linear equations are equivalent if either:

• They are both inconsistent.

• The augmented matrix of the first system can be obtained using row operations from the
augmented matrix of the second system and vice versa.

Remark 2.3.6 Equivalently, by Remark 2.3.3 two systems of linear equations are equivalent if and only
if they have the same set of solutions.

If a row consists of mainly 0s and 1s it becomes easier to read off the solutions to the equations. For
example:

Example 2.3.7. If we are working in unknowns x, y, z:
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(
−2 1 2 2
3 −3 1 5

)
Corresponds to

−2x+ y + 2z = 2

3x− 3y + z = 5

Whereas (
0 1 0 2
0 0 1 5

)
Corresponds to

y = 2

z = 5

Definition 2.3.8. We say a matrix is in echelon form (ef) if must satisify the following:

• All of the zero rows are at the bottom.

• The first non-zero entry in each row is 1.

• The first non-zero entry in row i is strictly to the left of the first non-zero entry in row i+ 1.

We say a matrix is in row reduced echelon form (rref) if it is in echelon form and:

• The first non-zero entry in row i appears in column j, then every other element in column j
is zero.

Example 2.3.9. 
1 1 2 2
0 1 7 12
0 0 1 −10
0 0 0 0




1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


EF RREF

2.4 Elementary matrices

Elementary row operations can be carried out using matrix multiplication.

Definition 2.4.1. Any matrix that can be obtained from an identity matrix by means of one elemen-
tary row operation is an elementary matrix.

There are three types of elementary matrix:

• The general form of the elementary matrix which multiplies a row by any (non-zero) number,
α is of the form

Er(α) =


1 . . . 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . α . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 . . . 1


where all elements on row r is multiplied by α.

• The general form of the elementary matrix which adds a multiple of a row by any non-zero
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number α to another is of the form

Ers(α) =


1 . . . 0 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 1 . . . α . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 0 . . . 1


where all elements of s are multiplied by α and added to row r.

• The general form of the elementary matrix which interchanges two rows is of the form

Ers =



1 . . . 0 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 1 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 0 . . . 1


where r and s are the rows to interchange.

Example 2.4.2. Find the string of elementary matrices that correspond to the following row opera-
tions:

 0 1 1 3
0 0 −13 −13
−1 1 0 3

 R2 7→− 1
13
R2−−−−−−−→ 0 1 1 3

0 0 1 1
−1 1 0 3

 R1 7→R1−R2−−−−−−−→ 0 1 0 2
0 0 1 1
−1 1 0 3

 R3 7→−R3+R1−−−−−−−−−→ 0 1 0 2
0 0 1 1
1 0 0 −1

 R1 7→R2,R2 7→R3,R3 7→R1−−−−−−−−−−−−−−−→ 1 0 0 −1
0 1 0 2
0 0 1 1



 1 0 0
0 − 1

13 0
0 0 1


 1 −1 0

0 1 0
0 0 1


 1 0 0

0 1 0
1 0 −1


 1 0 0

0 0 1
0 1 0

  0 1 0
1 0 0
0 0 1



Exercise 2.4.3. Find the string of elementary matrices corresponding to the following row operations.
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 3 −2 1 −6
4 6 −3 5
−4 4 0 12

 R3 7→ 1
4
R3−−−−−−→ 3 −2 1 −6

4 6 −3 5
−1 1 0 3

 R2 7→R2−4R3−−−−−−−−→
R1 7→R1+3R3 0 1 1 3

0 10 −3 17
−1 1 0 3

 R2 7→R2−10R1−−−−−−−−−→

*****Mentimeter***************

Theorem 2.4.4. Let A be a m × n matrix and let E be an elementary m ×m matrix. The matrix
multiplication EA applies the same elementary row operation on A that was performed on the iden-
tity matrix to obtain E.

Proof: exercise.
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2.5 More matrices

Definition 2.5.1. We say a matrix is square if it has the same number of rows as it does columns
(i.e. its a member of Mn×n(F ) for some field F ).

Definition 2.5.2.

A square matrix A = aij ∈Mn×n(F ) is said to be:

1. upper triangular if aij = 0 wherever i > j . A has zeros for all its elements below the

diagonal.

2. lower triangular if aij = 0 wherever i < j . A has zeros for all its elements above the

diagonal.

3. diagonal if aij = 0 wherever i 6= j . That is to say A has zeros for all its elements except

those on the main diagonal.

Example 2.5.3.  1 1 2
0 1 7
0 0 1

  1 0 0
2 0 0
0 0 0

  1 0 0
0 −2 0
0 0 0


Upper triangular Lower triangular diagonal

Definition 2.5.4. The n × n identity matrix is denoted by In. An identity matrix has all of its
diagonal entreis equal to 1 and all other entries equal to 0. It is called the identity matrix because it
is the multiplicative identity matrix for n× n matrices, i.e.

For A ∈Mn×n(R), InA = AIn = A

Definition 2.5.5. If, for a square matrix B, if there exists another square matrix B−1 such that
BB−1 = I = B−1B, then we say that B is invertible, and B−1 is an inverse of B.

It is important to realise that the matrix B might not have an inverse: B−1 might not exist.

Definition 2.5.6. A matrix without an inverse is called a singular matrix.

Example 2.5.7. Let A =

(
2 0
1 −1

)
, verify that it has an inverse: B =

(
1
2 0
1
2 −1

)
.

AB =

(
2 0
1 −1

)(
1
2 0
1
2 −1

)
=

(
1 0
0 1

)
BA =

(
1
2 0
1
2 −1

)(
2 0
1 −1

)
=

(
1 0
0 1

)

Theorem 2.5.8. The inverse of a given matrix is unique. If there exist square matrices A, B, C
such that AB = I = CA, then B = C.
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Proof Suppose that AB = BA = I and AC = CA = I, then

B = BI

= B(AC)

= (BA)C

= IC

= C

This theorem shows that if a matrix A is invertible, we can talk about the inverse of A, denoted by A−1. In
some circumstances, we can say that a matrix is invertible, and we can find an expression for its inverse,
without knowing exactly what the matrix is.

Exercise 2.5.9. SupposeA,B ∈Mn×n(R) are both invertible. Show thatAB is invertible by finding
its inverse.

********MENTIMETER***************

(a) A−1B−1

(b) B−1A−1

(c) BAA−1B−1B−1A−1

Definition 2.5.10. If A = [aij ]m×n, then the Transpose of A is AT = [aji]n×m.

Example 2.5.11. If

A =

(
1 0 5
4 2 1

)
, then AT =

 1 4
0 2
5 1


and we can see that the transpose of a 2× 3 matrix must be a 3× 2 matrix.

Exercise 2.5.12. Let A ∈Mn×m(R), B ∈Mm×p(R), (AB)T = BTAT .

Proof:

First remark that BTAT is defined and has order p× n, not also AB has order n× p so (AB)T has
order p× n.

Let A = (aij) and B = (bij)

• The ijth entry of AB is
∑m

k=1 aikbkj . This is the jith entry of (AB)T

• The jith entry of BTAT is
∑m

k=1(b
T )jk(a

T )ki =
∑m

k=1(b)kj(a)ik =
∑m

k=1 aikbkj

Theorem 2.5.13. Given an invertible square matrix A, then AT is also invertible, and (AT)−1 =
(A−1)T.
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Proof From the definition of the inverse

AA−1 = I

(AA−1)T = IT

= I

(A−1)TAT = I

Also

A−1A = I

(A−1A)T = IT

= I

AT(A−1)T = I

Equations 8 and 8 prove that (A−1)T is the (unique) inverse of AT, as required.

2.6 Inverses using row operations

We can use Elementary matrices to find inverses of matrices (it they exist).

Theorem 2.6.1. Every elementary matrix is invertible and the inverse is also an elementary matrix.

Proof

Matrix multiplication can be used to check that

Er(α)Er(α
−1) = Er(α

−1)Er(α) = I

Ers(α)Ers(α
−1) = Ers(α

−1)Ers(α) = I

Ers(α)Ers(α) = I

Alternatively, the results can be checked by considering the corresponding ero’s. Hence

Er(α)−1 = Er(α
−1), Ers(α)−1 = Ers(−α), Ers

−1 = Ers

Theorem 2.6.2. If the square matrix A can be row-reduced to an identity matrix by a sequence of
elementary row operations, then A is invertible and the inverse of A is found by applying the same
sequence of elementary row operations to I.

Proof

Let A be a square matrix, then A can be row-reduced to I by a sequence of elementary row op-
erations. Let E1,E2,E3 . . . ,Er be the elementary matrices corresponding to the elementary row
operations, so that

Er . . .E2E1A = I (8)

But Theorem 2.6.1 states that Er, . . . ,E2,E1 are invertible. Multiplying Equation 8 by E−11 E−12 . . .E−1r

gives A = E−11 E−12 . . .E−1r . Since A is a product of elementary matrices, it is invertible (using The-
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orem 2.6.1) and
A−1 = (E−11 E−12 . . .E−1r )−1 = (Er . . .E2E1)I

Example 2.6.3. Let A =

 1 0 1
1 2 0
3 0 4

 find A−1.

The method consists of writing the identity matrix I to the right of our given matrix, and then using
the same elementary row operations on both matrices to turn the left-hand matrix into I. When this
has been achieved, the right-hand matrix will have been transformed into the inverse matrix, A−1.

First, we construct the augmented matrix A|I, by writing the identity matrix to the right of the matrix
A,  1 0 1 1 0 0

1 2 0 0 1 0
3 0 4 0 0 1


After our row operations, this matrix will be transformed into I|A−1.

The steps might be as follows:

R3 7→R3−3R1−−−−−−−−→  1 0 1 1 0 0
1 2 0 0 1 0
0 0 1 −3 0 1


R2 7→R2−R1−−−−−−−→  1 0 1 1 0 0

0 2 −1 −1 1 0
0 0 1 −3 0 1


R2 7→R2+R3−−−−−−−→  1 0 1 1 0 0

0 2 0 −4 1 1
0 0 1 −3 0 1


R1 7→R1−R3−−−−−−−→  1 0 0 4 0 −1

0 2 0 −4 1 1
0 0 1 −3 0 1


R2 7→ 1

2
R2−−−−−−→  1 0 0 4 0 −1

0 1 0 −2 1
2

1
2

0 0 1 −3 0 1



We have found the inverse of our matrix. We could check by doing the matrix multiplication: 4 0 −1
−2 1

2
1
2

−3 0 1

 1 0 1
1 2 0
3 0 4

 =

 1 0 0
0 1 0
0 0 1


as desired.
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2.7 Geometric Interpretation

As you have seen in the introductory module vectors in R2/R3 can be represented as points in 2 or 3
dimensional space. In this section we will look geometric interpretations of some of the things we have
seen so far.

A system of linear equations in n unknowns specifies a set in n-space.

Example 2.7.1.

Consider:
x1 + x2 + x3 = −1
2x1 + x3 = 1
3x1 + x2 = −4

Using row reduction we get x1 = −0.5, x2 = −2.5 x3 = 2, which specifies a point. Whereas:

x1 + x2 + x3 = −1
2x1 + x3 = 1

Using row reduction we get x1 = −2.5− 0.5x3 and x2 = 1.5− 0.5z giving the line −2.5
1.5
0

+ λ

 −0.5
−0.5

1

 for λ ∈ R

We have seen that we can apply matrices to vectors via matrix multiplication. So we can see a matrix
A ∈Mm×n(R) as a map:

A : Rn 7→ Rm
A(v) = Av

We can represent many different operations using matrices.

Example 2.7.2.

Consider A =

(
5 0
0 5

)
Then A

(
x
y

)
=

(
5x
5y

)
.

This is a stretch by a factor of 5.

Definition 2.7.3. Let T be a function from Rn to Rm then we say T is a linear transformation if
for every v1, v2 ∈ Rn and every α, β ∈ R we have:

T (αv1 + βv2) = αT (v1) + βT (v2)

Proposition 2.7.4. Let A ∈ Mn×m(R) then seen as a map from Rn to Rm A is a linear transfor-
mation.

Proof:
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A(αv1 + βv2) = A(αv1) +A(βv2) by distributivity of matrix multiplication
= αA(v1) + βA(v2) by exercise

Proposition 2.7.5. Let A ∈Mn×n(R). The following are equivalent:

(i) A is invertible with inverse A−1 = AT

(ii) ATA = In = AAT .

(iii) A preserves inner products (i.e. for all x, y ∈ Rn (Px) · (Py) = x · y.

Proof:

(i)⇔ (ii) is just by definition.

(ii)⇔ (iii)First note that for x, y ∈ Rn x · y as defined in the intro to maths course is just xT y as
matrix multiplication. So A preserves inner products if and only if:

(Px) · (Py) = x · y ∀x, y ∈ Rn
⇐⇒ (Px)T (Py) = xT y ∀x, y ∈ Rn
⇐⇒ xTP TPy = xT Iny ∀x, y ∈ Rn
⇐⇒ xT (P TP − In)y = 0 ∀x, y ∈ Rn

(ii)⇒ (iii) now trivial.

(iii) ⇒ (ii) let xi =


0
...
1
...
0

 i.e. column vector with 0’s everywhere except the ith row where

there is a 1. Then we know for each xi (xi)
T (P TP − In)y = 0 so we can conclude that

(P TP − In)y =

 0
...
0


Similarly taking yi to be the column vector with 0’s everywhere except the ith row where there is a
1 we get (P TP − In) = 0 so P TP = In.

Definition 2.7.6. A matrix A ∈Mn×n is called Orthogonal if it is such that A−1 = AT

Example 2.7.7.

1. Consider the matrix

A =

(
0 −1
1 0

)
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This matrix is orthogonal as A−1 =

(
0 1
−1 0

)
If we apply it to

(
x
y

)
we get

(
−y
x

)
. This is a rotation through π

2 radians anti clockwise.

2. Consider the matrix

B =

(
0 −1
−1 0

)

This matrix is orthogonal as A−1 =

(
0 −1
−1 0

)
If we apply it to

(
x
y

)
we get

(
−y
−x

)
. This is a reflection through the line y = −x.

Exercise 2.7.8. Watch the linear Algebra video to help you.

1. Let Rθ be the anticlockwise rotation of R2 about the origin through θ radians. Using any
school geometry or trigonometry you like, find the matrix representing Rθ.

Assuming Rθ is linear (see lectures!) the vector e1 =
(
1
0

)
is rotated to

(
cos θ
sin θ

)
while e2 =

(
0
1

)
is rotated to

(− sin θ
cos θ

)
so the matrix is

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

2. Look at PS2 Q6a.
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2.8 Fields

So far, for both matrices and linear equations, we have only been using entries in R. However, we could
have taken entries from any field.

Every field has distinguished elements 0 (additive identity) and 1 (multiplicative identity).

Fact 2.8.1. Over any field F we can define:

1. The null matrix (i.e. the additive identity matrix) for Mn×m(F ) as
0 0 . . . 0
0 0
...

. . .
0 0


,

2. The (multiplicative) identity matrix for Mn×n(F ) as
1 0 . . . 0
0 1
...

. . .
0 0


Remark 2.8.2 It is important to know what field we are working in, and that we don’t say take scalars
from a different field to the one matrix entries are from. (e.g. the set of matrices Mn×m(Q) is not closed
under scalar multiplication by elements from R).

Being able to work over a general field allows us to use finite fields.

Theorem 2.8.3. Let Fp = {0, 1, ..., p − 1}, consider Fp with addition defined by addition modulo
p and multiplication as multiplication modulo p. Then the structure (Fp,+ (mod p),× (mod p)) is a
field.

Proof:

A1-4 (Additive (commutative) group) obvious from properties of addition in Z.

M1-3 (mulitplicative semigp with 1)obvious from properties of addition in Z.

M4: inverses: obviously for 0 ≤ x < p we have gcd(x, p) = 1 by Intro to Uni Maths we have:
∃s, t ∈ Z such that 1 = sx+ tp then take x−1 = s (mod p).

D1 (distributive law) obvious from properties of addition in Z.

Example 2.8.4. F6 defined as above is not a field. For example 3 6= 0 does not have an inverse.
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3 Vector Spaces

3.1 Intro to Vector Spaces

Definition 3.1.1. Let F be a field. A vector space over F is a non-empty set V together with the
following maps:

1. Addition
⊕ : V × V 7→ V

(v1, v2) 7→ v1 ⊕ v2

2. Scalar Multiplication
� : F × V 7→ V

(f, v2) 7→ f � v2

⊕ and � must satisfy the following Vector Space axioms:

For Vector Addition:

A1 Associative law: (u⊕ v)⊕w = u⊕ (v ⊕w).

A2 Commutative law: v ⊕w = w ⊕ v.

A3 Additive identity: 0V ⊕ v = v, where 0V is called the IDENTITY vector (or sometimes the
zero vector).

A4 Additive inverse: v ⊕ (	v) = 0V .

For scalar multiplication:

A5 Distributive law: r � (v ⊕w) = (r � v)⊕ (r �w).

A6 Distributive law: (r + s)� v = (r � v)⊕ (s� v).

A7 Associative law: r � (s� v) = (rs)� v.

A8 Identity for scalar mult: 1� v = v.

From now on we will drop the ⊕ and �, and use + and · the point was to emphasise that these are not
the same as field addition and multiplication.

Definition 3.1.2. Let V be a vector space over F we call:

• Elements of V are called vectors.

• Elements of F are called scalars.

• We sometimes refer to V as an F -vector space.

Example 3.1.3. The following are examples of vector spaces over R:

19



• The canonical example is the set of vectors Rn over R, where ⊕ is normal vector addition
and � is multiplication by a scalar. The additive inverse of v is simply −v

• The set Mmn of allm×nmatrices. This is because addition of twom×nmatrices produces an
m×nmatrix and multiplication of anm×nmatrix by a scalar also produces am×nmatrix.
The zero vector is the zero matrix, and for any matrix A, the matrix−A is the additive inverse.
Properties of matrix arithmetic covered in Chapter 1, show that all properties in Definition
3.1.2 required of a vector space are satisfied. We will see this later in the course in detail.

• Define RX to be the set of real valued functions on X (i.e. RX := {f : f a function, f :
X → R}). Then for f, g ∈ RX and α ∈ R define:

f ⊕ g :X → R (α� f) :X → R
(f ⊕ g)(x) = f(x) + g(x) (α� f)(x) = α(f(x))

Exercise 3.1.4. Which of the following examples of vector spaces over R :

1. The set of vectors

V =

{(
a
b

)
: a, b ∈ Z

}
with the usual vector addition and multiplication

No, because
(

1
1

)
∈ V, , but

√
2

(
1
1

)
6∈ V

2. The set of vectors:

V =

{(
a+ 1

2

)
: a ∈ R

}
with the usual vector addition and multiplication

No, because
(

0
0

)
6∈ V

3. V = R2 with the following addition and scalar multiplication operations:(
x
y

)
⊕
(
a
b

)
=

(
x+ a
y + b

)
and r �

(
x
y

)
=

(
0
ry

)
yes

3.2 Subspaces

Definition 3.2.1. A subset W of a vector space V is a subspace of V if

S1 W is not empty (i.e. e ∈W )

S2 for v,w ∈W , then v ⊕w ∈W closed under vector addition

S3 v ∈W and r ∈ R, then r � v ∈W closed under scalar multiplication.

N.B. Sometimes we use the notation U ≤ V to mean U is a subspace of V .

Remark 3.2.2 Note that V and the zero subspace, 0 are always subspaces of V . Any other subspace of
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V is called a proper subspace of V .

Proposition 3.2.3. Every subspace of an F -vector space V must contain the zero vector.

Proof:

Claim: For an F -vector space V with 0 ∈ F the field additive identity we have 0v = 0V for all
v ∈ V . Proof of claim: Exercise (note enought to show that 0v is the vector space additive identity.

Let v ∈ V (V is non-empty) then 0V = 0⊕ v ∈ V as V is closed under scalar multiplication.

Example 3.2.4. Show that the set X =

{(
x
0

)
;x ∈ R

}
is a subspace of R2.

Worked Answer

S1 The vector
(

1
0

)
∈ X , therefore X is non-empty.

S2 If v =

(
x1
0

)
and w =

(
x2
0

)
, then

v ⊕w =

(
x1
0

)
⊕
(
x2
0

)
=

(
x1 + x2

0

)
∈ X

S3 If v =

(
x1
0

)
and r ∈ R, then

r � v = r �
(
x1
0

)
=

(
rx1
0

)
∈ X

Therefore, X =

{(
x
0

)
;x ∈ R

}
is a subspace of R2.

Exercise 3.2.5. All subspaces of a vector space over F are vector spaces over F in their own right.

Theorem 3.2.6. Let U,W be subspaces of V . Then U ∩ W is a subspace of V. In general, the
intersection of any set of subspaces of a vector space V is a subspace of V .

ProofLet C be a set of subspaces of V and T is their intersection. Then T 6= ∅ since every subspace
of V (and therefore every subspace in C) contains the zero vector, and so does T .

Suppose that x, y ∈ T . Since x and y belong to every subspaceW inC, so does x⊕y, and therefore
x⊕ y ∈ T .

If x ∈ T , then x belongs to every subspace W in the set C, and so does r � x and so r � x ∈ T .

Therefore T is a subspace of V .
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Example 3.2.7. Note that in general if U and W are subspaces of V , then U ∪W is not a subspace
of V . For example, let

U =

{(
x
0

)
: x ∈ R

}
,W =

{(
0
y

)
: y ∈ R

}
and V = R2.

Then (
1
0

)
,

(
0
1

)
∈ U ∪W

but (
1
0

)
⊕
(

0
1

)
=

(
1
1

)
/∈ U ∪W.
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3.3 Spanning

Definition 3.3.1. Let V be an F -vector space. Let u1, ..., um ∈ V then:

• A Linear Combination of u1, ..., um is a vector of the form α1u1 + ... + αmum for scalars
α1, ..., αm ∈ F . Note we can also write α1u1 + ...+ αmum as

∑m
i=1 αiui.

• The span of u1, ..., um is the set of linear combinations of u1, ..., um. i.e. Span(u1, ..., um) =
{α1u1 + ...+ αmum ∈ V : α1, ..., αm ∈ F}.

NB: there are several different notations used for Span, e.g., Sp(X), < X >.

Lemma 3.3.2.

Let V be an F vector space, and u1, ..., um ∈ V then Span(u1, ..., um) is a subspace of V .

Proof: Clearly Span(u1, ..., um) ⊂ V so we do the subspace test:

SS1 u1 ∈ Span(u1, ..., um)

SS2 Suppose v, w ∈ Span(u1, ..., um) then v =
∑m

i=1 αiui and w =
∑m

i=1 βiui so

v + w =

m∑
i=1

(αi + βi)ui ∈ Span(u1, ..., um) as F closed under addition, i.e. αi + βi ∈ F

SS3 Suppose v ∈ Span(u1, ..., um) and λ ∈ F then v =
∑m

i=1 αiui do v =
∑m

i=1 λαiui ∈
Span(u1, ..., um) as λαi ∈ F for each i ∈ {1, ...,m}

Remark 3.3.3.

• By convention we take the empty sum to be 0V , so Span∅ = {0V }

• For an infinite set S we still only take finite sums i.e.

Span(S) =

∑
si∈S′

αisi : S′ ⊂finite S, αi ∈ F


Exercise 3.3.4. Show that for an infinite subset S of an F -vector space V , Span(S) is a subspace of
V .

Definition 3.3.5. Let V be an F vector space, and suppose S ⊂ V is such that Span(S) = V then
we say S spans V , or equivalently S is a spanning set for V .

Example 3.3.6.

•


 1

0
0

 ,

 0
1
0

 ,

 0
0
1

 spans R3.
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• Rdeg≤n[x] spanned by {1, x, x2...., xn}

Exercise 3.3.7. Which of the following sets span R3:

1.

 1
0
0

 ,

 0
1
0

 ,

 1
1
0

 ,

 0
1
1



2.

 1
0
1

 ,

 0
1
0

 ,

 1
1
1



3.

 3
0
2

 ,

 0
1
1

 ,

 −1
−1
−1



4.

 1
0
1

 ,

 0
1
0


In the above exercise we see that we sometimes have “redundant” vectors in a spanning set. If as well as
spanning the set is linearly independent, then this won’t happen.
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3.4 Linear Independence

Definition 3.4.1. Let V be an F -vector space. We say u1, ..., um ∈ V are linearly independent if
whenever

α1u1 + ...+ αmum = 0V ,

then it must be that

α1 = · · · = αm = 0.

We say {u1, ..., um} is a linearly independent set.

Alternatively, a set {u1, ..., um} is linearly dependent if α1u1 + ... + αmum = 0V where at least
one αi 6= 0, and a set is linearly independent if it is not linearly dependent.

Example 3.4.2.

• The set S =


 1

0
0

 ,

 0
1
1

 is a linearly independent subset of R3.

• Let f, g : R 7→ R be functions and suppose f(x) = x and g(x) = x2. The set {f, g} is a
linearly independent subset of V = RR.
Proof: Suppose αg + βf = 0V now two functions are equal if they are equal on all of the
domain. So consider 1, 2 ∈ R. Then we get

0V (1) = (αg + βf)(1)
0 = α+ β

0V (2) = (αg + βf)(2)
0 = 2α+ 4β

So we have α = −β and α = −2β thus α = β = 0.

• The set S =


 1

0
0

 ,

 2
1
1

 1
1
1

 is a linearly dependent subset of R3.

 1
1
1

+

 1
0
0

+ (−1)

 2
1
1

 =

 0
0
0


• For V and F -vector space then {0V } is linearly dependent

• For V and F -vector space v ∈ V then {v} is linearly independent iff v 6= 0V .

Exercise 3.4.3. Which of the following sets are in linearly independent subsets of R3:

1.

 1
0
0

 ,

 0
1
0

 ,

 1
1
0

 ,

 0
1
1
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2.

 1
0
1

 ,

 0
1
0

 ,

 1
1
1



3.

 3
0
2

 ,

 0
1
1

 ,

 −1
−1
−1



4.

 1
0
1

 ,

 0
1
0


Lemma 3.4.4. Let v1, ..., vn be linearly independent in an F -vector space V . Let vn+1 be such that
vn+1 6∈ Span(v1, ..., vn). Then v1, ..., vn+1 is linearly independent.

Proof: Suppose α1, ..., αn+1 ∈ F are such that α1v1 + ...+ αn+1vn+1 = 0V .

If αn+1 6= 0 then vn+1 = 1
αn+1

(α1v1 + ...+ αnvn) ∈ Span(v1, ..., vn). Contradiction.

So αn+1 = 0 so α1v1 + ... + αnvn = 0V , but v1, ..., vn are linearly independent, thus α1 = ... =
αn = 0.
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3.5 Bases

Definition 3.5.1.

• Let V be an F -vector space. A basis of V is a linearly independent spanning set of V .

• If V has a finite basis then we say V is a finite dimensional vector space.

Example 3.5.2.

• The set B =


 1

0
0

 ,

 0
1
0

 ,

 0
0
1

 is a basis for R3. We have done linear indepen-

dence, you must show Span(B) = R3.

• Let F be a field, then in Fn let ei be the columnn vector with zeros everywhere except the
ith row. Then {e1, ..., en} forms a basis for Fn and is known as the standard basis.

• R[x] has basis {1, x, x2, ...}.

Note: Not every vector space is finite dimensional. For example R[x] the set of real polynomials doesn’t
have a finite basis, but it does have infinite bases, e.g., {1, x, x2, . . . }.

Exercise 3.5.3. Which of the following sets span R3:

1.

 1
0
0

 ,

 0
1
0

 ,

 1
1
0

 ,

 0
1
1



2.

 1
0
1

 ,

 0
1
0

 ,

 1
1
1



3.

 3
0
2

 ,

 0
1
1

 ,

 −1
−1
−1



4.

 1
0
1

 ,

 0
1
0


Proposition 3.5.4. Let V be an F -vector space, let S = {u1, ..., um} ⊆ V . Then S is a basis of V
if and only if every vector in V has a unique expression as a linear combination of elements of S.

Proof:

(⇒) Suppose S is a basis of V . Take v ∈ V .

[AIM: there are unique α1, ..., αn ∈ F such that v =
∑m

i=1 αiui]

Since V is spanned by S we have some α1, ..., αn ∈ F such that v =
∑m

i=1 αiui.

Suppose for contradiction the αi’s are not unique, i.e. there exist β1, ..., βn ∈ F such that v =
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∑m
i=1 βiui.

Then we have: ∑m
i=1 αiui =

∑m
i=1 βiui∑m

i=1(αi − βi)ui = 0

As S is LI we get αi − βi = 0 thus αi = βi

(⇐) Suppose conversely that for every v ∈ V has there are unique α1, ..., αm such that v =∑m
i=1 αiui

[AIM: we need to show that S is spanning and LI.]

• Spanning: Let v ∈ V then v =
∑m

i=1 αiui ∈ Span(S)

• LI: First remark that 0u1 + ...0um = 0V so if
∑m

i=1 λiui = 0V then by uniqueness we get
αi = 0

So S is a basis for V .

Remark 3.5.5 Let B = {u1, ...um} be a basis for an F -vector space V . By Proposition 3.5.4 we see
that we have a bijective map f from V to Fm, for v = α1u1 + ...+αmum we define f(v) = (α1, ..., αm)
we call (α1, ..., αm) the co-ordinates of v

Proposition 3.5.6. Let V be a non-trivial (i.e. not {0}) F -vector space and suppose V has a finite
spanning set S then S contains a linearly independent spanning set.

I.e., if V has a finite spanning set it has a basis - for cases where there is no finite spanning set we
would need something called the axiom of choice to show this (see LOGIC course in year 3)

Proof:

Consider T such that T is linearly independent subset of S, and for any LI subset of S, T ′ we have
that |T ′| ≤ |T |. We can get such a T as we have at least some v ∈ V so {v} is linearly indpendent
(i.e. |T | ≥ 1).

Claim T is spanning.

Proof of Claim: Suppose not then there is a v ∈ S \ Span(T ) but by Lemma 3.4.4 v ∪ T is LI.
Contradiction.
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3.6 Dimension

Lemma 3.6.1. Steinitz Exchange Lemma
Let V be a vector space over F . Take X ⊆ V and suppose u ∈ Span(X) but u /∈ Span(X \ {v})
for some v ∈ X . Let Y = (X \ {v}) ∪ {u} (i.e., we “exchange v for u”). Then Span(X) =
Span(Y ).

Proof

Since u ∈ Span(X) we have α1, ..., αn ∈ F such that v1, ..., vn ∈ X such u = α1v1 + ...+αnvn.
Now there is a v ∈ X such that u /∈ Span(X \ {v}) we may assume, WLOG, that v = vn, thus
αn 6= 0 so:

v = vn =
1

αn
(u− α1v1...− αn−1vn−1)

Now if w ∈ Span(Y ) then for some β0, β1, ..., βm we have v1, ..., vm ∈ X \ {v}

w = β0u+
∑m

i=0 βivi
= β0(α1v1 + ...+ αnvn) +

∑m
i=0 βivi ∈ Span(X \ {v} ∪ {v}) = Span(X)

So Span(Y ) ⊆ Span(X).

Similarly we have that if w ∈ Span(X) the w is a linear combination of elements of X , now we
can replace vn with 1

αn
(u − α1v1... − αn−1vn−1 so we can express w as a linear combination of

elements of Y . So Span(X) ⊆ Span(Y ), thus Span(Y ) = Span(X).

This lemma is essential to being able to define the dimension of a vector space - and relies on being able
to invert elements in the field.

Exercise 3.6.2. Verify the Steinitz exchange lemma where:

• V = R3

• X = {e1, e2}

• u =

 2
3
0


Theorem 3.6.3. Let V be a finite dimensional vector space over F . Let S, T be finte subsets of V .
If S is LI and T spans V then |S| ≤ |T |. That is, LI sets are at most as big as spanning sets.

Proof: Assume S is LI and T spans V and suppose:

S = {s1, ..., sm}
T = {t1, ..., tn}

Let T = T0, since Span(T0) = V there is some I such that s1 ∈ Span({t1, ..., ti}), but
s1 /∈ Span({t1, ..., ti−1}).

Thus by SEL Span({s1, t1, ..., ti−1}) = Span({t1, ..., ti}).
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Let T1 = {s1, t2, ..., ti−1, ti+1, ..., tn}, then we have Span(T1) = Span(T0) = V . We continue
this process inductively.

Suppose that for some j with 1 ≤ j ≤ mwe have Tj = {s1, ..., sj , ti1 , ..., tin−j}, with Span(Tj) =
Span(T ), and tik ∈ T .

Now sj+1 ∈ Span(Tj) so there is an ik such that sj+1 ∈ Span({s1, ..., sj , ti1 , ..., tik}), but
sj+1 /∈ Span({s1, ..., sj , ti1 , ..., tik−1

}).

Note S is LI so sj+1 /∈ Span({s1, ..., sj}) i.e. tik ∈ T .

We let Tj+1 = {s1, ..., sj+1, ti1 , ..., tik−1
, tik , ..., tin−j} and by SEL we have Span(Tj+1) = Span(Tj) =

Span(T ) = V , by relabeling the elements of Tj+1 we can see we have a set of the form:

Tj+1 = {s1, ..., sj+1, ti1 , ..., tin−(j+1)

After j steps we have replaced j members of T with j members of S. We cannot run out of mem-
bers of T before we run out of members of S; as otherwise a remaining element of S would be a
linear combination of the elements of S already swapped into T , thus m ≤ n.

Corollary 3.6.4. Let V be a finite dimensional vector space. Let S, T be bases of V , then S and T
are both finite and |S| = |T |.

Proof: Since V is finite dimensional it has a finite basis B say. Suppose |B| = n. Now B is a
spanning set and |B| = n so by Theorem 3.6.3 any LI subset has size at most n.

Since S is LI we get |S| ≤ n, similarly |T | ≤ n - so both sets are finite.

Also we have S is spanning and T is LI, so |T | ≤ |S|, also T is spanning and S is LI, so |S| ≤ |T |.
Thus |S| = |T |.

Definition 3.6.5. Let V be a finite dimensional vector space. The dimension of V , written dimV ,
is the size of any basis of V .

Remark 3.6.6 Note that we needed Corollary 3.6.4 and thus the SEL to know that the size of a basis is
unique (a basis certainly isn’t).

Example 3.6.7. In PS2 you were asked to describe all the subspaces of R3 this becomes much
easier once we know about dimensions.R3 is an R vector space of dimension 3.

As subspaces are vector spaces in their own right so they also have dimensions, and these must be
less than or equal to 3:

• dim 3: the only subspace of dimension 3 is R2

• dim 2: planes going through the origin

• dim 1: lines going through the
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• dim 0: {

 0
0
0

}
Lemma 3.6.8. Suppose that dimV = n:

1. Any spanning set of size n is a basis.

2. Any linearly independent set of size n is a basis.

3. S is a spanning set if and only if it contains a basis (as a subset).

4. S is linearly independent if and only if it is contained in a basis (i.e. it’s a subset of a basis).

5. Any subset of V of size > n is linearly dependent.

Proof: Exercise.
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3.7 More subspaces

Definition 3.7.1. Let V be a vector space, U and W be subspaces of V .

• The intersection of U and W is:

U ∩W = {v ∈ V : v ∈W and v ∈ U}

• The sum of U and W is:

U +W = {u+ w : u ∈ U,w ∈W}

Remark 3.7.2. U ⊆ U + W and W ⊆ U + W . This is because 0 ∈ U and 0 ∈ W , so for every
u ∈ U , u = u+ 0 ∈ U +W . Similarly, for every w ∈W , w = 0 + w ∈ U +W

Example 3.7.3. Let V = R2 over R, U = Span{(1, 0)},W = Span{(0, 1)}. Claim U+W = R2.

Proof: Let (λ, µ) ∈ R2 then (λ, 0) ∈ U , (0, µ) ∈W so

(λ, µ) = (λ, 0) + (0, µ) ∈ U +W

Exercise 3.7.4. Let U and W be subspaces of V an F -vector space. Then U + W and U ∩W are
subspaces of V .

Proof:

1. U +W is a subspace: Clearly U +W ⊂ V , so we can apply the subspace test:

• 0 ∈ U and 0 ∈W so 0 + 0 = 0 ∈ U +W .

• Suppose v1, v2 ∈ U + W then v1 = u1 + w1 and v2 = u2 + w2 for some ui ∈ U and
wi ∈W . Consider

v1 + v2 = (u1 + w1) + (u2 + w2)
= (u1 + u2)︸ ︷︷ ︸ + (w1 + w2)︸ ︷︷ ︸ + in V is commutative and associative

∈ U ∈W U,W closed under +

So v1 + v2 ∈ U +W

• Let λ ∈ R and v ∈ U +W then v = u+ w for some u ∈ U and w ∈W . Consider

λv = λ(u + w)
= λu︸︷︷︸ + λw︸︷︷︸ by distributivity in V
∈ U ∈W U,W closed under scalar×

So λv ∈ U +W

2. U ∩W is a subspace. Exercise.

Proposition 3.7.5. Let V be a vector space over F . Let U and W be subspaces of V , suppose
additionally:

• U = Span{u1, ..., us}
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• W = Span{w1, ..., wr}

Then U +W = Span{u1, ..., us, w1, ..., wr}.

Proof:

1. Show U + W ⊆ Span{u1, ..., us, w1, ..., wr}. Let v ∈ U + W then u = u + w for some
u ∈ U and w ∈W . Therefore:

• u = λ1u1 + ...+ λsus

• w = µ1w1 + ...+ µrwr

So v = λ1u1 + ...+ λsus + µ1w1 + ...+ µrwr ∈ Span{u1, ..., us, w1, ..., wr}

2. Show Span{u1, ..., us, w1, ..., wr} ⊆ U + W . Suppose v ∈ Span{u1, ..., us, w1, ..., wr}
then:

v = λ1u1 + ...+ λsus︸ ︷︷ ︸ + µ1w1 + ...+ µrwr︸ ︷︷ ︸
∈ Span{u1, ..., us} ∈ Span{w1, ..., wr}

= U = W

So v ∈ U +W .

Alternatively:

• ui ∈ U ⊆ U +W for each i ∈ {1, ..., s}
• wi ∈W ⊆ U +W for each i ∈ {1, ..., r}

So {u1, ..., us, w1, ..., wr} ∈ U +W so Span{u1, ..., us, w1, ..., wr} ∈ U +W . As u+W
is closed under linear combinations.

Example 3.7.6. Let V = R2, let U = Span{(0, 1)}, W = Span{(1, 0)}. Then by proposition
3.7.5 we have U +W = Span{(0, 1), (1, 0)} = R2. Agrees with example 3.7.3.

Example 3.7.7. Let V = R3 and:
Let U = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0}
Let W = {(x1, x2, x3) ∈ R3 : −x1 + 2x2 + x3 = 0}
Question: Find bases for U , W , U ∩W , U +W .

Answer:

• A general vector in u ∈ U is of the form u = (a, b,−a−b) for a, b ∈ R. So u = a(1, 0,−1)+
b(0, 1,−1), therefore {(1, 0,−1), (0, 1,−1)} is a spanning set for U , and as the vectors are
linearly independent this is a basis for U .

• A general vector in w ∈ W is of the form w = (2a + b, a, b) for a, b ∈ R. So u =
a(2, 1, 0) + b(1, 0, 1), therefore {(2, 1, 0), (1, 0, 1)} is a basis for W , as they are clearly lin-
early independent.

• By proposition ?? we know that {(1, 0,−1), (0, 1,−1), (2, 1, 0), (1, 0, 1)} is a spanning set
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for U +W , this is clearly not linearly independent, so we do row reduction to get an LI set:


1 0 −1
0 1 −1
2 1 0
1 0 1

 7→


1 0 −1
0 1 −1
0 1 −2
0 0 2

 7→


1 0 −1
0 1 −1
0 1 0
0 0 1

 7→


1 0 0
0 1 0
0 0 1
0 0 0


So a linearly independent spanning set is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. So dim(U +W ) = 3
so as U +W ⊆ R3 we have U +W = R3.

• We want a basis for U ∩W . Let x = (x1, x2, x3) ∈ R3. We have:
x ∈ U iff x1 + x2 + x3 = 0
x ∈W iff −x1 + 2x2 + x3 = 0
So x ∈ U ∩W iff x1 + x2 + x3 = −x1 + 2x2 + x3 = 0 (i.e. U ∩W = {(x1, x2, x3) ∈ R3 :
x1 + x2 + x3 = 0 and − x1 + 2x2 + x3 = 0})

That is to say 2x1 − x2 = 0, so x2 = 2x1, and therefore x3 = −x1 − x2 = −3x1. So
x is of the form (x1, 2x1,−3x1). So a spanning set for U ∩ W is {(1, 2,−3)} which is
clearly a basis.

Remark 3.7.8. A neater way of finding a basis for U + W would have been to use the basis for
U ∩W . Since U ∩W ⊂ U we can find a basis for U containing out basis for U ∩W and similarly
for W . The union of these bases will be a basis for UW .

For instance, a basis for U is {(1, 0,−1), (1, 2,−3)}, and a basis for W is {(1, 0, 1), (1, 2,−3)},
so a basis for U + W is {(1, 0, 1), (1, 0,−1), (1, 2,−3)}. Note that this has three elements, and
dim(U +W ) = 3 so as this is a spanning set it must be a basis.

Theorem 3.7.9. Let V be a vector space over F , U and W subspaces of V . Then

dim(U +W ) = dimU + dimW − dim(U ∩W ).

Proof: Suppose dim(U ∩ W ) = m, dimU = r and dimW = s (so we need to prove that
dim(U +W ) = r + s−m).

Now as dim(U ∩W ) = m we have a basis BU∩W {v1, ..., vm} of U ∩W . Now as U ∩W ⊆ U and
BU∩W is linearly independent it is contained in a basis BU = {v1, ...., vm, um+1, ..., ur} ⊇ BU∩w.
Simiarly we have a basis BW = {v1, ...., vm, wm+1, ..., ws} containing BU∩W .

Claim BU ∪BW = {v1, ...., vm, um+1, ..., ur, wm+1, ..., ws} is a basis for V +W .
Proof of Claim:

Span: By proposition ?? BU ∪BW is a spanning set.

LI: Suppose we have:

λ1v1 + ...+ λmvm + µm+1um+1 + ...+ µrur + νm+1wm+1 + ...+ νsws = 0
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For λi, µi, νi ∈ F . [We need to show λi = µj = νk = 0 for all i.j, k.]

Now we have

λ1v1 + ...+ λmvm + µm+1um+1 + ...+ µrur︸ ︷︷ ︸ = −νm+1wm+1 − ...− νsws︸ ︷︷ ︸
∈ U ∈W

Thus λ1v1 + ... + λmvm + µm+1um+1 + ... + µrur ∈ U ∩W . So λ1v1 + ... + λmvm +
µm+1um+1 + ...+ µrur = β1v1 + ...βmvm for some βi ∈ F . Thus

β1v1 + ...βmvm + νm+1wm+1 + ...+ νsws = 0

As {v1, ...., vm, wm+1, ..., ws} is a basis for W (thus linearly independent) we have β1 =
... = βm = νm+1 = ...νs = 0.

Thus λ1v1 + ... + λmvm + µm+1um+1 + ... + µrur = 0. As {v1, ...., vm, um+1, ...ur} is a
basis for U we have λ1 = ... = λ = µm+1 = ...µr = 0.

So λi = µj = νk = 0 for all i.j, k, so BU ∪BW is linearly independent.

BU ∪BW is a spanning set for U +W and is linearly independent thus it is a basis.

Now |BU ∩BW | = r + s−m, thus dim(U +W ) = r + s−m.
�
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3.8 Rank of a Matrix

Definition 3.8.1. Let A be an m× n matrix with entries from a field F . Define:

• The Row Space of A (RSp(A)) as the span of the rows of A. This is a subspace of Fn.

• The Row Rank of A is dim(RSp(A)).

• The Column Space of A (CSp(A)) as the span of the columns of A. This is a subspace of Fm.

• The Column Rank of A is dim(CSp(A)).

Example 3.8.2. Let F = R and A =

(
3 1 2
0 −1 1

)
. Then,

RSp(A) = Span{(3 1 2), (0 − 1 1)},

CSp(A) = Span

{(
3
0

)
,

(
1
−1

)
,

(
2
1

)}
.

Now the row vectors (3 1 2) and (0 − 1 1) are linearly independent so dim(RSp(A)) = 2,
so the column rank is 2. The set {(

3
0

)
,

(
1
−1

)
,

(
2
1

)}
is linearly dependent as (

3
0

)
=

(
1
−1

)
+

(
2
1

)
.

So

CSp(A) = Span{
{(

1
−1

)
,

(
2
1

)}
,

which is linearly independent, so dimCSp(A) = 2.

Procedure 3.8.3.

Calculating the row rank of a matrix A.

• Step 1: Reduce A to row echelon form using row operations:

Aech =


1 ∗ ∗ ∗ ∗ ...
0 0 1 ∗ ∗ ...
0 0 0 1 ∗ ∗...
...
0 . . .


(Actually it doesn’t matter whether the leading entries in each row are 1s or not.)

• Step 2: The row rank of A is the number of non-zero rows in Aech. In fact it the non-zero
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rows of Aech form a basis for RSp(A).

Justification
It will be enough to show:

1. RSp(A) = RSP (Aech)

2. The rows of Aech are linearly independent.

To show 1., not that to obtain Aech from A we use row operations:


ri 7→ ri + λrj λ ∈ F, i 6= j
ri 7→ λri λ ∈ F \ {0}
ri 7→ rj i 6= j

Let A′ be obtained from A by one row operation. then clearly every row of A′ lies in RSp(A) and
so RSp(A′) ⊆ RSp(A′). Also every row operation is invertibl;e by another row operation:

ri 7→ ri + λrj has inverse ri 7→ ri − λrj
ri 7→ λri has inverse ri 7→ 1

λri
ri 7→ rj has inverse ri 7→ rj

It follwos thatA is obtained fromA′ by row operations, soRSp(A) ⊆ RSp(A′). HenceRSp(A) =
RSp(A′).

In other words row operations have no effect on the row space. In particularRSp(A) = RSp(Aech).

For 2. let i1, ..., ik be the numbers of the columns of Aech containing the leading entries:

Aech =


1 ∗ ∗ ∗ ∗ ...
0 0 1 ∗ ∗ ...
0 0 0 1 ∗ ∗...
...
0 . . .


i1 i2 i3 ...

Let r1, ...rk are the rows of Aech. Suppose λ1r1 + .... + λkrk = 0 for scalars λi. We see that
the ith1 entry of λ1r1 + .... + λkrk is λ1 · 1 = λ1 hence λ1 = 0. Therefore λ1r1 + .... + λkrk =
λ2r2 + ....+ λkrk, similarly the Ith2 entry of λ2r2 + ....+ λkrk is λ2, so λ2 = 0. By induction we
can show that ai = 0 for all i. So {r1, ..., rk} is linearly independent.

Example 3.8.4. Find the row rank of A =

 1 2 5
2 1 0
−1 4 15


Answer:
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A 7→

 1 2 5
0 −3 −10
0 6 20

 7→

 1 2 5
0 1 10

3
0 0 0

 = Aech

Aech has 2 non-zero rows, so the row rank of A is 2.

Example 3.8.5. Find the dimension of

W = Span{( −1 1 0 1 ), ( 2 3 1 0 ), ( 0 1 2 3 )} ⊆ R4.

Answer

We can work this out by seeing our vectors as the rows of a matrix:

Let A =

 −1 1 0 1
2 3 1 0
0 1 2 3

. The span we want is the row span of this matrix, which we work

out:

A 7→

 −1 1 0 1
0 5 1 2
0 1 2 3

 7→

 −1 1 0 1
0 5 1 2
0 5 10 15


7→

 −1 1 0 1
0 5 1 2
0 0 9 13

 = Aech

Aech has 3 non-zero rows so RSp(A) has dimension 3. So sim(W ) = 3.

We can find the column rank of a matrix in a very similar way to finding the row rank of a matrix.

Procedure 3.8.6. The columns of A are the rows of AT so we can apply Procedure 3.8.3 to AT .

Alternatively: use column operations to resuce A to “column echelon form and then count the
non-zero columns.

Example 3.8.7. Let A =

 1 2 5
2 1 0
−1 4 15

. Find the column rank of A. This equals the row rank

of AT .

AT =

 1 2 −1
2 1 4
5 0 15

 7→

 1 2 −1
0 −3 6
0 −10 20

 7→

 1 2 −1
0 −3 6
0 0 0

 = ATech

So the column rank of A is 2. A basis for RSp(AT ) is {( 1 2 −1 ), ( 0 −3 6 )}. So a basis

for CSp(A) is


 1

2
−1

 ,

 0
−3
6
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Theorem 3.8.8. For any matrix A the row rank of A is equal to the column rank of A.

Proof:

Let A = (aij) ∈Mm×n(F ). Let the rows of A be r1, ..., rm, so ri = (ai1, ..., ain).Let the columns

of A be c1, ..., cn, so cj =

 a1j
...

amj

.

Let k be the row rank of A. Then RSp(A) has a basis {v1, ..., vk}. Every row ri is a linear
combination of v1, ..., vk. Say:

ri = λi1v1 + ...+ λikvk(†)

Suppose that vi = (bi1, bi2, ..., bin) then looking at the jth coordinate in (†) we get:

aij = λi1b1j + λi2b2j + ...+ λikbkj

Now

cj =


a1j
a2j

...
amj

 =

 λ11b1j + λ12b2j + ...+ λ1kbkj

λ21b1j + λ22b2j + ...+ λ2kbkj
...

λm1b1j + λm2b2j + ...+ λmkbkj



=

 λ11
...

λm1

 b1j +

 λ12
...

λm2

 b2j + ...+

 λ1k
...

λmk

 bkj

So cj is a linear combination of the vectors:

 λ11
...

λm1

 ,

 λ12
...

λm2

 , ...,

 λ1k
...

λmk


Hence CSp(A) is spanned by these vectors, thus sim(CSp(A) ≤ k = dim(RSP (A)). Equally
the column rank of AT is at most the row rank of AT (by the same argument). The column rank
of AT is the row rank of A, and the row rank of AT is the Column rank of A. Thus we have
dim(RSp(A)) ≤ dim(CSp(A)), and hence dim(RSp(A)) = dim(CSp(A)).

Example 3.8.9. Let A =

 1 2 −1 0
−1 1 0 1
0 3 −1 1


Note that r3 = r1 + r2, so a basis for RSp(A) is

{(1, 2,−1, 0)︸ ︷︷ ︸ , (−1, 1, 0, 1)︸ ︷︷ ︸}
v1 v2

Write the rows as linear combinations of v1 and v2:
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r1 = 1v1 + 0v2
r2 = 0v1 + 1v2
r3 = 1v1 + 1v2

These co-efficients are the λij’s from the proof:

λ11 = 1 λ12 = 0
λ21 = 0 λ22 = 1
λ31 = 1 λ32 = 1

According to the proof, a spanning set for CSp(A) is: λ11
λ21
λ31

 =

 1
0
1

 ,

 λ11
λ21
λ31

 =

 0
1
1



Check this is really a spanning set for CSP (A): Let w1 =

 1
0
1

, w2 =

 0
1
1


Now we have:

c1 =

 1
−1
0

 = w1 − w2

c2 =

 2
1
3

 = 2w1 + w2

c3 =

 −1
0
−1

 = −w1

c4 =

 0
1
1

 = w2

So it is indeed the case that {w1, w2} spans CSp(A).

Definition 3.8.10. Let A be a matrix. The rank of A written rank(A) or rk(A), is the row rank of
A (or the column rank since they are the same).

Proposition 3.8.11. Let A be an n× n matrix with entried in F , then the following statements are
equivalent:

1. rank(A) = n (“A has full rank”).

2. The rows of A form a basis for Fn.

3. The columns of A form a basis for Fn.

4. A is invertible (so det(A) 6= 0, etc.).
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Proof:

• (1)⇔ (2):
rank(A) = n ⇔ dim(RSp(A)) = n

⇔ RSp(A) = Fn

⇔ the rows of A form a basis for Fn

• (1)⇔ (3): The same, but with columns.

• (1)⇔ (4): rank(A) = n if and only if Aech =


1

1 ∗
1

0
. . .

1


Now all of the ∗ entries can be eliminated using row operations and so A is reducible to Id using
row operations. By 2.6.2 this is equivalent to A being invertible.
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4 Linear Transformations

4.1 Introduction

Definition 4.1.1. Suppose V,W are vector spaces over a field F . Let T : V −→ W be a function
from V to W . We say:

• T preserves addition if for all v1, v2 ∈ V we have T (v1 + v2) = T (v1) + T (v2). (i.e. if
T (v1) = w1, T (v2) = w2 for w1, w2 ∈W we have T (v1 + v2) = w1 + w2.

• T preserves scalar multiplication if for all v ∈ V , λ ∈ F , T (λv) = λT (v).

• T is a linear transformation (or linear map) if it:

1. preserves addition.

2. preserves scalar multiplication

Example 4.1.2.

(a) The identity map T : V −→ V is obviously a linear transformation.

(b) T : R2 −→ R defined by T (x, y) = x+ y is a linear transformation.
Check:

– T ((x1, y1) + (x2, y2)) = T ((x1 + x2, y1 + y2)) = x1 + x2 + y1 + y2 = (x1 + y1) +
(x2 + y2) = T ((x1, y1)) + T ((x2, y2)) So T preserves addition.

– Let λ ∈ R then T (λ(x, y)) = T ((λx, λy)) = λx + λy = λT ((x, y)). So T preserves
scalar multiplication.

(c) Let V be the space of all polynomials in x over R (i.e. V = R[x]). Defin T : V −→ V by
T (f(x)) = d

dxf(x). Then T is a linear map.
Check:

– T (f(x) + g(x)) = d
dx(f(x) + g(x)) = d

dx(f(x)) + d
dx(g(x)) = T (f(x)) + T (g(x))

So T preserves addition.

– Let λ ∈ R then T (λf(x)) = d
dxλf(x) = λ d

dxf(x) = λT (f(x)). So T preserves scalar
multiplication.

(d) Let V = C (as a 1-dimensional vector space over C). The map T (z) = z̄ is not a linear map:

– T (z1 + z2) = ¯z1 + z2 = z̄1 + z̄2 = T (z1) + T (z2) So T does preserve addition.

– T (λz) = λ̄z = λ̄z̄ 6= λz̄ = λT (z) for λ /∈ R. So T does not preserve scalar multipli-
cation.

(e) Let T : R3 −→ R be given by T (x, y, z) = (xyz)
1
3 then:

– T (λ(x, y)) = T ((λx, λy)) = (λ3xyz)
1
3 = λT ((x, y, z)). So T preserves scalar multi-

plication.

– T ((x1, y1, z1)+(x2, y2, z2)) = T ((x1+x2, y1+y2, z1+z2)) = ((x1+x2)(y1+y2)(z1+

z2)
1
3 6= ((x1 + y1 + z1)

1
3 + (x2 + y2 + z2))

1
3 = T ((x1, y1, z1)) + T ((x2, y2, z2)). So

T does not preserve addition.
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(f) Lots of functions preserve neither addition nor scalar multiplication, e.g., for R → R the
functions taking x 7→ x+ 1, x 7→ x2, and x 7→ ex.

Proposition 4.1.3. Let A be an m × n matrix over F . Define T : Fn −→ Fm (spaces of column
vectors), by T (v) = Av (for v ∈ Fn. Then T is a linear transformation.
Proof: We need to check:

• Preserves addition: Let v1, v2 ∈ Fn

T (v1 + v2) = A(v1 + v2) = Av1 +Av2 = T (v1) + T (v2) by M1GLA

• Preserves scalar multiplicaiton: Let v ∈ V , λ ∈ F then:

T (λv) = A(λv) = λAv = λT (v)

Proposition 4.1.4. Basic Properties of linear transformations

Let T : V −→W be a linear map. Write 0V , 0W for the zero vectors in V and W respectively. We
have:

1. T (0v) = 0W

2. Suppose v = λ1v1 + ...+ λkvk for λi ∈ F , vi ∈ V . Then T (v) = λ1T (v1) + ...+ λkT (vk).

Proof:

1. Since T preserves scalar multiplication we have T (λ0v) = λT (0v) for λ ∈ F . Taking λ = 0,
we have T (00v) = 0T (0v), but 0 · 0v = 0v and 0 · T (0v) = 0W . Hence T (0v) = 0W .

2. Induction on k.
Base case. The case where k = 1 just says T preserves scalar multiplication, so it true.

Inductive step: Suppose we know T (λ1v1+ ...+λk−1vk−1) = λ1T (v1)+ ...+λk−1T (vk−1).
Now

T (λ1v1 + ...+ λkvk) = T (λ1v1 + ...+ λk−1vk−1) + T (λkvk)
= T (λ1v1 + ...+ λk−1vk−1) + λkT (vk)
= T (λ1v1 + ...+ λk−1vk−1) + λkT (vk)

43



Example 4.1.5. Question: Find the linear transformation T : R2 → R3 such that T
(

1
0

)
= 1

−1
2

 and T
(

0
1

)
=

 0
1
3

.

Answer: Note that
{(

1
0

)
,

(
0
1

)}
form a basis for R2, a general vector of R2 is

(
a
b

)
=

a

(
1
0

)
+ b

(
0
1

)
. So we must have:

T

(
a
b

)
= T

(
a

(
1
0

)
+ b

(
0
1

))
= aT

(
1
0

)
+ bT

(
0
1

)
= a

 1
−1
2

+ b

 0
1
3


=

 a
−a+ b
2a+ 3b



This map is linear as T
(
a
b

)
=

 1 0
−1 1
2 3

( a
b

)
, so a matrix transformation.

Proposition 4.1.6. Let V and W be vector spaces over F . Let {v1, ..., vn} be a basis for V . Let
w1, ..., wn be any n vectors from W (these don’t need to be distinct). Then there is a unique linear
transformation T : V →W such that T (vi) = wi for all i.
Proof: Suppose that v ∈ V , then there exist λ1, ..., λn such that v = λ1v1 + ...+ λnvn. Define the
following map:

T : V →W
T (v) = λ1w1 + ...+ λnwn

Claim: T is a linear transformation.

• T preserves addition:. Suppose v, u ∈ V , so we have v = λ1v1 + ... + λnvn and u =
µ1v1 + ...+ µnvn. So:

T (v + u) = T (λ1v1 + ...+ λnvn + µ1v1 + ...+ µnvn)
= T ((λ1 + µ1)v1 + ...+ (λn + µn)vn)
= (λ1 + µ1)w1 + ...+ (λn + µn)wn
= λ1w1 + ...+ λnwn + µ1w1 + ...+ µnwn
= T (v) + T (u)

• T preserves scalar multiplication: Suppose v ∈ V and α ∈ F , we have v = λ1v1+...+λnvn.
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So
T (αv) = T (α(λ1v1 + ...+ λnvn))

= T (αλ1v1 + ...+ αλnvn)
= αλ1w1 + ...+ αλnwn
= α(λ1w1 + ...+ λnwn)
= αT (v)

So it remains to check uniqueness. Suppose that we have a linear transformation S such that
S(vi) = wi for all i. Then we have:

S(λ1v1 + ...+ λnvn) = λ1S(v1) + ...+ λnS(vn)
= λ1w1 + ...+ λnwn

So T = S proving uniqueness.

Remark 4.1.7. This shows that once we know what a linear transformation does to a basis we know
what the transformation is.

Example 4.1.8. Let V be the space of all polynomials in x over R with degree less than or equal to
2. A basis for this is {1, x, x2}. We can pick any three arbitary vectors in V for example:

w1 = 1 + x
w2 = x− x2
w3 = 1 + x2

By Proposition 4.1.6 there is a linear transformation T : V → V such that T (1) = w1, T (x) = w2,
T (x2) = w3.

We can work out what T does to a general element of V . A general element is of the form v =
a1 + bx+ cx2, so

T (v) = T (a1 + bx+ cx2)
= a(1 + x) + b(x− x2) + c(1 + x2)
= (a+ c) + (a+ b)x+ (−b+ c)x2
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4.2 Image and Kernel

Definition 4.2.1. Let T : V →W be a linear transformation:

• The Image of T is the set ImT = {T (v) ∈W : v ∈ V } ⊆W .

• The Kernel of T is the set Ker T = {v ∈ V : T (v) = 0W } ⊆ V .

Example 4.2.2. Let T : R3 → R2 be defined by:

T

 x1
x2
x3

 =

(
3 1 2
−1 0 1

) x1
x2
x3

 =

(
3x1 + x2 + 2x3
−x1 + x3

)

• The image of T is the set of all vectors in R2 of the form
(

3x1 + x2 + 2x3
−x1 + x3

)
for x1, x2, x3 ∈

R. This is the space:{
x1

(
3
−1

)
+ x2

(
1
0

)
+ x3

(
2
1

)
: x1, x2, x3 ∈ R

}
= CSp(

(
3 1 2
−1 0 1

)
) = R2

• The kernel of T is the set of vectors in R3 such that T

 x1
x2
x3

 = 0W that is so say such

that: (
3x1 + x2 + 2x3
−x1 + x3

)
=

(
0
0

)

Alternatively this is the solution space of Ax = 0. In this case the kernel is Sp

 1
−5
1

.

Proposition 4.2.3. Let T : V →W be a linear transformation. Then:

1. ImT is a subspace of W .

2. Ker T is a subspace of V .

Note: In general we write U ≤ V to mean U is a subspace of V , so with this notation we are saying
ImT ≤W and Ker T ≤ V .

Proof: For both we need to check the vector space criterion.

1. • Certainly ImT 6= ∅, since T (0) ∈ ImT .

• Suppose w1, w2 ∈ ImT then there exist v1, v2 ∈ V such that w1 = T (v1) and w2 =
T (v2). Now,

T (v1 + v2) = T (v1) + T (v2) = w1 + w2

So w1 + w2 ∈ ImT .

46



• Suppose w ∈ ImT and let λ ∈ F . We have w = T (v) for some v ∈ V , now
T (λv) = λT (v) = λw. So λw ∈ ImT

So ImT ≤W .

Example 4.2.4. Let Vn be the vector space of polynomials in x over R of degree ≤ n. We have
V0 ≤ V1 ≤ V2.... Define:

T : Vn → Vn−1,

T (f(x)) = f ′(x).

Note: T is linear.
Ker T = {f(x) : f ′(x) = 0}

= {constant polys}
= V0

Suppose g(x) has degree≤ n−1. Then by integrating g(x) we can find f(x) such that f ′(x) = g(x)
and deg(f(x)) = 1 + deg(g(x)), so deg(f(x)) ≤ n. Hence ImT = Vn−1.

Of course the f(x) such that f ′(x) = g(x) is not unique - if c is a constant then f(x) + c also has
this property. In fact we get the set {h(x) : h′(x) = g(x)} consists of polynomials f(x) + k(x)
where k(x) ∈ Ker T .
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Proposition 4.2.5. Let T : V →W be a linear tranformation and let v1, v2 ∈ V . Then

T (v1) = T (v2) iff v1 − v2 ∈ Ker T.

Proof:
T (v1) = T (v2) iff T (v1)− T (v2) = 0

iff T (v1 − v2) = 0
iff v1 − v2 ∈ Ker T

Proposition 4.2.6. Let T : V → W be a linear transformation. Suppose that {v1, ..., vn} is a basis
for V . Then ImT = Span{T (v1), .., T (vn)}.

Proof: Clearly Span{T (v1), .., T (vn)} ⊆ ImT . Conversely, let w ∈ ImT . Then w = Tv for
some v ∈ V . Since {v1, ..., vn} is a basis for V we can find scalars λi such that

v = λ1v1 + ...λnvn
w = T (v)

= T (λ1v1 + ...λnvn)
= λ1T (v1) + ...λnT (vn) ∈ Span{T (v1), ..., T (vn)}

Proposition 4.2.7. Let A be an m× n matrix. Let T : Fn → Fm be given by T (v) = Av. Then:

1. Ker T is the solution space to Av = 0.

2. ImT is the column space of A.

3. dim(ImT ) = rankA.

Proof:

1. Immediate from definitions

2. Take the “standard” basis for Fn that is:

e1 =


1
0
0
...
0

 , e2


0
1
0
...
0

 , ..., en =


0
0
...
0
1


By proposition 4.2.6 we have ImT = Span{T (e1), ..., T (en)}. Now T (ei) = Aei = ci
where ci is the ith column of A. SO ImT = Span{c1, ..., cn} = CSp(A).

3. By (ii) dim(ImT ) = dim(CSp(A)) = column rank of A = rk(A)

Theorem 4.2.8. The rank nulity theorem: We’ve seen that when Tv = Av, rank(A) =
dim(ImT ). An old fashioned name for dim(Ker T ) is the nulity of A
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Let T : V →W be a linear transformation. Then

dim(ImT ) + dim(Ker T ) = dim(V )

Proof: Let {u1, ...us} be a basis for ker T , and let {w1, ..., wr} be a basis for ImT . For each
wi ∈ ImT , and so ∃vi ∈ V with Tvi = wi. We claim that B = {u1, ..., us} ∪ {v1, ...vr} is a basis
for V .

• Spanning set: Let v ∈ V since Tv ∈ ImT we can write Tv = λ1w1 + ...λrwr for scalars
λi. So

Tv = λ1w1 + ...λrwr
= T (λ1v1 + ...λrvr)

Now by proposition 4.2.5 v−λ1v1+...λrvr ∈ kerT so v−λ1v1+...λrvr = µ1u1+...+µsus.
Thus

v = µ1u1 + ...+ µsus + λ1v1 + ...λrvr ∈ span(B)

• Linear independence Suppose:

λ1v1 + ...λrvr + µ1u1 + ...+ µsus = 0

By applying T we get:

0 = T (λ1v1 + ...λrvr + µ1u1 + ...+ µsus)
= λ1T (v1) + ...λrT (vr) + µ1T (u1) + ...+ µsT (us)
= λ1w1 + ...λrwr

Thus λ1 = ... = λr = 0, so we get that µ1u1 + ...+ µsus = 0, so µ1 = ... = µs = 0.

Example 4.2.9.

Let a, b, c ∈ R, define U = {(x, y, z) ∈ R3 : ax+ by + cz = 0}. U is a subspace of R3.

We can find dimension of U by defining:

T : R3 → R

T (x, y, z) = (a, b, c)

 x
y
z


Now U = kerT , and clearly ImT = R (as not all a, b, c = 0), thus dim(ImT ) = 1. So

dimU = dim(kerT )
= dim(R3)− dim(ImT )
= 3− 1 = 2
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Corollary 4.2.10. A system of linear equations in n unknowns with co-efficients in F :

a11x1 +a12x2 + a13x3 + . . .+ a1nxn = b1
a21x1 +a22x2 + a23x3 + . . .+ a2nxn = b2
...

...
...

...
am1x1 +am2x2 + am3x3 + . . .+ amnxn = bm

is called homogeneous if b1 = b2 = ... = bm = 0.

We know in this case that we will always get at least a trivial solution to the system - and we saw
in the test that the set of solutions forms a subspace of Fn, but what dimension will this subspace
have?

We can use the rank-nulity theorem to work this out:

We know that if we let A = (aij), then this system of linear equations can be represented as
Ax = 0. We also know that A can be seen as a linear transformation A : Fn 7→ Fm.

By Proposition 4.2.7 the set of solutions in this case is ker(A), and by the rank nulity we get

dim(ker(A)) = dim(Fn)− dim(Im(A))

Now the dim(Im(A)) = rank(A) thus the we can work out how many solutions we have to a set
of homogeneous equations with n unknowns:

• If rank(A) ≥ n we get one solution (the trivial one i.e. 0V )

• If rank(A) < n we get infinitely many solutions (assuming F is infinite)

Exercise 4.2.11. In this case the rank of the augmented matrix (A|0) is the same as that of A.

How does this work for a non homogeneous system of linear equations?

Essentially almost the same except - but we are taking a coset of the system of equations and we
have to account for the case were rank(A) < rank(A|b)
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4.3 Representing vectors and transformations with respect to a basis

Let V be an n-dimensional v.s. over F , let B = {v1, ..., vn} be a basis for V .

Definition 4.3.1. For v ∈ V with v = λ1v1 + ...+ λnvn the vector of V wrt B is

[v]B =

 λ1
...
λn


This is well defined since v has a unique expression as a linear combination of v1, ..., vn.

Example 4.3.2.

(a) V = R3, B = {e1, e2, e3}. Then

[

 a
b
c

]B =

 a
b
c

 as

 a
b
c

 = ae1 + be3 + ce3

(b) Let V be the v.s. of polys in x of degree ≤ 2

• B = {1, x, x2} then [a+ bx+ cx2]B =

 a
b
c

.

• If instead we take B = {x2, x, 1} then [a+ bx+ cx2]B =

 c
b
a


• Or B = {1, x+ 1, x2 + x+ 1} then:

a+ bx+ cx2 = (a− b) + (b− c)(x+ 1) + c(x2 + x+ 1)

so [a+ bx+ cx2]B =

 a− b
b− c
c


Proposition 4.3.3. Let V be an n-dimensional vector space over F with a basis B. Then the map:

T : V → Fn

T (v) = [v]B

is a bijective linear transformation (i.e. a linear isomorphism).

Proof: Suppose B = {v1, ..., vn}

1. Linear Transformation:

(a) Preserves Addition:
LEt u, v ∈ V then u = λ1v1 + ... + λnvn and v = µ1v1 + ... + µnvn so u + v =
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(λ1 + µ1)v1 + ...+ (λn + µn)vn.

[u]B =

 λ1
...
λn

 , [v]B =

 µ1
...
µn

 [u+ v]B =

 λ1 + µ1
...

λn + µ1


Therefore

[u+ v]B = [u]B + [v]B
T (u+ v) = T (u) + T (v)

(b) Preserves scalar multiplication:
LEt u ∈ V and α ∈ F so u = λ1v1 + ...+ λnvn, now αu = (αλ1)v1 + ...+ (αλn)vn

So [u]B =

 λ1
...
λn

 , [αu]B =

 αλ1
...

αλn

 So

[αu]B = α[u]B
T (αu) = αT (u)

2. T is bijective:

(a) Injective:
Suppose u,w ∈ V such that T (u) = T (w) then T (u− w) = 0 as T is linear.

So [u− w]B =

 0
...
0

 so u− w = 0v1 + ...+ 0vn = 0 hence u = w

(b) Surjective:

Let

 α1
...
αn

 ∈ Fn now [a1v1 + ...+ anvn]B =

 α1
...
αn

 So T (a1v1 + ...+ anvn) =

 α1
...
αn

, thus T is surjective.
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Construction 4.3.4.

Now let V , W be finite dimensional vector spaces over F

• B = {v1, ..., vn} a basis for V .

• C = {w1, ...wm} a basis for W .

Let T : V 7→W be a linear transformation, we have:

V W

Fn Fm

T

[−]B [−]C

We can define a map Fn → Fm by following the diagram around. This map is linear as it is a
composition of linear maps (exercise).

Now a linear map Fn 7→ Fm is a matrix transformation (by hand-in). Let A be the matrix for this
transformation, then A[v]B = [Tv]C .

We calculate A by figuring out it’s columns c1, ..., cn. To calculate ci, we work out Tvi and find

Tvi = a1iw1 + ...+ amiwm,

so we get ci =

 a1i
...
ami

. We get:

ci = Aei = A[vi]B = [Tvi]C .

Definition 4.3.5. The matrix A constructed above is the matrix of T with respect to B and C , we
write this C [T ]B , so C [T ]B[v]B = [Tv]C . If V = W and B = C we sometimes write this simply
as [T ]B .

Remark 4.3.6. If T : V 7→ V and B a basis for V then for all v ∈ V [Tv]B = [T ]B[v]B

Example 4.3.7.

T : R2 → R2 defined by T
(
x1
x2

)
=

(
2x1 − x2
x1 + 2x2

)

• Take E = {e1, e2}. Find [T ]E =

(
2 −1
1 2

)

• Let B =

{(
1
1

)
,

(
0
1

)}
. Find [T ]B =

(
1 −1
2 3

)

• Find B[T ]E =

(
2 −1
−1 3

)
.
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Proposition 4.3.8. Let V be a vector space. Let B = {v1, ..., vn} and C = {w1, ..., wn} be bases
for V . Then for j ∈ {1, ..., n} we can write vj = λijw1 + ...+ λnjwn.

Let P be the matrix (λij) =

 λ11 ... λ1n
...

...
λn1 ... λnn

. So the jth column is [vj ]C .

1. P = [X]C where X : V → V is the unique linear transformation such that X(wj) = vj for
all j.

2. For all v ∈ V , P [v]B = [v]C .

3. P = C [Id]B where Id is the identity transformation of V .

Proof:

1. The jth column of [X]C is the image X(wj) written as a vector in C. Now X(wj) = vj so
the jth column is [vj ]C and this is the jth column of P , so [X]C = P .

2. For a basis vector vj ∈ B we have:

P [vj ]B = Pej
= jth Column of P
= [vj ]C

So the claim is true for elements of the basis B, hence it is true for all v ∈ V .

3. Exercise (essentially part (ii) expressed differently).

Definition 4.3.9. P is the change of basis matrix from B to C.
******Warning*********** Confusing because of 1 in Prop 4.3.8 maps basis elements of C to
those of B - sometimes described the other way around.

Proposition 4.3.10. Let V , B, C P as above. Then:

1. P is invertible, and its inverse is the change of basis matrix from C to B.

2. Let T : V → V be a linear transformation. Then [T ]C = P [T ]BP
−1

Proof:

1. Let Q be the change of basis matrix from C to B. Then:
Q[v]C = [v]B for all v ∈ V
P [v]B = [v]C for all v ∈ V

Hence QP [v]B = Q[v]C = [v]B . As v ranges over V , [v]B ranges over all of Fn. So
QPx = x for all x ∈ Fn. Therefore QP = In, hence P is invertible with inverse Q.
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2.
[T ]C [v]C = [T (v)]C for all v ∈ V

(P [T ]BP
−1)[v]C = (P [T ]BP

−1)P [v]B
= (P [T ]B)(P−1)P )[v]B
= (P [T ]B)[v]B
= (P [T (v)]B)
= [T (v)]C

AS this is for all v ∈ V we have (P [T ]BP
−1) = [T ]C .

Example 4.3.11. V = R2, T : R2 → R2 given by T
(
x1
x2

)
=

(
x2

−2x1 + 3x2

)
. Take bases

B =

{(
1
1

)
,

(
1
2

)}
and E = {e1, e2}

Caluculate:

1. [T ]E =

(
0 1
−2 3

)
, [T ]B =

(
1 0
0 2

)
2. [P ] the change of basis matrix from E to B (hint: find P−1)

Remark 4.3.12. It is a fact that if P is the change of basis matrix C [Id]B from B to C and Q is the
change of basis matrix D[Id]C (where B,C,D are all basis for Fn, then QP = D[Id]C C [Id]B =

D[Id]B , the change of basis matrix from B to D.

In Example 4.3.11, we saw that for any given basis B of Fn the matrix E [Id]B was easy to calcu-
late, since its columns are the elements of B. Now as

C [Id]B = C [Id]E E [Id]B
= (E [Id]C)−1 E [Id]B

This gives us a quick method of calculating chance of basis matrices for Fn.
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