. Maths 40003
Linear algbra and Groups

Charlotte Kestner
Imperial College London
EMAIL: CKESTNER@IC.AC.UK



1 Introduction

Dr Charlotte Kestner
ckestner@ic.ac.uk
Huxley 620

1.1 Why Linear Algebra

Mathematics: linear (easy?) vs non-linear (non-linear)

Often first step is to tackling a problem is to try and linearise it. For example Taylor expansions:

Briefly a function or “transformation” L is linear if L(af; + bf2) = aLfi + bL fo, this makes linear
transformations easier to handle than non-linear ones. In the linear algebra part of this course we will go
through some of the mathematics developed to help us deal with such linear transformations.

1.2 Linear Algebra and Groups

— Course is in 2 sections: lin algebra & groups.

— Lin Alg all of first term and some of second term.

— lecturer switch in Jan (David Evans will take over from me).

— Test regime: 3 blackboard tests, 1 mid module, 1 Jan test (this is for MY half).

— For more details see ”’‘module information sheet”’ on blackboard.



2 Systems of Linear Equations

2.1 Introduction

This section is all about methods for solving systems of linear equations. A system of linear equations is
a set of equations in the same variables. For example:

—r+y+2z =
3r —y+z
—rx+3y+4z = 4

This system has three equations and three unknowns, but in general this could be different. For example:

w—r+tyt+2z =
w+3r—y+z =

In general a system of m linear equations in n unknowns will have the form:

a11x1 + a1oT + a13x3 + ...+ a1ptn, = b1
ao1x1 + a99o + ag3xg + ...+ agpxy, = bo
Am121 + Ama®2 + @m3T3 + ...+ Gy, = by

Definition 2.1.1 Given a system of m linear equations in n unknowns we can write this in matrix form

as follows:
AX =B
T by
i) b2
where X = ) and B = . are column matrices, and
Tn Im
ail a2 -+ Gl
a1 Q2 - QG2p . )
A= . is an m X n matrix.
aml Am2 *°° Amn

We can also use an Augmented Matrix to represent the system of linear equations:

ain a2 aip | b1
az1 a2 a2y | bo
Aml am2 Gmn | bm



Example 2.1.2.

w—xr+y+2z =
w+3r—y+z =
Could be written as
w
1 -1 1 2 T (2
1 3 -11 Y ~\ 6
z

The Augmented matrix would be:
1 -1 1 22
1 3 -1 1|6

Remark 2.1.3 You should have seen some matrix multiplication already (e.g. in the first problem class).
Notice that matrix multiplication is defined precisely so that the above equation works out.

2.2 Matrix Algebra

We will very briefly go over Matrix algebra. You should make sure you go over the exercises on Problem
sheet 0. For the moment we will mostly assume that the matrices take their values in R (at the end of this
section we will see that we could have chosen to take values from any Field F').

If we want to add two matrices, they must have the same size and shape (the same order). Then we
can simply add corresponding elements. Formally:

Definition 2.2.1. Given m x n matrices, A = [a;j]mxn and if B = [b;];nxn, then the (matrix) sum

of A and B is the m x n matrix C = [¢j;]mxn Where| c¢;j = aij + byj.

We can also multiply by a scalar product (any element of the field - here R):

Definition 2.2.2. Let A = [a;;] be any matrix, and let A\ € R. Then the scalar multiple of A by
A, denoted by AA, is obtained by multiplying every element of A by A. Thus if A = [a;;]mx» then

)\A = [)\aij]an.

See the handout sheet for properties of matrix addition and scalar multiplication.

We can also multiply two matrices together.

Definition 2.2.3. Let A = (a;;j)pxq and B = (b;;j)gxr. Then the matrix product of A and B,
denoted by AB, is the matrix C, where

C= (Cij)pXTa where Cij = Zzzl aikbkj

Hopefully you will have done lots of examples of this in the problems class. Let’s have look at some



properties of matrix multiplication.

Theorem 2.2.4. Matrix multiplication is associative. That is
Let A, B, C be matrices, and « € R, then (AB)C = A(BC).

Proof For A(BC) to be defined, we require the respective sizes of the matrices to be m x n,n x
p,p X q in which case the product A(BC) is also defined. Calculating the (i, j)th element of this
product, we obtain,

[A(BC))ij = Zaik[BC]kj = Zaik(z brictj)
k=1 =1 t=1

p
= > aibrecy;

k=1 t=

[y

If we now calculate the (i, j)th element of (AB)C we obtain the same result:

p

(AB)Cly; = > [ABJuey =

t=1 t

Mw

n
O aiwbre)cr;
1 k=1

i
S

I
M“ﬁ

a;kbrict;

i
N
Eond
I

I

Consequently, we see that A(BC) = (AB)C.

Example 2.2.5. Matrix multiplication is not commutative (i.e. AB # BA)

Proof: To show this we just need one counterexample. Lets try to make it as simple as possible.

* 1 x 1 matrices - multiplying these is just like multiplying elements of R and that is commu-
tative!

¢ So we have to look at the 2 x 2 matrices.

AB — ail a2 * b1 - * ar1biz + a12b22
B * * *  byg o * *

BA — bi1 b2 * Q12 _ *  biiaiz + bi2aze
- * * * 99 - * *

Setai; = big = a12 =bag =by; = 1...get AB = BAonlyifas =1

o ¥¥FEXMENTIMETRE******%¥*[¢ there another way of seeing this in full generality?

Exercise 2.2.6. Let A, B be matrices with entries in R. Show AAB = A(AB).
Proof




2.3 Row Operations

Recall the definition of an Augmented Matrix from the first lecture. Here’s an example to help.

Exercise 2.3.1. Find the Augmented matrix for the following system of linear equations
—z+y+2z 2
3zx—y+z = 6
—x+3y+4z = 4
-1 1 2 x 2
3 -1 1 y | =1 6
-1 3 4 z 4
-1 1 22
3 -1 116
-1 3 4|4

From School you know how to solve systems of linear equations. There are 3 operations you can do:

* multiply an equation by a non-zero factor.
* Add a multiple of one equation to another

* Swap equations around.

In the augmented matrix format we can do these operations more efficiently.

Definition 2.3.2. Elementary row operations (e.r.o’s) are performed on an augmented matrix.

There are three allowable operations:

* Multiply a row by any (non-zero) number
* Add to any row a multiple of another row

* Interchange two rows

Note that the elementary row operations amount to the actions we could take on the original equa-

tions.

Remark 2.3.3 1. Performing row operations preserves the solutions of a linear system.

2. Each row operation has an inverse row operation.



Example 2.3.4.

3z — 2y + 2= -6 (D 4 6 -3|5 fozalts
Az + 6y — 3z = 5 ) 4 4 0|12
_ _ 3 -2 1|-6
Az + 4y ) 6 _3| s RarsRataRs,
Ri—R1+3R3

First multiply (3) by i:

S
—_
—_
(e}
w

0 10 —3|17 Lo Fa— 108,
—r+y = 3 C)) -1 1 013
0 1 1|3 Fas— s
Then add 3 x (4) to (1) and 4 x (4) to (2) 0 0 —-13]-13
-1 1 0 3
0 1 1|3
y+z= 3 (5) 0 0 11 Ri—R1— Ry
0 1 02
Then take 10 x (5) from (6) 0 0 11 Ram—Ratha,
-1 1 013
—13z = ~13 @) 8 (1) (1) ? RusRa.  RaosRs
10 0|-1 R
So z = 1. Plug this into (5): 10 0l-1
01 0] 2
y+1=3 00 1|1
W d this off:
So y = 2. Plug this into (4): ¢ cafread tis
1 0 0 T —1
—r+2=3 010 y | = 2
0 0 1 z 1
Sozx=-1 Sowegetr =—1,y=2,2=1.

Definition 2.3.5. Two systems of linear equations are equivalent if either:

* They are both inconsistent.

* The augmented matrix of the first system can be obtained using row operations from the
augmented matrix of the second system and vice versa.

Remark 2.3.6 Equivalently, by Remark 2.3.3 two systems of linear equations are equivalent if and only
if they have the same set of solutions.

If a row consists of mainly Os and 1s it becomes easier to read off the solutions to the equations. For
example:

Example 2.3.7. If we are working in unknowns z, y, z:



—2 1 212 Whereas
( 3 -3 1 5)

Corresponds to

01 0|2
0 0 1|5
O y+2s = Corresponds to

2
3r—3y+z = 5 y =

Definition 2.3.8. We say a matrix is in echelon form (ef) if must satisify the following:

* All of the zero rows are at the bottom.
* The first non-zero entry in each row is 1.

» The first non-zero entry in row ¢ is strictly to the left of the first non-zero entry in row ¢ + 1.

We say a matrix is in row reduced echelon form (rref) if it is in echelon form and:

* The first non-zero entry in row ¢ appears in column j, then every other element in column j

is zero.
Example 2.3.9.
11 2] 2 11 010
01 7| 12 0 0 10
0 0 1|-10 0 0 01
00 0| O 0 0 0|0
EF RREF

2.4 Elementary matrices

Elementary row operations can be carried out using matrix multiplication.

Definition 2.4.1. Any matrix that can be obtained from an identity matrix by means of one elemen-
tary row operation is an elementary matrix.

There are three types of elementary matrix:

* The general form of the elementary matrix which multiplies a row by any (non-zero) number,
« is of the form

1 0 0
Ei(a) = 0 « 0
0 0 1

where all elements on row r is multiplied by .

* The general form of the elementary matrix which adds a multiple of a row by any non-zero




number « to another is of the form

1 ... 0 ... 0 ... O
Ers(a) = o ... 1 ... a ... 0
o ... 0 ... 0 ... 1

where all elements of s are multiplied by o and added to row 7.

* The general form of the elementary matrix which interchanges two rows is of the form

1 0 0 0
0 0 1 0
E. =
0 1 0 0
0 0 0 1

where r and s are the rows to interchange.

Example 2.4.2. Find the string of elementary matrices that correspond to the following row opera-
tions:

1 0 0
RN T L
11 0| 3 0 0 1
0 1 1|3 1 -10
0 0 111 Ri—R1—R> 0O 1 0
11 0|3 00 1
0 1 0|2 100
0 0 1l1 J 01 0
11 03 10 -1
01 0l 10 0 01 0
00 1 1 Ri1—R2,R2—R3,R3— R 0 0 1 1 00
Lo ol 01 0 00 1
1001
01 0|2
00 1|1

Exercise 2.4.3. Find the string of elementary matrices corresponding to the following row operations.




Fdckkk N entimeter: kK ok k kokkkokokokokok

RSHiR?,

RQ’—)R274R3
_—>
Ri—R14+3R3

Ror—Ro—10R
_—

Theorem 2.4.4. Let A be a m X n matrix and let E be an elementary m X m matrix. The matrix
multiplication EA applies the same elementary row operation on A that was performed on the iden-

tity matrix to obtain E.

Proof: exercise.
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2.5 More matrices

Definition 2.5.1. We say a matrix is square if it has the same number of rows as it does columns
(i.e. its a member of M,, ., (F) for some field F).

Definition 2.5.2.

A square matrix A = a;; € My, x,(F') is said to be:

1. upper triangular if a;; = 0 wherever | < > j | A has zeros for all its elements below the

diagonal.

2. lower triangular if a;; = 0 wherever | 7 < j | A has zeros for all its elements above the

diagonal.

3. diagonal if a;; = 0 wherever | i # j | That is to say A has zeros for all its elements except

those on the main diagonal.

Example 2.5.3.
11 2 1 00 1 0 0
017 200 0 -2 0
0 0 1 000 0 0 O
Upper triangular Lower triangular diagonal

Definition 2.5.4. The n x n identity matrix is denoted by I,,. An identity matrix has all of its
diagonal entreis equal to 1 and all other entries equal to O. It is called the identity matrix because it
is the multiplicative identity matrix for n x n matrices, i.e.

For A € Mpxn(R),1,A=Al, = A

Definition 2.5.5. If, for a square matrix B, if there exists another square matrix B! such that
BB~! = | = B~1B, then we say that B is invertible, and B! is an inverse of B.

It is important to realise that the matrix B might not have an inverse: B~! might not exist.

Definition 2.5.6. A matrix without an inverse is called a singular matrix.

2

Example 2.5.7. Let A = < 1 _01 ), verify that it has an inverse: B = (

o= (75005 ) = (o)
- (126 A) -6

DO =0 | =
|
Lo

N—

N[FN= DN
— RO NIl

Theorem 2.5.8. The inverse of a given matrix is unique. If there exist square matrices A, B, C
such that AB = | = CA, then B = C.

11




Proof Suppose that AB = BA = | and AC = CA = |, then

B = Bl
= B(AC)
= (BA)C
— IC
= C

This theorem shows that if a matrix A is invertible, we can talk about the inverse of A, denoted by Al In
some circumstances, we can say that a matrix is invertible, and we can find an expression for its inverse,
without knowing exactly what the matrix is.

Exercise 2.5.9. Suppose A4, B € M,,«,(R) are both invertible. Show that AB is invertible by finding
its inverse.

(a) A~1B!
(b) B~14-1
(c) BAAT'B~1B~14~1

Definition 2.5.10. If A = [a;;],nxn. then the Transpose of A is AT = [@jilnxm-

Example 2.5.11. If

1 4
A:(iS?), then AT=[0 2
5 1

and we can see that the transpose of a 2 x 3 matrix must be a 3 X 2 matrix.

Exercise 2.5.12. Let A € M,,»x;m(R), B € M;,«p(R), (AB)T = BT AT,
Proof:

First remark that BT AT is defined and has order p x n, not also AB has order n x p so (AB)” has
order p X n.

Let A = (aij) and B = (b”)

* The ij" entry of ABis >_" | ai,bx;. This is the ji'" entry of (AB)T

e The ji'" entry of BT AT is Y70 (07) jk(a® ki = o1y (0)kj(@)ik = Yoy airb;

Theorem 2.5.13. Given an invertible square matrix A, then AT is also invertible, and (AT)*1 =
(AHT.

12



Proof From the definition of the inverse

AA~L = |
(AAfl)T IT

(A"HTAT = |

Also

ATIA = |
(A'A)T

ATA™HT = |

Equations 8 and 8 prove that (A~!)T is the (unique) inverse of AT, as required.

2.6 Inverses using row operations

We can use Elementary matrices to find inverses of matrices (it they exist).

Theorem 2.6.1. Every elementary matrix is invertible and the inverse is also an elementary matrix.

Proof

Matrix multiplication can be used to check that

Ef(@)E(a™) =E(a HE(a) = |
Ers(@)Es(a™) = Es(a™)Es(a) = |
rs(@)Es(a) = |
Alternatively, the results can be checked by considering the corresponding ero’s. Hence

E"(a)_l = Er(()é_l), ErS(Oé)_l = Ers(_a)a Ers_1 = Ers

Theorem 2.6.2. If the square matrix A can be row-reduced to an identity matrix by a sequence of
elementary row operations, then A is invertible and the inverse of A is found by applying the same
sequence of elementary row operations to |.

Proof

Let A be a square matrix, then A can be row-reduced to | by a sequence of elementary row op-
erations. Let Ej,Ep, E3 ..., E, be the elementary matrices corresponding to the elementary row
operations, so that

E/...E2E1A =1 ®)

But Theorem 2.6.1 states that E,, . . . , Ep, E; are invertible. Multiplying Equation 8 by El_1 E; 1o E !
gives A = El_1 E5 1. E7L. Since A is a product of elementary matrices, it is invertible (using The-

13




orem 2.6.1) and
At = (E{'Ey L E ) = (B .. EaEy)l

r

1 0
Example 2.6.3. LetA= [ 1 2 find A—1.
3 0

= O =

The method consists of writing the identity matrix | to the right of our given matrix, and then using
the same elementary row operations on both matrices to turn the left-hand matrix into . When this
has been achieved, the right-hand matrix will have been transformed into the inverse matrix, AL

First, we construct the augmented matrix All, by writing the identity matrix to the right of the matrix
A,

1
1
3

o N O

1110 0
0[{0 1 0
410 0 1
After our row operations, this matrix will be transformed into I|A~",

The steps might be as follows:

R3—R3—3R1
1011 00
( 1 20,0 10
0 01{-3 01
Ro—Ro—Rq
1 0 1 1 00
( 0 2 —-1}]—-1 1 0
00 1 |-3 01
Ro+—Ro+R3
1 01,1 00
( 0 2 0]—-4 11
0 0 1|-3 1
Ri—R1—R3
1 004 0 —1
( 0 2 -4 1 1
0 01|]-3 0 1
Ra— 1Ry
1004 0 -1
01 0/-21 3
0 11-3 0 1

We have found the inverse of our matrix. We could check by doing the matrix multiplication:

4 0 -1 101 100
-2 1 1 1 20]|=1010
-3 0 1 3.0 4 001

as desired.

14




2.7 Geometric Interpretation

As you have seen in the introductory module vectors in R?/R3 can be represented as points in 2 or 3
dimensional space. In this section we will look geometric interpretations of some of the things we have
seen so far.

A system of linear equations in n unknowns specifies a set in n-space.

Example 2.7.1.
Consider:
r1+axo+x3 = —1
2x1 + x3 = 1
3r1 + x2 = —4
Using row reduction we get x1 = —0.5, z9 = —2.5 x3 = 2, which specifies a point. Whereas:
T1+x0+x3 = —1
2r1 + x3 =1
Using row reduction we get x1 = —2.5 — 0.5z3 and 2 = 1.5 — 0.5z giving the line
—2.5 —0.5
1.5 +A| —05 | forAeR
0 1

We have seen that we can apply matrices to vectors via matrix multiplication. So we can see a matrix
A € Mp,xn(R) as a map:

A: R* — R7™
Aw) = Av

We can represent many different operations using matrices.

Example 2.7.2.

) 5 0
Consider A = ( 0 5 )

n(5)-(%)

This is a stretch by a factor of 5.

Definition 2.7.3. Let T" be a function from R” to R™ then we say T is a linear transformation if
for every v1,vo € R™ and every o, 5 € R we have:

T(owl + ,3’02) = aT(vl) + ,BT(UQ)

Proposition 2.7.4. Let A € M,,«,,(R) then seen as a map from R" to R™ A is a linear transfor-
mation.

Proof:

15



A(avi + pre) = A(awvr) + A(Bv2) by distributivity of matrix multiplication
= oaA(vi) + BA(v2) by exercise

Proposition 2.7.5. Let A € M,,x,(R). The following are equivalent:

(i) A is invertible with inverse A~! = AT
() ATA=1, = AAT.

(iii) A preserves inner products (i.e. for all z,y € R™ (Px) - (Py) =z - y.

Proof:
(1) < (i7) is just by definition.

(i1) <> (443)First note that for 2,y € R™ z - y as defined in the intro to maths course is just z7y as
matrix multiplication. So A preserves inner products if and only if:

(Pz)-(Py)=z-y Vr,y€cR"
— (P2)T(Py)=2Ty Va,yecR"
— 'PTPy=2"I,y Vz,yecR"
— I (PTP-1,)y=0 Vz,ycR"

(49) = (i7i) now trivial.

(iii) = (ii) letz; = | 1 | i.e. column vector with 0’s everywhere except the it row where
0
there is a 1. Then we know for each x; (z;)” (PT P — I,,)y = 0 so we can conclude that

0
(PTP—1I,)y =

Similarly taking y; to be the column vector with 0’s everywhere except the i*" row where there is a
1weget(PTP—~1,)=0s0 PTP =1I,.

Definition 2.7.6. A matrix A € M,,,, is called Orthogonal if it is such that A=t = AT

Example 2.7.7.

1. Consider the matrix

16




This matrix is orthogonal as A~! = < _01 (1) >

If we apply it to ( z ) we get ( :Uy > This is a rotation through 7 radians anti clockwise.

2. Consider the matrix

This matrix is orthogonal as A~ = < _01 _01 >

If we apply it to < z ) we get ( :z > This is a reflection through the line y = —zx.

Exercise 2.7.8. Watch the linear Algebra video to help you.

1. Let Ry be the anticlockwise rotation of R? about the origin through 6 radians. Using any
school geometry or trigonometry you like, find the matrix representing Ry.

Assuming Ry is linear (see lectures!) the vector e; = (é) is rotated to (gﬁfg) while eg = ([1))
—sin6

o) so the matrix is

Ry — <cos€ —sm@) .

sin@ cosf

is rotated to (

2. Look at PS2 Q6a.

17




2.8 Fields

So far, for both matrices and linear equations, we have only been using entries in R. However, we could
have taken entries from any field.

Every field has distinguished elements O (additive identity) and 1 (multiplicative identity).

Fact 2.8.1. Over any field F' we can define:

1. The null matrix (i.e. the additive identity matrix) for M, s, (F) as

00 ... 0
0 0

[an}
[en}

bl

2. The (multiplicative) identity matrix for M, «,,(F) as

10 ... 0
0 1

o
o

Remark 2.8.2 It is important to know what field we are working in, and that we don’t say take scalars
from a different field to the one matrix entries are from. (e.g. the set of matrices My, x,(Q) is not closed
under scalar multiplication by elements from R).

Being able to work over a general field allows us to use finite fields.

Theorem 2.8.3. Let F, = {0, 1, ...,p — 1}, consider I, with addition defined by addition modulo
p and multiplication as multiplication modulo p. Then the structure (IF,,, + (mod p)s» X (mod p)) isa
field.

Proof:

Al-4 (Additive (commutative) group) obvious from properties of addition in Z.
M1-3 (mulitplicative semigp with 1)obvious from properties of addition in Z.
M4: inverses: obviously for 0 < z < p we have ged(z, p) = 1 by Intro to Uni Maths we have:

Js,t € Z such that 1 = sz + tp then take 2! = s (mod p).

D1 (distributive law) obvious from properties of addition in Z.

Example 2.8.4. s defined as above is not a field. For example 3 # 0 does not have an inverse.

18



3 Vector Spaces

3.1 Intro to Vector Spaces

Definition 3.1.1. Let F' be a field. A vector space over F' is a non-empty set V' together with the
following maps:

1. Addition
®: VxV — V

(v1,v2) = v Dy

2. Scalar Multiplication
®©: FxV —» V

(f:vQ) = f®v2

@ and © must satisfy the following Vector Space axioms:

For Vector Addition:

Al Associative law: (u@v)dw=ud (VO w).
A2 Commutative law: v w =w D v.

A3 Additive identity: Oy & v = v, where Oy is called the IDENTITY vector (or sometimes the
zero vector).

A4 Additive inverse: v & (©v) = Oy.
For scalar multiplication:

AS Distributive law: r © (v w) = (roOv) & (r © w).
A6 Distributive law: (r +s) Ov=(roOv)® (s O V).
A7 Associative law: 7 © (s © V) = (rs) © v.

A8 Identity for scalar mult: 1 © v = v.

From now on we will drop the & and ©, and use + and - the point was to emphasise that these are not
the same as field addition and multiplication.

Definition 3.1.2. Let V' be a vector space over £’ we call:

¢ Elements of V are called vectors.
¢ Elements of F’ are called scalars.

* We sometimes refer to V' as an F'-vector space.

Example 3.1.3. The following are examples of vector spaces over R:

19



* The canonical example is the set of vectors R™ over R, where & is normal vector addition
and ® is multiplication by a scalar. The additive inverse of v is simply —v

* The set M, of all m xn matrices. This is because addition of two m xn matrices produces an
m X n matrix and multiplication of an m X n matrix by a scalar also produces a m X n matrix.
The zero vector is the zero matrix, and for any matrix A, the matrix —A is the additive inverse.
Properties of matrix arithmetic covered in Chapter 1, show that all properties in Definition
3.1.2 required of a vector space are satisfied. We will see this later in the course in detail.

* Define R¥ to be the set of real valued functions on X (i.e. RX := {f : f a function, f :
X — R}). Then for f,g € R¥ and o € R define:

fog:X =R (@@ f): X =R
(fog)(z) = f(z)+g(x) (a® f)@) =a(f(z))

Exercise 3.1.4. Which of the following examples of vector spaces over R :

1. The set of vectors

V= { < Z ) ra,be Z} with the usual vector addition and multiplication
1 1
No, because 1 ev, , but V2 1 gV
2. The set of vectors:

V= { ( ¢ ; ! > ra € R} with the usual vector addition and multiplication

No, because < 8 > %

3. V = R? with the following addition and scalar multiplication operations:

() (0)=(an) = o(5)-(0)

yes

3.2 Subspaces

Definition 3.2.1. A subset W of a vector space V is a subspace of V' if

S1 W is not empty (i.e. e € W)
S2 forv,w € W, then v ®w € W closed under vector addition

S3 ve Wandr € R, thenr © v € W closed under scalar multiplication.
N.B. Sometimes we use the notation U < V to mean U is a subspace of V.

Remark 3.2.2 Note that V and the zero subspace, 0 are always subspaces of V. Any other subspace of

20



V' is called a proper subspace of V.

Proposition 3.2.3. Every subspace of an F'-vector space V must contain the zero vector.
Proof:

Claim: For an F'-vector space V' with 0 € F' the field additive identity we have Ov = 0Oy for all
v € V.. Proof of claim: Exercise (note enought to show that Ov is the vector space additive identity.

Letv € V (V is non-empty) then Oy = 0@ v € V as V is closed under scalar multiplication.

Example 3.2.4. Show that the set X = { ( g > 1T € R} is a subspace of R,

Worked Answer

S1 The vector < (1) ) € X, therefore X is non-empty.

[ ™ [ 22
S2 va—< 0 )andw—< 0 >,then
. I T2
vVew = <O>€B<O)

S3 Ifv= ( 71 )andTE]R,then

0
rov = re@ 1
o 0

B rT
_ < ’ >6X

Therefore, X = { ( g ) x € R} is a subspace of R?.

Exercise 3.2.5. All subspaces of a vector space over F' are vector spaces over F' in their own right.

Theorem 3.2.6. Let U, W be subspaces of V. Then U N W is a subspace of V. In general, the
intersection of any set of subspaces of a vector space V' is a subspace of V.

ProofLet C be a set of subspaces of V and T is their intersection. Then T' # () since every subspace
of V' (and therefore every subspace in C') contains the zero vector, and so does 7.

Suppose that z, y € T'. Since z and y belong to every subspace W in C, so does x @y, and therefore
zhyel.

If x € T, then x belongs to every subspace I in the set C, and so does r ® z andsor ® x € T.

Therefore 7' is a subspace of V.
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Example 3.2.7. Note that in general if U and W are subspaces of V, then U U W is not a subspace
of V. For example, let

v={(5)eerpw={(})ver} ma v-r

Then

but
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3.3 Spanning

Definition 3.3.1. Let V be an F'-vector space. Let uy, ..., uy, € V then:

e A Linear Combination of uq, ..., u,, is a vector of the form ajuq + ... + .y, for scalars
Qai, ...,y € F. Note we can also write acyu + ... + Gy, as Z:il ;U

* The span of uy, ..., u, is the set of linear combinations of uy, ..., Up,. i.e. Span(ui, ..., uy) =
{a1u + ... + apum €V 1 aq,y .oy, € F}.
NB: there are several different notations used for Span, e.g., Sp(X), < X >.
Lemma 3.3.2.
Let V be an F' vector space, and u1, ..., u,, € V then Span(uq, ..., u,,) is a subspace of V.
Proof: Clearly Span(uy, ..., u,) C V so we do the subspace test:
SS1 wy € Span(uy, ..., um,)
SS2 Suppose v, w € Span(ui, ..., un) then v =Y " cyu; and w =y ;" | Biu; 0
m
v+ w = Z(Oéi + Bi)u; € Span(uy, ..., uy,) as F closed under addition, i.e. o; + 3; € F
i=1

SS3 Suppose v € Span(ui,...,upy) and X € F thenv = > oju; dov = D70 A, €
Span(ui, ..., um) as Aoy € F foreachi € {1,...,m}

Remark 3.3.3.

By convention we take the empty sum to be Oy, so Span) = {0y}

* For an infinite set S we still only take finite sums i.e.

Span(S) = Z aisi+ S cfmite § e F
s, €8’

Exercise 3.3.4. Show that for an infinite subset S of an F'-vector space V', Span(.S) is a subspace of
V.

Definition 3.3.5. Let V' be an F' vector space, and suppose S C V' is such that Span(S) = V then
we say S spans V, or equivalently S is a spanning set for V.

Example 3.3.6.
1 0 0
. O |, 1,10 spans R3.
0 0 1

23



» R99="[z] spanned by {1,z, 22...., 2"}

Exercise 3.3.7. Which of the following sets span R3:

1\ /0\ /1\ /O
Lo, {1 ].,[{1].[1
o/ \o/) \o/ \1
1\ /0\ /1
2 lo . [1].,[1
1) \o/ \1
3 /0\ /-1
3. lo ][ 1], -1
2/ \1) \ -1
1\ /0
4. o |,[ 1
1/ \o

In the above exercise we see that we sometimes have “redundant” vectors in a spanning set. If as well as
spanning the set is linearly independent, then this won’t happen.
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3.4 Linear Independence

Definition 3.4.1. Let V be an F-vector space. We say u1, ..., Uy, € V are linearly independent if
whenever

ailuy + ... + apty, = Oy,
then it must be that
alz...:amzo_

We say {u1, ..., u, } is a linearly independent set.

Alternatively, a set {u1, ..., un, } is linearly dependent if ayuy + ... + apuy, = Oy where at least
one «; # 0, and a set is linearly independent if it is not linearly dependent.

Example 3.4.2.
1 0
e Theset S = 01,11 is a linearly independent subset of R3.
0 1

 Let f,g : R — R be functions and suppose f(z) = x and g(z) = x2. The set {f,g} is a
linearly independent subset of V = RE.
Proof: Suppose ag + Bf = Oy now two functions are equal if they are equal on all of the
domain. So consider 1,2 € R. Then we get

Ov(1) = (ag+pBS)1)
0 = a+p

Ov(2) = (ag+Bf)(2)
0 = 2a+4p

Sowehave « = —f and a = —2F thus a = 5 = 0.

1 2 1
e The set S = 0|, 1 1 is a linearly dependent subset of R3.
0 1 1
1 1 0
11+ 0|+ 1 |={0
1 0 1 0

* For V and F-vector space then {0y } is linearly dependent

* For V and F'-vector space v € V then {v} is linearly independent iff v # Oy.

Exercise 3.4.3. Which of the following sets are in linearly independent subsets of R3:

1 0 1 0
Lo, 1], 1], |1
0 0 0 1
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2 N I
1 0 1
3 —1

.o .l 1], -1
2 1 ~1
1 0

4. o), [ 1
1

Lemma 3.4.4. Let vy, ..., v, be linearly independent in an F'-vector space V. Let v,,41 be such that
Unt1 & Span(vy, ..., v,). Then vy, ..., v,41 is linearly independent.

Proof: Suppose oy, ..., any1 € F are such that ayvy + ... + any1vp+1 = Oy

If a1 # 0then v, 11 = ——(@1v1 + ... + ayvy) € Span(vy, ..., v,). Contradiction.

An4+1

So an+1 = 0so vy + ... + apv, = Oy, but vy, ..., v, are linearly independent, thus oy = ... =
o, = 0.
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3.5 Bases
Definition 3.5.1.

* Let V be an F'-vector space. A basis of V is a linearly independent spanning set of V.

» If V has a finite basis then we say V' is a finite dimensional vector space.

Example 3.5.2.
1 0 0
e Theset B = O1J,1 11,10 is a basis for R3. We have done linear indepen-
0 0 1

dence, you must show Span(B) = R3.

* Let F be a field, then in " let e; be the columnn vector with zeros everywhere except the
it" row. Then {e1, ..., e, } forms a basis for F"* and is known as the standard basis.

o R[] has basis {1, z, 2?2, ...}.

Note: Not every vector space is finite dimensional. For example R[z] the set of real polynomials doesn’t
have a finite basis, but it does have infinite bases, e.g., {1, z,22,... }.

Exercise 3.5.3. Which of the following sets span R3:

1 0 1
1 0 1 1
0 0 0
1 0 1
2 0 1 1
1 0 1
3 0 -1
3 0 1 -1
2 1 -1
1 0
4. 0 1
1 0

Proposition 3.5.4. Let V' be an F-vector space, let S = {u1, ..., u;,} € V. Then S is a basis of V/
if and only if every vector in V' has a unique expression as a linear combination of elements of S.

Proof:

(=) Suppose S is a basis of V. Take v € V.

[AIM: there are unique oy, ..., o, € F' such thatv = Z?; ;U]

Since V is spanned by S we have some ay, ..., a,, € F such that v = Z?;l ;U

Suppose for contradiction the «;’s are not unique, i.e. there exist 51, ..., 3, € F such that v =
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Then we have:
Doy iug =yt B
Yot (s — Bi)u; =0
As Sis LI we get a; — 5; = 0 thus «o; = f3;

(<) Suppose conversely that for every v € V has there are unique oy, ..., oy, such that v =
m
21:1 QU

[AIM: we need to show that S is spanning and LI.]

* Spanning: Letv € V thenv = ) " | au; € Span(S)

e LI: First remark that Ou; + ...0u,, = Oy soif Z;il Aiu; = Oy then by uniqueness we get
oy = 0

So S is a basis for V.

Remark 3.5.5 Let B = {uy,...u;, } be a basis for an F-vector space V. By Proposition 3.5.4 we see
that we have a bijective map f from'V to F™, for v = ajuy + ... + Quupy, we define f(v) = (aq, ..., ap)
we call (a1, ..., ) the co-ordinates of v

Proposition 3.5.6. Let V' be a non-trivial (i.e. not {0}) F-vector space and suppose V' has a finite
spanning set .S then .S contains a linearly independent spanning set.

Le., if V has a finite spanning set it has a basis - for cases where there is no finite spanning set we
would need something called the axiom of choice to show this (see LOGIC course in year 3)

Proof:

Consider T such that T is linearly independent subset of .S, and for any LI subset of .S, 7" we have
that |7 < |T|. We can get such a T" as we have at least some v € V so {v} is linearly indpendent
G.e. |T| > 1).

Claim T is spanning.

Proof of Claim: Suppose not then there is a v € S\ Span(T’) but by Lemma 3.4.4 v U T is LL
Contradiction.
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3.6 Dimension

Lemma 3.6.1. Steinitz Exchange Lemma

Let V be a vector space over F. Take X C V and suppose u € Span(X) but u ¢ Span(X \ {v})
for some v € X. LetY = (X \ {v}) U {u} (i.e., we “exchange v for v”). Then Span(X) =
Span(Y).

Proof

Since u € Span(X) we have aq, ..., ay, € F such that vy, ..., v, € X suchu = ajv1 + ... + apv,.
Now there is a v € X such that u ¢ Span(X \ {v}) we may assume, WLOG, that v = vy, thus
an # 0 so:

1
v=v, = —(U—aQV1... — Qp_1Vp_1)
(079

Now if w € Span(Y') then for some Sy, 01, ..., Bm We have vy, ..., vy, € X \ {v}

w = PBou+ Y ity Bivi
= Bolaavr + ... + apvn) + > 12 Bivi € Span(X \ {v} U {v}) = Span(X)

So Span(Y') C Span(X).

Similarly we have that if w € Span(X) the w is a linear combination of elements of X, now we
can replace v,, with O%n(u — QV]... — Qp—1Vp—1 SO WE can express w as a linear combination of
elements of Y. So Span(X) C Span(Y'), thus Span(Y) = Span(X).

This lemma is essential to being able to define the dimension of a vector space - and relies on being able
to invert elements in the field.

Exercise 3.6.2. Verify the Steinitz exchange lemma where:

« V=R?

° X:{el,eg}
2

o u= 3
0

Theorem 3.6.3. Let V' be a finite dimensional vector space over F'. Let S, T be finte subsets of V.
If S'is LI and T spans V then |S| < |T'|. That is, LI sets are at most as big as spanning sets.

Proof: Assume S is LI and T spans V' and suppose:

S ={s1,.,8m}
T= {tla"'atn}

Let T = Ty, since Span(Ty) = V there is some I such that s; € Span({t1,...,t;}), but
s1 ¢ Span({t1,...,ti—1}).

Thus by SEL Span({si,t1,...,ti—1}) = Span({t1,...,ti}).
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Let Ty = {s1,t2, ..., ti—1,ti+1,...,tn}, then we have Span(Ty) = Span(Ty) = V. We continue
this process inductively.

Suppose that for some j with 1 < j < m we have Tj = {s1, ..., 55, iy, ..., ti,_; }» with Span(Ty) =
Span(T'), and t;, € T.

Now sj11 € Span(T}) so there is an i; such that sj11 € Span({s1,...,S;j,ti, ..., ;. }), but
sj+1 & Span({s1,..., 85, tiy, ., tip_ })-

Note S'is LI so sj+1 ¢ Span({s1,...,s;})ie. t; € T.

WeletTj 11 = {s1, .., Sj+1, tiys -+ iy Ly, s ti,,_; } and by SEL we have Span(Tj11) = Span(T}
Span(T) =V, by relabeling the elements of 7} we can see we have a set of the form:

Tjt1 = {815 Sj41 tirs s iy (540

After j steps we have replaced j members of 7" with j members of S. We cannot run out of mem-
bers of 1" before we run out of members of S; as otherwise a remaining element of .S would be a
linear combination of the elements of S already swapped into T, thus m < n.

Corollary 3.6.4. Let V be a finite dimensional vector space. Let S, T be bases of V, then S and T’
are both finite and |S| = |T'|.

Proof: Since V is finite dimensional it has a finite basis B say. Suppose |B| = n. Now B is a
spanning set and |B| = n so by Theorem 3.6.3 any LI subset has size at most 7.

Since S is LI we get |S| < n, similarly |T'| < n - so both sets are finite.

Also we have S is spanning and 7" is LI, so |T'| < |S|, also T is spanning and S is LI, so |S| < |T'|.
Thus |S| = |T.

Definition 3.6.5. Let V' be a finite dimensional vector space. The dimension of V, written dim V,
is the size of any basis of V.

Remark 3.6.6 Note that we needed Corollary 3.6.4 and thus the SEL to know that the size of a basis is
unique (a basis certainly isn’t).

Example 3.6.7. In PS2 you were asked to describe all the subspaces of R? this becomes much
easier once we know about dimensions.R? is an R vector space of dimension 3.

As subspaces are vector spaces in their own right so they also have dimensions, and these must be
less than or equal to 3:

+ dim 3: the only subspace of dimension 3 is R?

* dim 2: planes going through the origin

* dim 1: lines going through the
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0
e dim0: {[ 0 |}
0

Lemma 3.6.8. Suppose that dimV' = n:

1. Any spanning set of size n is a basis.

2. Any linearly independent set of size n is a basis.

3. S'is a spanning set if and only if it contains a basis (as a subset).

4. S is linearly independent if and only if it is contained in a basis (i.e. it’s a subset of a basis).

5. Any subset of V' of size > n is linearly dependent.

Proof: Exercise.
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3.7 More subspaces

Definition 3.7.1. Let V' be a vector space, U and W be subspaces of V.

» The intersection of U and W is:

UNW={veV:veWandveU}

e The sum of U and W is:

U+W={ut+w:uelUweW}

Remark 3.7.2. U C U + W and W C U + W. This is because 0 € U and 0 € W, so for every
ueU,u=u+0€U+W. Similarly, foreveryw e W,w=0+we U+ W

Example 3.7.3. Let V = R? over R, U = Span{(1,0)}, W = Span{(0,1)}. ClaimU+W = R2.
Proof: Let (A, 1) € R? then (X, 0) € U, (0, ) € W so

ANp)=N0)+0,u) e U+W

Exercise 3.7.4. Let U and W be subspaces of V' an F'-vector space. Then U + W and U N Ware
subspaces of V.

Proof:

1. U + W is a subspace: Clearly U + W C V, so we can apply the subspace test:

c0eUand0eWso0+0=0eU+ W.

* Suppose v1,v2 € U + W then v1 = u; + w; and vy = ug + we for some u; € U and
w; € W. Consider

vi+ve = (ur+w) + (u2+ws)
= (u1 +wu2) + (w1+wz) +inV iscommutative and associative
N—— ——
ceU ew U, W closed under +

Sovi+ve e U+ W
elet e Randv € U + W thenv = v + w for some v € U and w € W. Consider

A= AMu +  w)
= A, + Aw by distributivity in V'
elU € W U, W closed under scalar x
SoweU+W

2. U N W is a subspace. Exercise.

Proposition 3.7.5. Let V' be a vector space over F'. Let U and W be subspaces of V/, suppose
additionally:

o U = Span{uy,...,us}
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e« W = Span{wy, ..., w,}

Then U + W = Span{uy, ..., us, wy, ..., wy }.
Proof:
1. Show U + W C Span{uy, ..., us, w1, ...,w, }. Letv € U + W then u = u + w for some
u € U and w € W. Therefore:

o U= AUl + ... + AsUg
* W= W] + ... + YWy

Sov = Aug + ... + Asus + prwy + ... + prw, € Span{uy, ..., us, wy, ..., wy }

2. Show Span{ui, ..., us, w1, ...,w,} C U + W. Suppose v € Span{ui, ..., us, w1, ..., Wy}

then:
vo= AUt Asus 0 prwn e+ ppwy
€ Span{uy, ..., us} € Span{;;h ey Wy }
=U =W
SoveU+W.
Alternatively:

e u, € UCU+Wforeachi € {1,...,s}
e w; € WCU+ W foreachi € {1,...,7}

So {uy, ..., us,wi, ..., wy} € U+ W so Span{uy,...,us, w1, .., w,} € U+W. Asu+ W
is closed under linear combinations.

Example 3.7.6. Let V = R?, let U = Span{(0,1)}, W = Span{(1,0)}. Then by proposition
3.7.5 we have U + W = Span{(0,1), (1,0)} = R2. Agrees with example 3.7.3.

Example 3.7.7. Let V = R? and:

Let U = {(z1,72,23) € R® : 21 + z2 + 23 = 0}
Let W = {(21, 22, 73) € R3: —11 + 229 + 23 = 0}
Question: Find bases for U, W, UNW,U + W.

Answer:

* A general vectorinu € U is of the form u = (a,b, —a—0b) fora,b € R. Sou = a(1,0,—1)+
b(0,1, —1), therefore {(1,0,—1), (0,1, —1)} is a spanning set for U, and as the vectors are
linearly independent this is a basis for U.

* A general vector in w € W is of the form w = (2a + b,a,b) for a,b € R. So u =
a(2,1,0) + b(1,0,1), therefore {(2,1,0),(1,0,1)} is a basis for W, as they are clearly lin-
early independent.

* By proposition ?? we know that {(1,0,—1),(0,1,-1),(2,1,0),(1,0,1)} is a spanning set
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for U + W, this is clearly not linearly independent, so we do row reduction to get an LI set:

—1
—1

-1
—1

_ N O =
O R = O
()
o O O =
O = = O
\
[\

o O O =
O = = O
()
SO O =
OO R O
O~ OO

So a linearly independent spanning set is {(1,0,0), (0,1,0), (0,0,1)}. So dim(U + W) = 3
soas U + W C R? we have U + W = R3.

» We want a basis for U N W. Let z = (21, 22, x3) € R3. We have:
zeUiffx1 +xo+23=0
reWiff —x1 + 220+ 23=0
Sox c UNWiffz; +x9+23 = —21 + 222+ 23 =0 (Ge. UNW = {(x1,22,23) € R?:
r1 + 29 + 23 = 0 and —CL’1—|—2£L'2—|—$3:0})

That is to say 2z; — x5 = 0, so x2 = 2z, and therefore z3 = —x1 — 22 = —3z1. So
x is of the form (x1,2x1,—3z1). So a spanning set for U N W is {(1,2,—3)} which is
clearly a basis.

Remark 3.7.8. A neater way of finding a basis for U + W would have been to use the basis for
UNW. Since U NW C U we can find a basis for U containing out basis for U N W and similarly
for W. The union of these bases will be a basis for Uyy .

For instance, a basis for U is {(1,0,—1), (1,2, —3)}, and a basis for W is {(1,0,1), (1,2, -3)},
so a basis for U + W is {(1,0,1),(1,0,—-1),(1,2,—3)}. Note that this has three elements, and
dim(U + W) = 3 so as this is a spanning set it must be a basis.

Theorem 3.7.9. Let V' be a vector space over F', U and W subspaces of V. Then
dim(U + W) = dimU + dimW — dim(U NW).
Proof: Suppose dim(U N W) = m, dimU = r and dimW = s (so we need to prove that
dim(U+ W) =r+s—m).
Now as dim(U NW) = m we have a basis Bynw{v1, ..., 0} of UNW. Now as UNW C U and

Buynw is linearly independent it is contained in a basis By = {v1, ...., U, U1, -, Ur } 2 Bunw.
Simiarly we have a basis By = {v1, ..., U, W1, ..., Ws } containing By .

Claim By U By = {v1, «cooy Uy U1+ Upy Wit 1, ..., Ws } 18 @ basis for V 4+ W.

Proof of Claim:

Span: By proposition ?? By U By is a spanning set.
LI: Suppose we have:

MU+ oo+ A Um + Ut 1Umt1 + o+ Uy + V1 Wimg1 + ..o + Vsws =0
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For \;, p;, v; € F. [We need to show \; = p1; = v, = 0 forall 2.5, £.]

Now we have

AU+ oo+ A Um + Ut 1Umt1 + ooe + fply = —VUpplWimg] — .. — VsWs
eU eWw

Thus Ajv1 + ... + AU + tmr1tms1 + oo + prery € UNW. So Mog + ... + Aoy, +

Pm+1Um+1 + .o + ity = B101 + ...0m U for some 3; € F. Thus
B1v1 + o BmUm + Vmt1Wmt1 + ... + Vsws =0

As {v1, ..., Uy, Wit 1, ..., Ws } is a basis for W (thus linearly independent) we have f3;
o = B = Vg1 = ..Vs = 0.

Thus A\jv1 + ... + A\ + Bt 1Umes1 + oo + ity = 00 As {01, ooy Uy Upnp 1, - Up } 1S @

basis for U wehave \; = ... = A = 1 = ...t = 0.

So \j = pj = v, = 0foralli.j,k, so By U By is linearly independent.
By U Byy is a spanning set for U + W and is linearly independent thus it is a basis.

Now |By N By | =r+s—m,thus dim(U + W) =r 4+ s — m.
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3.8 Rank of a Matrix

Definition 3.8.1. Let A be an m x n matrix with entries from a field F'. Define:

» The Row Space of A (RSp(A)) as the span of the rows of A. This is a subspace of F'™.

 The Row Rank of A is dim(RSp(A)).

* The Column Space of A (CSp(A)) as the span of the columns of A. This is a subspace of F".
 The Column Rank of A is dim(CSp(A)).

Example 3.8.2. Let F =R and A = < g _11 ? ) Then,

RSp(A) = Span{(3 1 2),(0 —1 1)},

s =swn{( 2).( 1).(2))

Now the row vectors (3 1 2)and (0 —1 1) are linearly independent so dim(RSp(A)) = 2,

R
(1)-(2)(3)
conn -swoif( ). (1))

which is linearly independent, so dimCSp(A) = 2.

is linearly dependent as

So

Procedure 3.8.3.

Calculating the row rank of a matrix A.

* Step 1: Reduce A to row echelon form using row operations:

1 % *x x x%

0O 0 1 % =«
Aeep=10 0 0 1 = x

0

(Actually it doesn’t matter whether the leading entries in each row are 1s or not.)

 Step 2: The row rank of A is the number of non-zero rows in A..,. In fact it the non-zero
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rows of A, form a basis for RSp(A).

Justification
It will be enough to show:

1. RSp(A) = RSP(Aeep)

2. The rows of A.., are linearly independent.

To show 1., not that to obtain A.., from A we use row operations:

T’ir—)Ti-f-)\Tj ANEF, ’L?éj

Ti > AT )\EF\{O}

Ty Ty 7 75 ]
Let A’ be obtained from A by one row operation. then clearly every row of A’ lies in RSp(A) and
so RSp(A") C RSp(A’). Also every row operation is invertibl;e by another row operation:

ri — r; + Ar; hasinverse r; > 1r; — Ar;j
Ti > AT has inverse r; — %ri
Ti T has inverse  7; — 1

It follwos that A is obtained from A’ by row operations, so RSp(A) C RSp(A’). Hence RSp(A) =
RSp(A").

In other words row operations have no effect on the row space. In particular RSp(A) = RSp(Aech)-

For 2. let i1, ..., i, be the numbers of the columns of A, containing the leading entries:

1 * % * %

0 0 1 x =«
Apep, = 0O 0 0 1 % =..

0

11 19 13

Let rq, ...} are the rows of Ag.. Suppose A171 + .... + A\ = 0 for scalars \;. We see that
the i’ih entry of Ayry + ... + A\grp is Ay - 1 = A hence A1 = 0. Therefore A\i71 + .... + \grp =
Aorg + ... + AgT, similarly the Iﬁh entry of Aoro + ... + Ag7k IS A2, so A2 = 0. By induction we
can show that a; = 0 for all i. So {r1, ..., 7} is linearly independent.

1 2 5
Example 3.8.4. Find the row rank of A = 2 1 0
-1 4 15

Answer:

37




1 2 )
A — 0 -3 -10 —
0 6 20

= Aech

S O =
S =N
Suls o

A.cp, has 2 non-zero rows, so the row rank of A is 2.

Example 3.8.5. Find the dimension of

W=5Span{( -1 1 0 1),(2 3 1 0),(0 1 2 3)}CR%

Answer

We can work this out by seeing our vectors as the rows of a matrix:

-1 1 0 1
Let A = 2 3 1 0 |. The span we want is the row span of this matrix, which we work
0 1 2 3
out:
-1 1 0 1 -1 1 0 1
A — 0 5 1 2 — 0 5 1 2
0 1 2 3 0 5 10 15
-1 1 0 1
— 0 5 1 2 :Aech
0 0 9 13

Accn has 3 non-zero rows so RSp(A) has dimension 3. So sim (W) = 3.

We can find the column rank of a matrix in a very similar way to finding the row rank of a matrix.

Procedure 3.8.6. The columns of A are the rows of AT so we can apply Procedure 3.8.3 to A”".

Alternatively: use column operations to resuce A to “column echelon form and then count the
non-zero columns.

1 2 5
Example 3.8.7. Let A = 2 1 0 |. Find the column rank of A. This equals the row rank
-1 4 15
of AT,
1 2 -1 1 2 -1 1 2 -1
AT = (2 1 4 —| 0 -3 6 —|0 -3 6 =Al,
5 0 15 0 —10 20 0 0 O

So the column rank of A is 2. A basis for RSp(AT)is{( 1 2 —1),( 0 —3 6 )}. Soabasis

1 0
for CSp(A) is 2 1, -3
-1 6
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Theorem 3.8.8. For any matrix A the row rank of A is equal to the column rank of A.

Proof:

Let A = (a;j) € Mpxn(F). Let the rows of Abe rq, ..., 7y, s0 7y = (a1, ..., @in).Let the columns
alj
of Abecy,...,cp, 50 ¢ =

amj

Let k be the row rank of A. Then RSp(A) has a basis {v1,...,vx}. Every row r; is a linear
combination of vy, ..., vg. Say:

7 = Ai1v1 + -+ Aipvr(t)
Suppose that v; = (b;1, b2, ..., bin ) then looking at the j** coordinate in (1) we get:

a5 = /\i1b1j + )\igbgj + ...+ )\ikbkj

Now
Z;J A11blj + AlQbQ‘j + ...+ Alkbkj
] .
G = : - Ao1b1j + Aoabaj + ... + Aogbyj:
. ) Am1b1j + Amabaj + .. + Apkby;
Qmyj
A11 A2 Ak
= blj + bgj + ...+ bk:j
Am1 Am2 Ank
So ¢;j is a linear combination of the vectors:
A11 A12 Ak
Aml )\m2 )\mk

Hence C'Sp(A) is spanned by these vectors, thus sim(CSp(A) < k = dim(RSP(A)). Equally
the column rank of A7 is at most the row rank of A” (by the same argument). The column rank
of AT is the row rank of A, and the row rank of A7 is the Column rank of A. Thus we have
dim(RSp(A)) < dim(CSp(A)), and hence dim(RSp(A)) = dim(CSp(A)).

1 2 -1 0
Example 3.89.letA=| -1 1 0 1
0 3 -1 1

Note that 73 = 71 + r9, so a basis for RSp(A) is

{(1,2,-1,0) , (-1,1,0,1)}

v

U1 V2

Werite the rows as linear combinations of v and vy:
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r1 = lvg + Ovo
ro = 0v1 + lug
rg = lvy + 1lvo

These co-efficients are the \;;’s from the proof:

AMi=1 A2=0
A1 =0 App=1

According to the proof, a spanning set for C'Sp(A) is:

1 0
Check this is really a spanning set for CSP(A): Letw; = [ 0 |,wa=| 1
1 1
Now we have:
1
c1 = -1 = w1 — Wy
0
2
Cy = 1 = 271)1 + w2
3
-1
c3 = 0 = —wi
-1
0
Cq4 = 1 = w2
1

So it is indeed the case that {w;, w2} spans C'Sp(A).

Definition 3.8.10. Let A be a matrix. The rank of A written rank(A) or rk(A), is the row rank of
A (or the column rank since they are the same).

Proposition 3.8.11. Let A be an n X n matrix with entried in F, then the following statements are
equivalent:

1. rank(A) = n (“A has full rank™).
2. The rows of A form a basis for F™.
3. The columns of A form a basis for F'™.

4. Ais invertible (so det(A) # 0, etc.).
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rank(A) =n < dim(RSp(A)) =n
< RSp(A)=F"
& the rows of A form a basis for F'™

* (1) < (3): The same, but with columns.

* (1) & (4): rank(A) = nif and only if A, = 1

Now all of the * entries can be eliminated using row operations and so A is reducible to Id using
row operations. By 2.6.2 this is equivalent to A being invertible.
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4 Linear Transformations

4.1 Introduction
Definition 4.1.1. Suppose V, W are vector spaces over a field F.. Let T : V — W be a function
from V to W. We say:
* T preserves addition if for all vi,ve € V we have T'(vi + v2) = T(vy) + T(ve). (i.e. if
T(v1) = wi, T(vg) = we for wy, wy € W we have T'(v1 + v2) = wy + wo.
o T preserves scalar multiplication if forallv € V, X\ € F, T'(\v) = AT (v).

* T'is a linear transformation (or linear map) if it:

1. preserves addition.

2. preserves scalar multiplication

Example 4.1.2.

(a) The identity map 7' : V' — V is obviously a linear transformation.

(b) T : R? — R defined by T'(z,y) = x + y is a linear transformation.
Check:

= T((z1,91) + (22, 92)) = T((w1 + 2,51 + 32)) = 21 + 22 +y1 +y2 = (21 +y1) +
(xa +y2) = T((x1,y1)) + T((22,y2)) So T preserves addition.

— Let A € Rthen T'(A(z,y)) = T((Az, \y)) = Az + Ay = A\T'((x,y)). So T preserves
scalar multiplication.

(c) Let V be the space of all polynomials in z over R (i.e. V' = R[z]). Defin T : V.— V by
T(f(z)) = d%f(m). Then T is a linear map.
Check:

- T(f(2) + g(z)) = £ (f(2) + g(2)) = £ (f(2)) + £ (9(2)) = T(f(2)) + T(9(x))

So T preserves addition.

- Let \ e Rthen T'(\ f(z)) = %)\f(x) = )\%f(ac) = AT'(f(x)). So T preserves scalar
multiplication.

(d) Let V = C (as a 1-dimensional vector space over C). The map 7'(z) = Z is not a linear map:

cation.
(e) Let T : R® — R be given by T'(z,y, 2) = (:Uyz)% then:
- T(M\(z,y)) =T((A\x,\y)) = (A%yz)é = AT'((x,y, 2)). So T preserves scalar multi-
plication.

= T((z1,9y1, 21)+ (22, Y2, 22)) = T((z1+22, y1+Yy2, 21+22)) = (x14+22) (Y1+y2) (21 +

1 1 1
22)3 # (@1 +y1 4+ 21)3 + (22 +y2 + 22))3 = T((21, 91, 21)) + T((22, Y2, 22)). So
T does not preserve addition.
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(f) Lots of functions preserve neither addition nor scalar multiplication, e.g., for R — R the
functions taking x — x + 1, x +— 22, and x — e*.

Proposition 4.1.3. Let A be an m X n matrix over F'. Define T : F™ — F™ (spaces of column
vectors), by T'(v) = Av (for v € F™. Then T is a linear transformation.
Proof: We need to check:

* Preserves addition: Let vi,v9 € F"
T(Ul + 1)2) = A(’Ul + 1)2) = Avy + Avg = T('Ul) + T(Ug) by M1GLA
* Preserves scalar multiplicaiton: Let v € V', A € F' then:

T(A\v) = A(Av) = NAv = \T'(v)

Proposition 4.1.4. Basic Properties of linear transformations

LetT : V — W be a linear map. Write Oy, Oy for the zero vectors in V' and W respectively. We
have:

1. T(0,) = Oy

2. Suppose v = Ajv1 + ... + Mg for \; € Fov; € V. Then T'(v) = MT(v1) + ... + AT (vg).

Proof:

1. Since T preserves scalar multiplication we have T'(A0,) = AT'(0,) for A € F'. Taking A = 0,
we have 7°(00,) = 07°(0,), but 0 - 0, = 0, and 0 - T'(0,)) = Oy. Hence T'(0,) = Oy .

2. Induction on k.

Base case. The case where k = 1 just says T preserves scalar multiplication, so it true.

Inductive step: Suppose we know T'(A\ v +...+Ap—10k—1) = M T (v1)+ .. + g1 T (vg—1).
Now

T(/\lvl + ...+ /\kvk) T(Alvl + ...+ )\kfl’l)kfl) + T(/\k’l)k)
= T()\lvl + ...+ )\k_lvk_l) + )\kT(’Uk)

= T()\lvl + ...+ )\k,ﬂ)kfl) + )\kT(’l}k)
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Example 4.1.5. Question: Find the linear transformation 7 : R> — R3 such that T ( (1) > =
1 0

-1 andT<[1)>: 1
2 3

Answer: Note that {( (1) ) , ( (1] >} form a basis for R2, a general vector of R2 is ( Z > —

a( (1) ) —i—b( (1) ).Sowemusthave:

r(5) = rleCo) e (1)
1 0
= aTl 0)—|—bT 1>
1 0
= a|l -1 |+b| 1
2 3
a
= —a+b
2a + 3b
1 0
This map is linear asT< Z ) =1 -1 1 (Z),soamatrix transformation.
2 3

Proposition 4.1.6. Let I and W be vector spaces over F'. Let {vy,...,v,} be a basis for V. Let
wy, ..., Wy be any n vectors from W (these don’t need to be distinct). Then there is a unique linear
transformation 7" : V' — W such that T'(v;) = w; for all i.

Proof: Suppose that v € V, then there exist Ay, ..., A, such that v = A\jv1 + ... + Apv,. Define the
following map:

T:V-W
T(v) = Mw1 + ... + Awy,

Claim: T is a linear transformation.

o T preserves addition:. Suppose v,u € V, so we have v = \v; + ... + \pyv, and u =
Wiv1 + ... + Upvy,. So:

Tw+u) = TAv1+ ...+ Aoy + 101 + oo + fnvy)
T((A1 4+ p1)vr + oo + (An + fin)vn)

(M + p)wr + oo + (An + pin)wy,

AWy + oo+ AW + 1w + oo A Wy
= T(v)+T(u)

» T preserves scalar multiplication: Supposev € V and a € F, we have v = Ajv1+...+ A\ vp,.
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So

T(av) = T(aw(Mv1r+ ...+ Aqvp))
T(aAiv1 + ... + al,vy)
alwy + ... + alpwy
oz()qwl —+ ...+ )\nwn)
= oT(v)

So it remains to check uniqueness. Suppose that we have a linear transformation S such that
S(vi) = w; for all 7. Then we have:

S(A1v1 + oo + A\pop) A1S(v1) + oo+ A\S(vp)
= MNwi+ ...+ \wp,

So T' = S proving uniqueness.

Remark 4.1.7. This shows that once we know what a linear transformation does to a basis we know
what the transformation is.

Example 4.1.8. Let V be the space of all polynomials in x over R with degree less than or equal to
2. A basis for this is {1, 2z, 2?}. We can pick any three arbitary vectors in V for example:

wi =1+
wy = — 22

wz = 1+ 22

By Proposition 4.1.6 there is a linear transformation 7" : V' — V such that 7'(1) = wy, T'(z) = wo,
T(z?) = ws.

We can work out what " does to a general element of V. A general element is of the form v =
al +bx + cz?, so
T(v) = T(al+ bx+ cx?)
a(l+z) +b(x — 22) + c(1 + 22)
= (a+c)+(a+b)z+(=b+c)a?
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4.2 Image and Kernel

Definition 4.2.1. Let 7" : V — W be a linear transformation:

* The Image of T isthe set ImT = {T(v) e W :v €V} CW.

 The Kernel of T'isthe set KerT ={v eV : T(v) =0y} C V.

Example 4.2.2. Let T : R? — R? be defined by:

ol ShY_ (3 12 N B DR
2=\ =101 2T —z1 + 33
x3 x3

3r1 + 2 + 2x3

« The image of 7' is the set of all vectors in R? of the form <
—x1 + T3

> forxq,x9,x3 €

R. This is the space:

{xl(_31>+x2(é)+x3(f);xl,xg,mgeR}zcsp(< _31 (1) f)):u@

Z1
* The kernel of T is the set of vectors in R3 such that T | = O that is so say such
T3

3r1 + x2 + 223 . 0
—T1 +x3 ~\ 0

Alternatively this is the solution space of Az = 0. In this case the kernel is Sp | —5

that:

Proposition 4.2.3. Let 7' : V' — W be a linear transformation. Then:

1. ImT is a subspace of .

2. KerT is a subspace of V.

Note: In general we write U < V to mean U is a subspace of V, so with this notation we are saying
ImT <W and KerT <V.

Proof: For both we need to check the vector space criterion.

1.« Certainly ImT # 0, since T'(0) € ImT.

* Suppose wy,wy € I'mT then there exist v1,ve € V such that w; = T'(vy) and wy =
T'(vz). Now,
T(Ul + 'UQ) = T(Ul) + T('UQ) = w1 + wo

Sowi; +we € ImT.
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e Suppose w € Im7T and let A\ € F. We have w = T'(v) for some v € V, now
T(A\v) = AT (v) = Aw. Sodw € ImT

SolmT < W.

Example 4.2.4. Let V,, be the vector space of polynomials in x over R of degree < n. We have
Vo < Vi < Vs.... Define:

T: Vn — Vn—l,
T(f(x)) = f'(z).

Note: T is linear.
KerT

{f(@): f'(x) =0}
= {constant polys}
= W

Suppose g(x) has degree < n—1. Then by integrating g(x) we can find f(z) such that f'(z) = g(z)
and deg(f(x)) =1+ deg(g(z)), so deg(f(z)) < n. Hence ImT = V,,_1.

Of course the f(x) such that f’(x) = g(x) is not unique - if ¢ is a constant then f(x) + c also has
this property. In fact we get the set {h(z) : h'(z) = g(x)} consists of polynomials f(z) + k(x)
where k(z) € KerT.
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Proposition 4.2.5. Let 7' : V' — W be a linear tranformation and let vy, v € V. Then

T(v1) =T(vg)iff vy — vy € KerT.

Proof:
T(Ul) = T(’Ug) iff T(Ul) — T('UQ) =0
iff T(’Ul - UQ) =0
iff vy —wvy € KerT

Proposition 4.2.6. Let 7 : V' — W be a linear transformation. Suppose that {vy, ..., v, } is a basis
for V. Then ImT = Span{T(v1),..,T(v,)}.

Proof: Clearly Span{T(v1),..,T(v,)} € ImT. Conversely, let w € I'mT. Then w = Tv for
some v € V. Since {v1, ..., v, } is a basis for V' we can find scalars \; such that

v = AU+ .. AU

T(v)

= T(/\lvl + Anvn)

= MT(vn1) + .. AT (vy) € Span{T(v1), ..., T(vn)}

Proposition 4.2.7. Let A be an m x n matrix. Let T' : F™ — F"™ be given by T'(v) = Awv. Then:

1. KerT is the solution space to Av = 0.
2. ImT is the column space of A.

3. dim(ImT) = rankA.
Proof:

1. Immediate from definitions

2. Take the “standard” basis for F'™ that is:

1 0 0
0 1 0
€1 = 0 , €2 0 yeeyEp =
: : 0
0 0 1

By proposition 4.2.6 we have ImT = Span{T(e1),...,T(en)}. Now T'(e;) = Ae; = ¢
where c; is the i’ column of A. SO Im T = Span{ci, ...,c,} = CSp(A).

3. By (ii) dim(ImT) = dim(CSp(A)) = column rank of A = rk(A)

Theorem 4.2.8.  The rank nulity theorem: We've seen that when Tv = Av, rank(A) =
dim(ImT). An old fashioned name for dim(Ker T) is the nulity of A
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LetT : V — W be a linear transformation. Then
dim(ImT) + dim(KerT) = dim(V)
Proof: Let {uy,...us} be a basis for ker 7', and let {wy, ..., w,} be a basis for ImT. For each

w; € ImT, and so Jv; € V with Tv; = w;. We claim that B = {uy, ..., us} U {v1,...v, } is a basis
for V.

» Spanning set: Letv € V since Tv € ImT we can write Tv = A\jw1 + ...\w, for scalars
>\i- So

Tv = Mwi+..\w,
= T(A\v1 + .. A0)

Now by proposition 4.2.5 v—A1v14...\vp € ker T'so v—A1014... A\ 0p = p1t14...+ fhsts.
Thus

V= iUl + e+ pstts + Avp + v € span(B)
* Linear independence Suppose:

A1+ AU - p1ug e+ psus =0

By applying 1" we get:
0 = TM\vr+ ..M\ + prug + ..+ psug)
= MT(v1)+ - ANT(vp) + paT(uy) + oo+ psT(us)
= Mwi + .. \w,
Thus \; = ... = A\, =0, so we get that piyu; + ... + pstus = 0,80 g = ... = s = 0.
Example 4.2.9.

Leta,b,c € R, define U = {(=,y, 2) € R?: ax + by + cz = 0}. U is a subspace of R3.
We can find dimension of U by defining:

T:R>—=R
x
T(z,y,2z) = (a,b,c) | y
z

Now U = ker T, and clearly ImT = R (as not all a, b, c = 0), thus dim(ImT') = 1. So

dimU = dim(kerT)

I
=
3
—_ o~
)
N
|
=
3
™
3
=
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Corollary 4.2.10. A system of linear equations in n unknowns with co-efficients in F:

anry  +apwe +a3r3+ ... +apr, = b

ao1x1  +agTs +axr3+ ... +apr, = b

Am1T1 +am2T2 + am3T3 + ... + amnTy = bm
is called homogeneous if by = by = ... = b, = 0.

We know in this case that we will always get at least a trivial solution to the system - and we saw
in the test that the set of solutions forms a subspace of F'", but what dimension will this subspace
have?

We can use the rank-nulity theorem to work this out:

We know that if we let A = (a;;), then this system of linear equations can be represented as
Az = 0. We also know that A can be seen as a linear transformation A : F™ — F™.

By Proposition 4.2.7 the set of solutions in this case is ker(A), and by the rank nulity we get
dim(ker(A)) = dim(F™) — dim(Im(A))
Now the dim(Im(A)) = rank(A) thus the we can work out how many solutions we have to a set
of homogeneous equations with n unknowns:

o If rank(A) > n we get one solution (the trivial one i.e. Oy)

e If rank(A) < n we get infinitely many solutions (assuming F is infinite)

Exercise 4.2.11. In this case the rank of the augmented matrix (A|0) is the same as that of A.
How does this work for a non homogeneous system of linear equations?

Essentially almost the same except - but we are taking a coset of the system of equations and we
have to account for the case were rank(A) < rank(A|b)
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4.3 Representing vectors and transformations with respect to a basis

Let V be an n-dimensional v.s. over F, let B = {v1, ..., v, } be a basis for V.

Definition 4.3.1. For v € V with v = A\jv1 + ... + A\, v, the vector of V wrt B is

A1

W= :
An

This is well defined since v has a unique expression as a linear combination of vy, ..., Up,.

Example 4.3.2.

(@) V=R3, B ={ey,es,e3}. Then

= aep + bes + ces

sy
Il
o
17
S

(b) Let V be the v.s. of polys in x of degree < 2

a
e B={l,z,2%}then[a+bx +cx?]p= | b
c
e If instead we take B = {z% 2,1} then [a + bx + c2®]p = | b
a

e OrB={l,r+1,2% + x + 1} then:
a+br+c®=(a—b+Ob—c)(xz+1)+c@®+z+1)

a—b
sofa+br+cxtlp=| b—rc
c

Proposition 4.3.3. Let V' be an n-dimensional vector space over F' with a basis B. Then the map:

T:V — F"
T(v) = [v]s

is a bijective linear transformation (i.e. a linear isomorphism).

Proof: Suppose B = {v1, ..., vp }

1. Linear Transformation:

(a) Preserves Addition:
LEt u,v € Vthenu = A\v; + ... + \pvp and v = pgv1 + ... + ppvp SOU + v =
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(M + p1)vr + oo+ (A + ) p.

)\1 M1 )\1 + 1
=1 :+ |, Pla=] : [u+v]p = :
An HUn, An + H1
Therefore

[U+U]B [U]B-i-[v]B
Tu+v) = T(u)+T(v)

(b) Preserves scalar multiplication:
LEtu € Vanda € F sou = Aoy + ... + ApUp, now au = (aA1)vy + ... + (@d,)v,

A1 al
So [u]p = : , o] = : So
An ad,
[aulp = «alulp
T(au) = oT(u)

2. T is bijective:

(a) Injective:
Suppose u, w € V such that T'(u) = T'(w) then T'(u — w) = 0 as T is linear.

0
So [u —w|p = : sou —w = 0v; + ... + 0v,, = 0 hence u = w
0
(b) Surjective:
a1 aq
Let : € F" now [a1v1 + ... + apvp]B = : So T'(a1v1 + ... + apvy) =
(679 Qp
o1
, thus T' is surjective.
an
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Construction 4.3.4.

Now let V, W be finite dimensional vector spaces over F

* B={vy,...,u,} abasis for V.

o C = {wy,...wy,} abasis for W.

LetT : V — W be a linear transformation, we have:

We can define a map F"* — F'™ by following the diagram around. This map is linear as it is a
composition of linear maps (exercise).

Now a linear map F" — F" is a matrix transformation (by hand-in). Let A be the matrix for this
transformation, then A[v|p = [Tv]c.

We calculate A by figuring out it’s columns ¢, ..., ¢,. To calculate ¢;, we work out Tv; and find
Tv; = aj;wi + ... + QWi

a1
so we get ¢; = : . We get:

Ami

C; = Aei == A[Ui]B == [Tvi]c.

Definition 4.3.5. The matrix A constructed above is the matrix of T with respect to B and C' , we
write this ¢[T] 5, so ¢[T]|s[v]s = [Tv]c . If V =W and B = C we sometimes write this simply
as [T .

Remark 4.3.6. If T : V +— V and B a basis for V then for allv € V [Tw]p = [T]|p[v]5

Example 4.3.7.

T:R2—>R2deﬁnedbyT< 1 ) — ( 211 — 22 )
X9 r1 + 2x9

* Take E = {e1, e}. Find [T]p = (f _21>

e {0 L (23

* Find g[T)g = (_21 _31>
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Proposition 4.3.8. Let V' be a vector space. Let B = {vy,...,v,} and C = {wy, ..., w, } be bases
for V. Then for j € {1,...,n} we can write v; = A\;jjw + ... + A\pjwn.

M1 ... A
Let P be the matrix (\;;) = : :|. So the j* column is [vj]c.
At e Ao

1. P = [X]c where X : V — V is the unique linear transformation such that X (w;) = v; for
all j.
2. Forallv € V, Pv|p = [v]c.

3. P = ¢[Id]p where Id is the identity transformation of V.
Proof:
1. The j column of [X]¢ is the image X (w;) written as a vector in C. Now X (w;) = v; s0

the j" column is [v;]¢ and this is the j** column of P, so [X]c = P.

2. For a basis vector v; € B we have:

Plojlg = Pe;
= j* Column of P
= |yle

So the claim is true for elements of the basis B, hence it is true for all v € V.

3. Exercise (essentially part (ii) expressed differently).

Definition 4.3.9. P is the change of basis matrix from B to C.
FHEFEEWarning® ¥ #FFFFF %% Confusing because of 1 in Prop 4.3.8 maps basis elements of C' to
those of B - sometimes described the other way around.

Proposition 4.3.10. Let V', B, C' P as above. Then:

1. P isinvertible, and its inverse is the change of basis matrix from C to B.

2. LetT : V — V be a linear transformation. Then [T]¢ = P[T|pP~!
Proof:

1. Let @ be the change of basis matrix from C' to B. Then:
Qv]c = [v]p forallv € V
Plvlp = [v]c forallv e V

Hence QP[v]p = Q[v]c = [v]p. As v ranges over V, [v]p ranges over all of F™. So
QPx = x for all x € F"™. Therefore QP = I,,, hence P is invertible with inverse Q).
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[Tc[v]e = [T(w)]e forallv e V
(P[T)sP~Yle = (P[T]sP!)P[v]s
= (P[T]p)(P~H)P)[s
= (P[T]B)[v]B
= (P[T(v)]B)
[T()lo

AS this is for all v € V we have (P[T]|gP~ ') = [T]c.

Example 4.3.11. V = R?, T : R? — R? given by T ( 1 ) = ( 2 ) Take bases

T2 —2x1 + 32
p={(1 L dE = {er,e5)
- 1 ) 9 an = 1€1,€2

Caluculate:

1. [T]E=<_02 é)’[T]B:G) (2))

2. [P] the change of basis matrix from E to B (hint: find P~1)

Remark 4.3.12. It is a fact that if P is the change of basis matrix ¢[/d]p from B to C and () is the
change of basis matrix p[I/d]¢ (where B, C, D are all basis for I, then QP = p[Id]¢c ¢[ld]p =
plId] g, the change of basis matrix from B to D.

In Example 4.3.11, we saw that for any given basis B of F" the matrix g[Id]p was easy to calcu-
late, since its columns are the elements of B. Now as

clldlp = c¢[Idgg[lds

This gives us a quick method of calculating chance of basis matrices for F'™.
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