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5 Determinants

5.1 Definitions and key properties

Suppose V is an n-dimensional vector space over a field F and T : V → V is a linear
transformation. In the previous section you saw how, by taking a basis B for V , we could
represent T as an n × n matrix [T ]B and use the matrix to perform calculations with T .
In order to understand T better, it turns out to be useful to try to choose the basis so that
the matrix has a particularly simple form: the best case is where all the non-diagonal entries
are just 0. This leads to the notions of eigenvalues and eigenvectors. We shall come back to
this, but before we do, we need to take a detour though determinants. These are important
in their own right, but for us, the main reason for studying them at this stage is to have a
way of computing the eigenvalues of a matrix.

Notation 5.1.1. We use the following notation throughout:

• F is a field (for example, R , C , Q or Fp , the field of congruence classes of integers
modulo a prime p)

• n ∈ N = {1, 2, 3, . . .}

• Mn(F ) is the set of n× n matrices with entries from F .

If we have a matrix A ∈ Mn(F ) we will denote its entries by aij (for 1 ≤ i, j ≤ n), that is,
we use the corresponding lower-case letter. We will also write A = (aij), without displaying
the ranges for the indices.

Definition 5.1.2. If A ∈ Mn(F ) and 1 ≤ i, j ≤ n , let Aij denote the (n − 1) × (n − 1)
matrix obtained by deleting the ith row and the jth column from A . This is the ij minor
of A .

Example: If

A =

1 2 3
4 5 6
7 8 9


then

A23 =

(
1 2
7 8

)
.

Exercise If A ∈ Mn(F ) and 1 ≤ i, j ≤ n , write down a formula for the (l,m)-entry of
Aij (for 1 ≤ l,m ≤ n− 1).

We now define the determinant det(A) ∈ F of an n×n matrix A ∈Mn(F ). The definition
is by induction on n and I will do the cases n = 1, 2, 3 separately.
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Definition 5.1.3. Let A = (aij) ∈Mn(F ).

(i) For n = 1 : det(A) = a11 .

(ii) For n = 2 :

det

(
a11 a12
a21 a22

)
= a11a22 − a12a21 = a11det(A11)− a12det(A12).

(iii) For n = 3 : det(A) = a11det(A11)− a12det(A12) + a13det(A13).

(Note that det(A11) etc. has already been defined.)

(iv) In general, suppose that det of an (n − 1) × (n − 1) matrix has already been defined.
If A ∈Mn(F ) define:

det(A) = a11det(A11)− a12det(A12) + a13det(A13)− · · ·+ (−1)n+1a1ndet(A1n).

Using summation notation:

det(A) =
n∑
j=1

(−1)1+ja1jdet(A1j).

The point in the last part of the definition is that the minors A1j are (n − 1) × (n − 1)
matrices, and so their determinants have already been defined by induction. Notice that the
signs (−1)1+j just alternate +,−,+,−, ... .

There are other ways of defining the determinant. For example, you may come across one
which involes using the ‘sign of a permutation.’ We will come back to this at some point.
The above definition is sometimes referred to as expansion along the first row of A or
the Laplace expansion of a determinant. We will sometimes denote the determinant of a
matrix A by |A| .

Example: Consider the following 4× 4 determinant (over R , say):∣∣∣∣∣∣∣∣
1 2 0 1
2 0 −1 1
−1 2 1 0

1 0 −2 1

∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣
0 −1 1
2 1 0
0 −2 1

∣∣∣∣∣∣− 2

∣∣∣∣∣∣
2 −1 2
−1 1 0

1 −2 1

∣∣∣∣∣∣+ 0− 1

∣∣∣∣∣∣
2 0 −1
−1 2 1

1 0 −2

∣∣∣∣∣∣
= 1

(
0− (−1)

∣∣∣∣ 2 0
0 1

∣∣∣∣+ 1

∣∣∣∣ 2 1
0 −2

∣∣∣∣)
−2

(
2

∣∣∣∣ 1 0
−2 1

∣∣∣∣− (−1)

∣∣∣∣ −1 0
1 1

∣∣∣∣+ 1

∣∣∣∣ −1 1
1 −2

∣∣∣∣)
−1

(
2

∣∣∣∣ 2 1
0 −2

∣∣∣∣− 0 + (−1)

∣∣∣∣ −1 2
1 0

∣∣∣∣)
= 1(1(2) + 1(−4))− 2(2(1) + 1(−1) + 1(1))− 1(2(−4)− 1(−2))

= −2− 4 + 6 = 0
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We now develop some crucial properties of determinants which will make calculations much
simpler. Essentially, how does the determinant change when we apply elementary row oper-
ations?

Theorem 5.1.4 (D1: Taking out factors). Let A ∈ Mn(F ) and let α ∈ F . Let 1 ≤ l ≤ n
and let B be the matrix which is obtained by multiplying the lth row of A by α. Then

det(B) = α det(A).

Proof: The proof is by induction on n . The case n = 1 is trivial. Suppose that the result
holds for (n− 1)× (n− 1) matrices. We must now split our consideration into two cases:

If l > 1 then the first row of B is the same as that of A and so

det(B) =
n∑
j=1

(−1)1+ja1jdet(B1j).

But, for each j , the (l − 1)th row of B1j is α times the (l − 1)th row of A1j , while all
other rows are the same in B1j as in A1j . Since these minors are (n − 1) × (n − 1),
we have det(B1j) = αdet(A1j), by the inductive hypothesis. Substituting back, we get
detB = αdetA .

If l = 1 then B =


αa11 αa12 · · · αa1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 and, by the definition of the determinant,

det(B) =
n∑
j=1

(−1)1+jαa1jdet(B1j).

But the minors A1j and B1j are the same, so this is

α
n∑
j=1

(−1)j+1a1jdet(A1j) = αdet(A).

2

Remark: Note that If B ∈ Mn(F ) has one of its rows being the zero vector, then the
above shows that det(B) = 0.

Theorem 5.1.5 (D2: Linearity on rows). Let A,B,C ∈Mn(F ) and let 1 ≤ l ≤ n. Suppose
A,B,C are the same except in the lth row, where we have that the lth row of C is the sum
of the lth rows of A and B . Then

det(C) = det(A) + det(B).
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The proof of this is very similar to the proof of 5.1.4(D1) above and is left as an exercise.2

Theorem 5.1.6 (D3: Identical consecutive rows). Let A be an n × n matrices and let
1 ≤ l < n. Suppose that the lth and (l + 1)th rows of A are the same. Then

det(A) = 0.

Proof: The proof is again by induction on n . The base step is n = 2, which is easy to
check, so we suppose n ≥ 3 and the result is true for (n− 1)× (n− 1) matrices. Again, we
divide into two cases.

If l > 1 then we have detA =
∑n

j=1(−1)1+ja1jdet(A1j). Since rows l and l + 1 are the
same in A , rows l− 1 and l are the same in each A1j . Hence, by the inductive hypothesis,
det(A1j) = 0 for each j so det(A) = 0 also.

The case l = 1 is harder and it is here where the pattern of alternating signs becomes
important.

We have detA =
∑n

j=1(−1)j+1a1jdet(A1j) but now we must expand further. Note that
a2k = a1k , since the first two rows are identical, so A1j has the form

column j
↓

A1j =


a11 · · · a1(j−1) a1(j+1) · · · a1n
a31 · · · a3(j−1) a3(j+1) · · · a3n
...

...
...

...
an1 · · · an(j−1) an(j+1) · · · ain


Then, from the definition of determinant we get

det(A1j) =
n∑
k<j

(−1)k+1a2kdet(A1j,k) +
n∑
k>j

(−1)(k−1)+1a2kdet(A1j,k),

=
n∑
k<j

(−1)k+1a1kdet(A1j,k)−
n∑
k>j

(−1)k+1a1kdet(A1j,k),

where A1j,k is obtained from A by deleting rows 1 and 2 and columns j and k . Note, in
particular, that A1j,k = A1k,j . Now, putting these back into the formula for det(A), we get

det(A) =
n∑
j=1

∑
k<j

(−1)j+1(−1)k+1a1ja1kdet(A1j,k)−
n∑
j=1

∑
k>j

(−1)j+1(−1)k+1a1ja1kdet(A1j,k).

But then if 1 ≤ r < s ≤ n , the term with j = s, k = r from the first sum is

(−1)s+r+2a1sa1rdet(A1s,r),
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which cancels with the term with j = l, k = m from the second sum:

(−1)r+s+2a1ra1sdet(A1r,s),

since A1s,r = A1r,s . Hence we get det(A) = 0. 2

Theorem 5.1.7 (D4: Determinant of the identity). We have det(In) = 1.

The proof of this is by easy induction on n and is left as an exercise. End
L1

Now, from properties D1–D4 we can say what happens when we apply an elementary row
operations to a matrix. We denote the rows of the n× n matrix A by R1, ..., Rn and write

A =


R1

R2
...
Rn

 .

Theorem 5.1.8 (Further properties of determinants). Let A,B ∈ Mn(F ) and α ∈ F . Let
1 ≤ i, j ≤ n with i 6= j .

(i) Suppose B is obtained from A by interchanging rows i and i+1. Then detB = −detA.

(ii) Suppose A has two rows equal. Then detA = 0.

(iii) Suppose B is obtained from A by interchanging two rows. Then detB = −detA.

(iv) Suppose B is obtained from A by adding α times row i to row j . Then detB = detA.

It is of course true that (iii) implies (i) but we do need to prove (i) first. We also now know
how elementary row operations affect determinants and this means that we can calculate
determinants much more easily, by using Gaussian elimination. For example,∣∣∣∣∣∣∣∣

1 2 0 1
2 0 −1 1
−1 2 1 0

1 0 −2 1

∣∣∣∣∣∣∣∣
(iv)
=

∣∣∣∣∣∣∣∣
1 2 0 1
0 −4 −1 −1
0 4 1 1
0 −2 −2 0

∣∣∣∣∣∣∣∣
(D1)
= −

∣∣∣∣∣∣∣∣
1 2 0 1
0 4 1 1
0 4 1 1
0 −2 −2 0

∣∣∣∣∣∣∣∣
(D3)
= 0.

Proof: (i) In the following, we just display rows i and i + 1 since all other rows are the
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same in all the matrices.

0
(D3)
= det


·

Ri +Ri+1

Ri+1 +Ri

·

 (D2)
= det


·
Ri

Ri+1 +Ri

·

+ det


·

Ri+1

Ri +Ri+1

·



= det


·
Ri

Ri+1

·

+ det


·
Ri

Ri

·

+ det


·

Ri+1

Ri+1

·

+ det


·

Ri+1

Ri

·


(D3)
= detA+ 0 + 0 + detB.

(ii) By repeatedly interchanging consecutive rows of A , we end up with a matrix B with
two consecutive rows equal. By (i), detB = ±detA and, by (D3), detB = 0.

(iii) The proof is the same as that of (i), using (ii) in place of (D3).

(iv) We just display rows i and j (with i < j – just reverse the notation if i > j ):

detB = det


·
Ri

·
αRi +Rj

·

 (D2)
= det


·
Ri

·
αRi

·

+ det


·
Ri

·
Rj

·



(D1)
= αdet


·
Ri

·
Ri

·

+ detA
(ii)
= 0 + detA = detA.

2

Corollary 5.1.9. If A,B ∈ Mn(F ) are row-equivalent, then det(A) = βdet(B) for some
non-zero β ∈ F . Thus,

det(A) = 0⇔ det(B) = 0.

A matrix A ∈ Mn(F ) is said to be singular if there is a non-zero v ∈ F n with Av = 0.
Otherwise, it is called non-singular.

Theorem 5.1.10. Suppose A ∈Mn(F ). Then the following are equivalent:

(1) A is invertible.

(2) A is non-singular.

(3) The rows of A are linearly independent.
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(4) A is row-equivalent to In .

(5) det(A) 6= 0.

Proof: Statements (1) - (4) are equivalent by the first part of the module.

(4)⇒ (5) : This follows from the above Corollary.

(5)⇒ (4) : We prove the contrapositive. So suppose A is not row-equivalent to In . Then it
is row equivalent to a matrix B with a row of zeros (by Gaussian elimination), which we may
assume is the first row. So det(B) = 0 and it follows from the Corollary that det(A) = 0.

2

Now we show that we can use any row to expand a determinant.

Theorem 5.1.11 (Expansion along the ith row). Let A ∈Mn(F ) and let 1 ≤ i ≤ n. Then

det(A) =
n∑
j=1

(−1)i+jaijdet(Aij).

Remarks: (1) Note the pattern of signs from (−1)i+j :


+ − + − . . .
− + − + . . .
+ − + − . . .
... . . .

 .

(2) In computing the determinant of

1 2 3
0 1 0
4 6 9

 it would be sensible to expand along row

2, rather than row 1.

Proof: We may assume i > 1. Write Rk for the k -th row of A and let B be A with rows
1 and i interchanged. So

det(A) = −det(B) = −
n∑
j=1

(−1)1+jaijdet(B1j) =
n∑
j=1

(−1)jaijdet(B1j).

We compare B1j and Aij . Let R′k denote Rk (the k -th row of A) with the j -th entry
deleted. So the rows of Aij are

R′1, R
′
2, . . . , R

′
i−2, R

′
i−1, R

′
i+1, . . .

and the rows of B1j are
R′2, R

′
3, . . . , R

′
i−1, R

′
1, R

′
i+1, . . . .

8



So by interchanging (i−2) pairs of rows of B1j (working upwards, starting with i−1 and i−2,
then i−2 and i−3, etc.) we can transform B1j into Aij . Thus det(B1j) = (−1)i−2det(Aij).
Substituting back, we obtain the required formula.

2

Examples: (i) Suppose A = (aij) ∈ Mn(F ) is such that aij = 0 if j < i ; that is, A is
upper triangular :

A =


a11 ∗ · · · ∗
0 a22

. . .
...

...
. . . . . . ∗

0 · · · 0 ann

 .

Then det(A) = a11a22 · · · ann . 2

Proof: One way would be to expand along the bottom row and use induction on n . Another
way is to use elementary row operations: for i = 1, ..., n , we can take a factor aii out of row
i to get

det(A) = a11a22 · · · anndet


1 ∗ · · · ∗
0 1

. . .
...

...
. . . . . . ∗

0 · · · 0 1

 .

(Note that this works even if some aii is zero. Now we can eliminate all the entries above the
diagonal by adding multiples of one row to another, so this latter determinant is the same
as det(In) = 1. 2

End
L2

(2) Compute the determinant of


−1 0 0 3
1 3 4 1
2 2 1 5
0 1 2 7

 .

Solution: We have∣∣∣∣∣∣∣∣
−1 0 0 3
1 3 4 1
2 2 1 5
0 1 2 7

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
−1 0 0 3
0 3 4 4
0 2 1 11
0 1 2 7

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
−1 0 0 3
0 1 2 7
0 2 1 11
0 3 4 4

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
−1 0 0 3
0 1 2 7
0 0 −3 −3
0 0 −2 −17

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣∣∣
−1 0 0 3
0 1 2 7
0 0 1 1
0 0 −2 −17

∣∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣∣∣
−1 0 0 3
0 1 2 7
0 0 1 1
0 0 0 −15

∣∣∣∣∣∣∣∣ = 3(15) = 45,

where we have used example (1) to get the determinant of this upper triangular matrix. 2
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5.2 Further properties of determinants

In this section, we will find additional properties of determinants. In particular, we will see
that the determinant is multiplicative and that expansions down columns are also valid.

Recall (Section 2.4 of 1st term) that an n × n elementary matrix E ∈ Mn(F ) is an n × n
matrix obtained by applying a single elementary row operation to the identity matrix In .
Given a matrix A ∈ Mn(F ) and an n × n elementary matrix E , the matrix EA is the
matrix obtained by applying to A the corresponding row operation which gave E (see 2.4.4
in 1st term).

Lemma 5.2.1. Let A ∈ Mn(F ) and let E ∈ Mn(F ) be an n × n elementary matrix. Then
det(EA) = det(E)det(A).

Proof: By the remarks above, det(EA) is the determinant of the matrix obtained by ap-
plying a particular row operation to A , whence, by Theorem 5.1.8, it equals β det(A) for
some non-zero β ∈ F which depends only on the row operation. But, similarly, det(E) =
det(EIn) = β det(In) = β and the result follows. 2

Recall that a matrix M ∈ Mn(F ) is singular if there is a non-zero v ∈ F n with Mv = 0.
As in Theorem 5.1.10, this is the case if and only if M is not invertible

Lemma 5.2.2. Suppose A,B ∈Mn(F ). Then:

(1) AB is singular if and only if at least one of A,B is singular.

(2) det(AB) = 0 if and only if det(A) = 0 or det(B) = 0.

Proof: (1): Exercise. It is probably easier to prove this with ‘not invertible’ in place of
‘singular’.

(2): By (1) and Theorem 5.1.10 2

Now we are ready to prove that the determinant function is multiplicative.

Theorem 5.2.3 (Product Formula). Let A,B ∈Mn(F ). Then

det(AB) = det(A)det(B).

Proof: If one of A,B is singular, this follows from the Lemma.

So assume A,B are non-singular. Thus, each is row-equivalent to In and therefore there are
elementary matrices Ei and E ′j with

10



A = E1 · · ·Er,
B = E ′1 · · ·E ′s.

Applying Lemma 5.2.1 repeatedly, we get

det(A) = det(E1) · · · det(Er),

det(B) = det(E ′1) · · · det(E ′s).

and, since AB = E1 · · ·ErE ′1 · · ·E ′s ,

det(AB) = det(E1) · · · det(Er)det(E ′1) · · · det(E ′s) = det(A)det(B).

2

Example: If A ∈ Mn(F ) is invertible, then det(A) 6= 0. By the product formula
det(A)det(A−1) = det(In) = 1. So

det(A−1) = 1/det(A).

We now turn to expansions along the columns of the matrix. The nicest way to do this is to
work with the transpose of the matrix.

Theorem 5.2.4. Suppose A ∈Mn(F ). Then

det(A) = det(AT ).

Proof: If E ∈ Mn(F ) is an elementary matrix then ET is also an elementary matrix
of the same type as E (exercise) and it follows, by considering the various cases, that
det(ET ) = det(E).

If A is invertible then it can be written as a product of elementary matrices A = E1 · · ·Er
so that AT = ET

r · · ·ET
1 . The above observation and the Product Formula then gives

det(A) = det(AT ).

If A is not invertible then AT is not invertible. So in this case also we have det(A) = 0 =
det(AT ).

2

In particular, this implies that all the properties in Theorem 5.1.8 are valid for elementary
column operations also. Therefore we get:

Corollary 5.2.5 (Expansion down the jth column). Let A ∈ Mn(F ) and let 1 ≤ j ≤ n.
Then

det(A) =
n∑
i=1

(−1)i+jaijdet(Aij).
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Proof: This follows from 5.2.4: transpose A and apply the corresponding result for expan-
sion along the j -th row of the transpose. 2

End
L3

Example: (Vandermonde determinant) Let n ≥ 2 and let x1, ..., xn ∈ F . Show that

det


1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
. . . . . . . . . . . .

1 xn x2n · · · xn−1n

 =
∏

1≤i<j≤n

(xj − xi).

Proof: We can use row and column operations. So we apply column operations Cn−x1Cn−1 ,
Cn−1 − x1Cn−2 ,..., C2 − x1C1 (all of which do not change the determinant) to get

det


1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

...
1 xn x2n · · · xn−1n

 = det


1 0 0 · · · 0
1 (x2 − x1) x2(x2 − x1) · · · xn−22 (x2 − x1)
...

...
...

...
1 (xn − x1) xn(xn − x1) · · · xn−2n (xn − x1)

 .

Now we expand along the first row:

= det

(x2 − x1) x2(x2 − x1) · · · xn−22 (x2 − x1)
...

...
...

(xn − x1) xn(xn − x1) · · · xn−2n (xn − x1)

 .

Now we take a factor out of each row:

= (xn−x1)(xn−1−x1) · · · (x2−x1) det

1 x2 · · · xn−22
...

...
...

1 xn · · · xn−2n

 .

Finally, we see that this final determinant is an (n−1)× (n−1) Vandermonde determinant,
so the result follows by induction. [More precisely, we have done the inductive step, and the
base step (n = 2) is easy.] 2

In particular, we notice that the Vandermonde determinant is zero if and only if xi = xj ,
for some i 6= j .

Corollary 5.2.6 (Lagrange). Let n ∈ N and a0, ..., an−1 ∈ F , not all zero. Then the
polynomial

f(x) = a0 + a1x+ · · ·+ an−1x
n−1

has at most n− 1 distinct roots in F , i.e. there are at most n− 1 distinct α ∈ F such that
f(α) = 0.

12



Proof: Suppose x1, ..., xn ∈ F are roots, so f(xi) = a0 + a1xi + · · · + an−1x
n−1
i = 0, for

i = 1, ..., n . Then

a0


1
1

. . .

1

+ a1


x1
x2
. . .

xn

+ · · ·+ an−1


xn−11

xn−12
. . .

xn−1n

 =


0
0

. . .

0

 .

Hence the columns of the Vandermonde determinant are linearly dependent so the determi-
nant is 0. Hence xi = xj for some i 6= j . 2

5.3 Inverting matrices using determinants; Cramer’s Rule

Definition 5.3.1. Let A = (aij) ∈Mn(F ). If 1 ≤ i, j ≤ n , the ijth cofactor of A is

cij = (−1)i+jdet(Aij).

Let C = (cij) ∈Mn(F ) be the matrix of cofactors of A .

From the expansion for a determinant down the jth column, we know that

det(A) =
n∑
i=1

(−1)i+jaijdet(Aij) =
n∑
i=1

cijaij.

Notice that this is precisely the jjth entry of the product CTA .

What about the other entries; that is, what is

n∑
i=1

cijaik (the jkth entry)

when j 6= k?

In computing this sum, we never use the entries in column j of the matrix A (since this
column is removed when we calculate cij ) so we can assume for the purpose of this calculation
that columns j and k of A are identical, that is aik = aij . But then

n∑
i=1

cijaik =
n∑
i=1

cijaij = det(A) = 0,

since (our modified matrix) A has two identical columns.

We have proved:

13



Theorem 5.3.2. Let A = (aij) ∈Mn(F ) and let C = (cij) be the matrix of cofactors of A.
Then CTA = det(A)In . In particular, if det(A) 6= 0 then

A−1 =
1

det(A)
CT

Here, CT is sometimes called the adjugate matrix of A and denoted by adj(A).

Example: Find the inverse of A =

−2 3 2
6 0 3
4 1 −1



Solution: adj(A) =

−3 18 6
5 −6 14
9 18 −18

T

=

−3 5 9
18 −6 18
6 14 −18

 . We also need to find det(A);

rather than expanding this out again, we can use the fact that adj(A)A = det(A)In to find
this. Looking at the (2, 2)-term of adj(A)A , we get det(A) = 18.3 + (−6)0 + 18.1 = 72.
Hence

A−1 =
1

72

−3 5 9
18 −6 18
6 14 −18


2

Remark: For larger matrices, this is not a very efficient way of computing an inverse.
However, it does have some nice theoretical consequences. As the determinant of an n × n
matrix is a polynomial function of the n2 entries, it follows that if GLn(F ) ⊆Mn(F ) denotes
the subset of invertible matrices, then the map ι : GLn(F )→ GLn(F ) given by ι(A) = A−1

is of the form p(x11, . . . , xij, . . . , xnn)/q(x11, . . . , xij, . . . , xnn), for some polynomials p, q in
n2 variables and coefficients in F . In particular, if F = R (or F = C), then this function is
continuous.

The following is referred to as Cramer’s Rule. It was mentioned in the introductory module
and some people like it. Personally I don’t think it’s very useful.

Let A ∈ Mn(F ) and b = (b1, . . . , bn)T ∈ F n . Consider the equation Ax = b . If A is
invertible, then this has a unique solution

x = (x1, . . . , xn)T = A−1b.

For 1 ≤ i ≤ n let Ai be the result of replacing the i-th column of A by b .

Theorem 5.3.3. (Cramer’s Rule) With the above notation:

xi = det(Ai)/det(A).

Proof: Write A−1 = (a′ij). Thus

xi =
n∑
j=1

a′ijbj.

14



By 5.3.2 a′ij = cji/det(A), where cji = (−1)j+idet(Aji). So

det(A)xi =
n∑
j=1

(−1)i+jdet(Aji)bj = det(Ai)

where the last equality comes from expanding det(Ai) down column i .

2

5.4 The determinant of a linear transformation

Suppose V is a finite dimensional vector space over a field F and T : V → V is a linear
transformation. Let B = v1, . . . , vn be a basis of V and consider the matrix M = [T ]B of T
with respect to B (see 4.3.5 from last term). We define the determinant of T to be det(M).
However, as you know from last term, changing the basis B will change the matrix M , so
why should this make sense? Rather surprisingly:

Theorem 5.4.1. The determinant det(T ) does not depend on the choice of the basis.

Proof: Let C = u1, . . . , un be another basis for V and N = [T ]C . So by the Change of
Basis Formula 4.3.10 from last term:

N = [T ]C = C [Id]B[T ]B B[Id]C = PMP−1

where P = B[Id]C is the change of basis matrix (here, Id : V → V is the identity map).

Then by the product formula det(N) = det(PMP−1) = det(P )det(M)det(P−1) = det(M),
as required. 2

Example: Let V be the R-vector space of polynomials of degree at most 2 over R .
Consider the linear map T : V → V given by T (p(x)) = p(3x + 1) for p(x) ∈ V (Ex: why
is this a linear map?). Compute det(T ).

Take the basis 1, x, x2 and compute that

[T ]B =

1 1 1
0 3 6
0 0 9

 .

So det(T ) = 27. End
L4

5.5 Further topics

There are no lectures on this, but you might like to explore the following topics yourselves.
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(1) Determinants and volume: have a look at Section VII.6 of the book:

Serge Lang, Introduction to Linear Algebra (2nd edition).

(2) We will say more about the following in the Group Theory part. A permutation of
{1, . . . , n} is just a bijection from this set to itself. Denote the set of these by S(n) and
note that there are n! such permutations. The following is true : There is a function
sgn : S(n) → {−1,+1} (the ‘sign function’) such that, for every matrix A ∈ Mn(F ) we
have:

det(A) =
∑
σ∈S(n)

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n).

So this is a sum of n! terms each one of which is a product of n entries of A where there is
exactly one entry from each row and column.

(i) Write out the above formula in the cases n = 2 and n = 3 and work out what sign
function is in these cases.

(ii) If σ ∈ S(n) let Mσ be the n × n matrix with ij entry equal to 1 if j = σ(i) and 0
otherwise. Let A(σ) be the n × n matrix with ij entry equal to aiσ(i) if j = σ(i) and 0
otherwise. So det(A(σ)) = a1σ(1)a2σ(2) . . . anσ(n)det(Mσ).

Use the linearity property (D2) of determinants to show that

det(A) =
∑
σ∈S(n)

det(A(σ)).

Hence deduce the above formula.

(3) What happens if you miss out the alternating signs in the definition of the determinant?
Type ‘permanent of a matrix’ into your favourite search engine.

(4) What do you think is meant by a submatrix of a matrix? Show that the rank of a matrix
A is the largest m such that A has an m×m submatrix with non-zero determinant.

6 Eigenvalues and Eigenvectors
Start
L5Throughout, F is a field and n ∈ N .

6.1 Definitions and basics

Definition 6.1.1. (1) Suppose A ∈ Mn(F ) and λ ∈ F . We say that λ is an eigenvalue
of A if there is a non-zero vector v ∈ F n with Av = λv . Such a vector v is called an
eigenvector of A (with corresponding eigenvalue λ).

(2) Suppose V is a vector space over F and T : V → V is a linear map. We say that λ ∈ F
is an eigenvalue of T if there is a non-zero vector v ∈ V with Tv = λv . Such a vector v is
called an eigenvector of T (with corresponding eigenvalue λ).
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Example 6.1.2. Let

A =

10 −1 −12
8 1 −12
5 −1 −5

 ∈M3(R).

Define TA : R3 → R3 in the usual way by TA(v) = Av .

(1) Let

v1 =

3
3
2

 , v2 =

5
4
3

 , v3 =

2
2
1

 .

Then
TA(v1) = Av1 = 1.v1;

TA(v2) = Av2 = 2.v2;

TA(v3) = Av3 = 3.v3.

So v1, v2, v3 are eigenvectors of A with corresponding eigenvalues 1, 2, 3.

(2) In the above you can check that v1, v2, v3 is a basis for R3 : call it B . Then

[TA]B =

1 0 0
0 2 0
0 0 3

 = D.

Note that this is a diagonal matrix (all of its non-diagonal entries are 0).

As an exercise, you can show that for all k ∈ N we have

Dk =

1k 0 0
0 2k 0
0 0 3k

 .

(3) By the Change of Basis Formula

[TA]B = B[Id]E E[TA]E E[Id]B

where E is the basis e1, e2, e3 of R3 and Id is the identity map on R3 . Thus

D = P−1AP

where P is the matrix with columns v1, v2, v3 .

(4) Finally, as an application, note that A = PDP−1 , so for k ∈ N we have

Ak = (PDP−1)(PDP−1) . . . (PDP−1) k times,

so Ak = PDkP−1 and so we can obtain a general formula for the powers of A .
(Messy Exercise: work out what it is: you need to compute P−1 and multiply out the
matrices! Do it with a computer package.)
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Before we explain how to compute eigenvalues and eigenvectors, we note the following propo-
sition, which connects the definitions for linear maps and for matrices.

Proposition 6.1.3. Suppose V is a finite dimensional vector space over a field F and B
is a basis for V . Let T : V → V be a linear map.

(i) The eigenvalues of T are the same as the eigenvalues of the matrix [T ]B .

(ii) A vector v ∈ V is an eigenvector of T with eigenvalue λ if and only if the coordinate
vector [v]B is an eigenvector of the matrix [T ]B with eigenvalue λ.

Proof: First note that [v]B 6= 0 iff v 6= 0. Then note that

T (v) = λv ⇔ [T (v)]B = [λv]B ⇔ [T (v)]B[v]B = λ[v]B.

The result follows. 2

6.2 The characteristic polynomial

Definition 6.2.1. (i) Suppose A ∈Mn(F ) and let x denote a variable (or ‘indeterminate’).
The characteristic polynomial of A is χA(x) = det(xIn − A).

(ii) Suppose V is a finite dimensional vector space over a field F and B is a basis for
V . Let T : V → V be a linear map. We define the characteristic polynomial of T to be
χT (x) = det(xIn − C), where C = [T ]B .

Example: Let A =

(
2 1
−1 0

)
∈M2(R). Then

χA(x) = det

(
x− 2 −1

1 x

)
= x2 − 2x+ 1 = (x− 1)2.

Remarks 6.2.2. (i) Some people define the characteristic polynomial to be det(A − xIn),
which equals (−1)nχA(x). This saves having to change the sign in A .

(ii) By an exercise on a problem sheet, χA(x) is a polynomial in x over F , of degree n , and
the coefficient of xn is 1 (if we were to use the other definition in (i), then we would obtain
(−1)n ).

(iii) If you are being super-careful, you might object that we defined the determinant of a
matrix where the entries come from a field, but here the entries of xIn −A are from F and
also involve x : so what’s the field? One way around this is to consider the ‘field of rational
functions’ F (x) (note the round brackets). The elements of this consist of expressions
p(x)/q(x) where p, q are polynomials over f in x (and q 6= 0), and the field operations are
the expected ones.

(iv) We should show that in (ii) of the definition, the characteristic polynomial of T does
not depend on the choice of basis. This is just like the calculation in Theorem 5.4.1: try to
give the proof yourself before looking at the following.
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Let B′ be another basis of V . Then [T ]B′ = P−1CP where P = B[Id]B′ . Now,

det(xIn − P−1CP ) = det(P−1(xIn − C)P ) = det(P−1)det(xIn − C)det(P ) = det(xIn − C),

as required.

The following shows that the eigenvalues can be computed as the roots of the characteristic
polynomial. We state the result for both matrices and linear maps, but I hope you are now
getting bored with this: essentially matrices are linear maps.

Theorem 6.2.3. (i) Suppose A ∈Mn(F ) and λ ∈ F . Then λ is an eigenvalue of A if and
only if χA(λ) = 0.

(ii) Suppose V is a finite dimensional vector space over a field F and T : V → V is a linear
map. Then λ ∈ F is an eigenvalue of T if and only if χT (λ) = 0.

Proof: (i) For λ ∈ F :
λ is an eigenvalue of A
⇔ there is a non-zero vector v ∈ F n with (λIn − A)v = 0;
⇔ the matrix (λIn − A) is singular;
⇔ det(λIn − A) = 0 (by 5.1.10);
⇔ χA(λ) = 0.

(ii) By (i) and 6.1.3. 2

We have the following corollary:

Corollary: If A ∈Mn(F ), then A has at most n eigenvalues in F . 2 End
L5

We will use the following notation frequently:

Notation: If A ∈Mn(F ) and λ ∈ F , let

Eλ = {v ∈ F n : Av = λv} = {v ∈ F n : (λIn − A)v = 0}.

This is a subspace of F n (it’s the kernel of a matrix) and λ is an eigenvector iff this is not
the zero-subspace. In this case, Eλ is called the eigenspace of A for eigenvalue λ . Note that
it consists of the zero vector, together with the eigenvectors with eigenvalue λ .

We will use a similar notation and terminology for a linear map T : V → V .

Now some examples of computing eigenvalues and eigenvectors. I assume you have seen this
before, so I will miss out lots of details in the calculations.

Example 6.2.4. (1) Let A =

(
2 1
−1 0

)
∈M2(R). Then

χA(x) = det

(
x− 2 −1

1 x

)
= x2 − 2x+ 1 = (x− 1)2.
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So the only eigenvalue of A is 1. We compute the eigenspace E1 by solving Av = 1.v ,
equivalently, solving (A−1.I2)(v) = 0 using Gaussian elimination (I know you can solve this
in your head, but this works in general):

A− I2 =

(
1 1
−1 −1

)
 

(
1 1
0 0

)
.

So E1 = Span(

(
1
−1

)
). The eigenvectors of A are the non-zero scalar multiples of

(
1
−1

)
.

(2) We go back to Example 6.1.2. Let

A =

10 −1 −12
8 1 −12
5 −1 −5

 ∈M3(R).

So

χA(x) = det

x− 10 1 12
−8 x− 1 12
−5 1 −x+ 5

 = . . . = (x− 1)(x− 2)(x− 3).

[Exercise: you are encouraged to try to do the algebra to fill in the dots.]

Thus, the eigenvalues of A are 1, 2, 3.

To find the eigenvectors, we consider each eigenvalue in turn (we solve (A − λIn)v = 0 as
it’s less likely that we make an error than writing down (λIn − A)):

λ = 1: Missing out the steps in the Gaussian elimination (which you should not do)

(A− 1.I3) =

9 −1 −12
8 0 −12
5 −1 −6

 
1 −1 0

0 2 −3
0 0 0

 .

Reading off the solutions

E1 = Span(

3
3
2

)

and the non-zero vectors in this are the eigenvectors with eigenvalue 1.

λ = 2: . . .

λ = 3: . . .

Exercise: do the calculations and check with 6.1.2.

(3) Let V be the vector space of polynomials in variable t of degree at most 2 over R and
T : V → V the linear map given by T (p(t)) = T (3t + 1). (Ex: why is this linear?). Find
the eigenvalues and eigenvectors of T .
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Solution: Choose a basis of T . We will take B : 1, t, t2 . Then we compute

[T ]B =

1 1 1
0 3 6
0 0 9

 =: A.

[Exercise: you should check this... .] So

χT (x) = χA(x) = det

x− 1 −1 −1
0 x− 3 −6
0 0 x− 9

 = (x− 1)(x− 3)(x− 9),

as this is an upper triangular matrix.

The eigenvalues of T are 1, 3, 9.

To compute E3 , work first with A :

A− 3I3 =

−2 1 −1
0 0 6
0 0 6

 
−2 1 −1

0 0 1
0 0 0


So the eigenvectors of A with eigenvalue 3 are non-zero multiples of

1
2
0

 .

THUS the eigenvalues of T with eigenvalue 3 are the non-zero scalar multiples of (1 + 2t).

Note that what we want are the eigenvectors of T , so you have to do this last step (where
we are using 6.1.3, of course).

Exercise: finish the computation by showing that
E1 = {α.1 : α ∈ R} and E9 = {α(1 + 4t+ 4t2) : α ∈ R} .

6.3 Diagonalisation

Definition 6.3.1. (1) A linear map T : V → V is diagonalisable if there is a basis of V
consisting of eigenvectors of T .

(2) A matrix A ∈Mn(F ) is is diagonalisable if there is a basis of F n consisting of eigenvectors
of T .

If A ∈ Mn(F ), let TA : F n → F n be given by TA(v) = Av (for v ∈ F n ), as usual. Then,
just from the definitions, A is diagonalisable if and only if TA is diagonalisable.

Let’s have a look at this in the previous examples (6.2.4):

(1) The matrix A =

(
2 1
−1 0

)
is not diagonalisable as its only eigenvectors are multiples of(

1
−1

)
.
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(2) The matrix A in (2) is diagonalisable: we have a basis of eigenvectors v1, v2, v3 , as in
6.1.2.

(3) The linear map T in 6.2.4 (3) is diagonalisable as B : 1, (1 + 2t), (1 + 4t+ 4t2) is a basis
of V consisting of eigenvectors of T .

Notation and terminology: A matrix D = (dij) ∈ Mn(F ) is a diagonal matrix if
dij = 0 whenever i 6= j . The diagonal entries are the entries dii (note that some of these
could also be 0). In this case we might write D = diag(d11, . . . , dnn), just displaying the
diagonal entries.

Theorem 6.3.2. (1) Suppose V is a finite dimensional vector space over a field F and
T : V → V is a linear map. Then T is diagonalisable if and only if there is a basis
B : v1, . . . , vn of V such that D = [T ]B is a diagonal matrix.

(2) A matrix A ∈Mn(F ) is diagonalisable iff there is an invertible matrix P ∈Mn(F ) such
that P−1AP is a diagonal matrix. In this case, the columns of P consist of eigenvectors of
A and form a basis of F n .

Proof: (1) Suppose B : v1, . . . , vn is any basis of V . Note that vi 6= 0. Let D = [T ]B . Then,
by definition of [T ]B :

D is a diagonal matrix

⇔ for each j ≤ n we have T (vj) = djjvj

⇔ each vj is an eigenvector of T with eigenvalue djj .

[Ex: where did we use that the vi are non-zero?]

(2) Suppose P ∈ Mn(F ) is invertible. Then the columns v1, . . . , vn of P form a basis B of
F n . Moreover, P = E[Id]B where E is the standard basis. Thus

P−1AP = B[Id]E E[TA]E E[Id]B = [TA]B.

This is a diagonal matrix diag(d1, . . . , dn) if and only if TA(vj) = djvj for all j ≤ n . This is
the case iff vj is an eigenvector of A with eigenvalue dj , for all j ≤ n . 2

Exercise: With the notation as in (2) of the above proof, the columns of AP are Av1, . . . , Avn .
Use this to deduce (2).

Example 6.3.3. (1) Let A ∈ M2(R) be the matrix

(
0 −1
1 0

)
. Then χA(x) = x2 + 1 and

there are therefore no eigenvalues in R and so no eigenvectors in R2 . (This should not be a
surprise as A is a matrix representing rotation anti-clockwise through π/2, so there are no
fixed directions in the plane R2 .)

(2) Now consider the matrix A =

(
0 −1
1 0

)
as a matrix in M2(C). Then χA(x) = x2 + 1 =

(x− i)(x + i). So we have eigenvalues ±i ∈ C . Corresponding eigenvectors are:

(
1
−i

)
for
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i and

(
1
i

)
for −i . These form a basis of C .

So the conclusion is that A is diagonalisable over C , but not over R : we can diagonalise
by extending the field. This is in contrast to Example 6.2.4 (1) where we cannot diagonalise
the matrix even if we pass from R to C .

End
L6

Now we give a couple of applications of diagonalisability.

Example 6.3.4. (1) Powers and roots of matrices: Let A ∈Mn(F ) and suppose P ∈Mn(F )
is such that P−1AP = D = diag(d1, . . . , dn) is diagonal. Then (as in 6.1.2(4)) for k ∈ N we
have

(P−1AP )k = P−1AkP and Dk = diag(dk1, . . . , d
k
n),

so Ak = Pdiag(dk1, . . . , d
k
n)P−1 . This gives a general expression for Ak . (As an exercise, you

can show that if A is invertible, then the same formula also holds for negative integers k .)

Now we consider roots of matrices. In general, it may not be possible to solve an equation
such as B2 = A , even if we enlarge the field (and in general, if there is a solution there may
be infinitely many). However, if A is diagonalisable, we can find a solution for B using the
above equation.

If c1, . . . , cn ∈ F and cki = di for i ≤ n , then let C = diag(c1, . . . , cn). We have Ck = D
and so:

(PCP−1)k = PCkP−1 = PDP−1 = A.

So PCP−1 is a k -th root of A .

(2) Recurrence relations: The following is an example of a system of linear recurrence rela-
tions.

The sequences (Ln)n≥0 and (Tn)n≥0 of real numbers satisfy L0 = 1000, T0 = 8 and, for
n ≥ 1:

3Ln = 2Ln−1 + Tn−1 and 3Tn = 4Ln−1 + 2Tn−1.

Find a general expression for Ln and Tn .

Solution (sketch):

Note that the equations can be written in matrix form as:

(
Ln
Tn

)
=

1

3

(
2 1
4 2

)(
Ln−1
Tn−1

)
.

Writing A for the above 2× 2 matrix we obtain:(
Ln
Tn

)
=

1

3n
An
(
L0

T0

)
.

Using the method in (1) we can obtain a general expression for An and therefore a general
expression for Tn and Ln .

Exercise: complete this!
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The following general result is very useful: eigenvectors for different eigenvalues are linearly
independent. For example, in Example 6.1.2 it tells us immediately that the vectors v1, v2, v3
are linearly independent: so form a basis for R3 .

Theorem 6.3.5. Suppose V is a vector space over a field F and T : V → V is a linear
map. Suppose v1, . . . , vn are eigenvectors of T with T (vi) = λivi for i ≤ n. If the λi are
distinct then v1, . . . , vn are linearly independent.

Before proving this let’s note:

Corollary 6.3.6. (1) Suppose V is a finite dimensional vector space over a field F , with
dimension n, and T : V → V is a linear map with n distinct eigenvalues in F . Then T is
diagonalisable over F .

(2) If A ∈Mn(F ) and χA(x) has n distinct roots in F , then A is diagonalisable over F .

Proof of Corollary: (1) Call the eigenvalues λ1, . . . , λn (distinct) and let v1, . . . , vn be
corresponding eigenvectors. By the Theorem, v1, . . . , vn are linearly independent. As
dim(V ) = n , v1, . . . , vn is therefore a basis of V . So by definition, T is diagonalisable.

(2) By (1) applied to TA . 2

Proof of Theorem 6.3.5: We prove this by induction on n .

Base case: n = 1. We just have to observe that v1 6= 0 as v1 is an eigenvector.

Inductive step: Suppose n > 1 and that the result is true for fewer than n eigenvectors.
Suppose α1, . . . , αn ∈ F and

α1v1 + . . .+ αnvn = 0.

We need to show that αi = 0 for all i ≤ n . If some αj = 0, then we already know this from
the inductive assumption (as we can ignore αjvj in the sum). Thus it will suffice to assume
that all αi are non-zero and produce a contradiction.

By dividing the above equation by α1 we can simplify the notation and assume that α1 = 1,
that is:

v1 + α2v2 + . . .+ αnvn = 0.

Applying T to this we obtain

0 = T (0) = T (v1 + α2v2 + . . .+ αnvn) = λ1v1 + α2λ2v2 + . . .+ αnλnvn.

Subtracting λ1 times the first equation from this:

0 = (λ1v1 + α2λ2v2 + . . .+ αnλnvn)− (λ1v1 + α2λ1v2 + . . .+ αnλ1vn).

So
α2(λ2 − λ1)v2 + . . .+ αn(λn − λ1)vn = 0.

As v2, . . . , vn are linearly independent (by the induction hypothesis) we therefore have:

α2(λ2 − λ1), . . . , αn(λn − λ1) = 0.
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As the λi are distinct, this implies that α2, . . . , αn = 0. This is the required contradiction.
2

The following gives a summary of the method we have developed to decide whether a given
linear map (or matrix) is diagonalisable.

Summary 6.3.7. Suppose we are given:

• A finite dimensional vector space V over a field F , dim(V ) = n ;

• A linear map T : V → V .

We want to answer the following questions:

• Is T diagonalisable over F ?

• If so, find a basis of V consisting of eigenvalues of T .

The method to do this is:

(1) Compute the characteristic polynomial χT (x) and find the (distinct) eigenvalues λ1, . . . , λr ∈
F .

(2) For each i ≤ r , find a basis Bi for the eigenspace Eλi = {v ∈ V : T (v) = λiv} .

(3) If
∑r

i=1 |Bi| < dim(V ), then T is not diagonalisable.

(4) If
∑r

i=1 |Bi| = dim(V ), then the union B = B1 ∪ . . .∪Br is a basis of V consisting of
eigenvectors and so T is diagonalisable.

As a special case, if T has n distinct eigenvalues, then it is diagonalisable. (This already
follows from Theorem 6.3.5.)

Note that (3) here is by definition of diagonalisability. The statement in (4) requires a proof:

Proof of (4): Suppose Bi consists of the vectors vi1, . . . , vin(i) (so n(i) = dim(Eλi ). It will
suffice to show that the vectors

vij for i ≤ r and 1 ≤ j ≤ n(i)

are linearly independent: once we have done this, we know that there are n = dim(V ) of
them, and so they form a basis of V .

Suppose αij ∈ F and
r∑
i=1

(

n(i)∑
j=1

αijvij) = 0.
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We need to show that the αij are all 0. Let wi =
∑n(i)

j=1 αijvij . So wi ∈ Eλi and

w1 + . . .+ wr = 0.

As λi 6= λk if i 6= k , then Theorem 6.3.5 gives wi = 0 for all i ≤ r : any non-zero wi are
eigenvectors with differing eigenvalues and the above equation would then give us a linear
dependence between these.

So for each i ≤ r we have
∑n(i)

j=1 αijvij = 0. As the vectors vij for fixed i are linearly
independent, we obtain that αij = 0 for all i, j , as required. 2 End

L7

6.4 Orthogonal vectors in Rn

For this section, it will help if you take another look at the section of the Introductory
Module about scalar (or dot) product (Section 5.4 of the notes there?). We we use the
following terminology. Throughout, the field is R .

Definition 6.4.1. Suppose u = (α1, . . . , αn)T and v = (β1, . . . , βn)T are vectors in Rn .

(1) The inner product of u and v is

u · v = uTv =
n∑
i=1

αiβi.

(2) We say that u, v are orthogonal if u · v = 0.

(3) The norm (or length) of u is

‖u‖ =
√
u · u = (

n∑
i=1

α2
i )

1/2 ∈ R≥0.

(4) The (Euclidean) distance of u from v is

‖u− v‖ = (
n∑
i=1

(αi − βi)2)1/2.

Notes: You can consider the following as exercises:

(0) u · (v + w) = u · v + u · w etc.

(1) ‖u‖ = 0⇔ u = 0.

(2) ‖αu‖ = |α| ‖u‖ , for α ∈ R . So if u 6= 0, then û = ‖u‖−1 u has norm 1. We refer to this
as normalising u and say that û is a unit vector.

The main fact here is the following. For the history of (1), use your favourite search engine.
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Theorem 6.4.2. Suppose u, v, w ∈ Rn .

(1) (Cauchy - Schwarz - Bunyakowsky) We have

|u · v| ≤ ‖u‖ ‖v‖ ,

and there is equality here if and only if u, v are linearly dependent.

(2) (Triangle Inequality) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

(3) (Metric triangle inequality) ‖u− v‖ ≤ ‖u− w‖+ ‖w − v‖ .

Proof: (1) We show that (u · v)2 ≤ ‖u‖2 ‖v‖2 and then take the non-negative square root.

Suppose u 6= 0 (otherwise the result is trivial) and consider ‖λu− v‖2 . [Why? Well, it’s the
square of the distance from v to the point λu on the line through 0 and u . We are going
to minimise this distance and hope that it tells us something useful.] We have

0 ≤ ‖λu− v‖2 = (λu− v) · (λu− v) = λ2 ‖u‖2 + ‖v‖2 − 2λ(u · v).

Let λ = (u · v)/ ‖u‖2 . [Exercise: this minimises the right hand side of the inequality.]
Substituting in, we obtain:

0 ≤ (u · v)2/ ‖u‖2 + ‖v‖2 − 2(u · v)2/ ‖u‖2

and rearranging gives what we want. Also note that there is equality here if and only if
v = λu .

(2) Exercise: Using (1), show that ‖u+ v‖2 ≤ (‖u‖+ ‖v‖)2 .

(3) By (2). 2

Remark: If u, v ∈ Rn are non-zero, then (1) shows that

−1 ≤ u · v
‖u‖ ‖v‖

≤ 1

so there is a unique θ with 0 ≤ θ < π such that cos θ = u · v/(‖u‖ ‖v‖). By definition,
θ is the angle between u and v . Note that this agrees with what you expect in the cases
n = 2, 3; moreover, θ = π/2 if and only if u·v = 0. This motivates the following terminology,
recalling that ‘orthogonal’ means ‘at right-angles’.

Terminology: We say that non-zero vectors w1, . . . , wr ∈ Rn form an orthogonal set of
vectors if wi · wj = 0 for i 6= j . If additionally each wi is a unit vector, then we say that
they form an orthonormal set.

It is easy to see that if w1, . . . , wr is an orthogonal set of vectors, then by normalising these
vectors we obtain an orthonormal set ŵ1, . . . , ŵr .

Exercise: An orthogonal set of vectors is linearly independent.

You should have seen the following before:
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Definition 6.4.3. A matrix P ∈Mn(R) is an orthogonal matrix if P TP = In .

Note that in this case PP T = In (why?) and P is invertible with P−1 = P T .

Lemma 6.4.4. A matrix P ∈ Mn(R) is an orthogonal matrix iff the columns of P form an
orthonormal set in Rn .

Proof: The ij -th entry of P TP is the inner product of columns i and j of P . 2

All of the above should be familiar, at least in the case n = 2, 3. The next result is the main
new result of this section. Variations and generalisations of it will come up many times in
other modules.

Theorem 6.4.5. (Gram - Schmidt Process) Let v1, . . . , vr be linearly independent vectors in
Rn . Define inductively vectors w1, . . . , wr as follows (for i ≤ r):

w1 = v1 ;

w2 = v2 − w1·v2
w1·w1

w1 ;

w3 = v3 − ( w1·v3
w1·w1

w1 + w2·v3
w2·w2

w2);

...

wi = vi −
∑i−1

j=1(
wj ·vi
wj ·wj

)wj ;

...

Then:

(i) The vectors w1, . . . , wr are an orthogonal set of vectors.

(ii) If ui = wi/ ‖wi‖, then u1, . . . , ur is an orthonormal set of vectors.

(iii) For i ≤ r we have Span(v1, . . . , vi) = Span(w1, . . . , wi) = Span(u1, . . . , ui).

Proof: Note that (ii) follows immediately from (i). We prove the other two parts together.
More precisely, we prove by induction on i that:

(a) wi 6= 0; (b) Span(v1, . . . , vi) = Span(w1, . . . , wi); (c) If k < i , then wk · wi = 0.

The base case i = 1 is trivial, so we do the inductive step, assuming all of these statements
hold for smaller i .

(a): If wi = 0 then vi ∈ Span(w1, . . . , wi−1) = Span(v1, . . . , vi−1), using (b) of the inductive
step, and the definition of wi . This contradicts the linear independence of v1, . . . , vr .

(b) Easy Exercise using the inductive assumption that Span(v1, . . . , vi−1) = Span(w1, . . . , wi−1).
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(c) If k < i , then

wk · wi = wk · vi −
i−1∑
j=1

(
wj · vi
wj · wj

)wk · wj.

If j, k < i and j 6= k then by inductive assumption (c), wk ·wj = 0. So the above simplifies
to:

wk · wi = wk · vi − (
wk · vi
wk · wk

)wk · wk = 0.

This completes the inductive step. 2

Corollary 6.4.6. (1) If U is a subspace of Rn , then there is an orthonormal basis of U
(i.e. an othonormal set in Rn which is a basis of U ).

(2) If u1 ∈ Rn is a unit vector, there is an orthogonal matrix P ∈Mn(R) with first column
u1 .

Proof: (1) Let v1, . . . , vr be a basis of U and apply Gram - Schmidt to this.

(2) Extend u1 to a basis u1, v2, . . . , vn and apply Gram - Schmidt to obtain an orthonormal
set (basis) u1, u2, . . . , un : the first vector here is unchanged by the process. Take P to have
these vectors as its columns. 2

Remark: Geometrically,
∑i−1

j=1(
wj ·vi
wj ·wj

)wj is the orthogonal projection of vi onto the subspace

Span(w1, . . . , wi−1) = Span(v1, . . . , vi−1). Think about this for i = 2, 3 and draw some
pictures.

Example: Find an orthogonal matrix P ∈M3(R) whose first column is u1 = 1√
3
(1, 1, 1)T .

Solution: Extend v1 = (1, 1, 1)T to a basis v1, v2, v3 of R3 and apply Gram - Schmidt. We
will obtain an orthonormal basis u1, u2, u3 , which we take as the columns of our matrix P .

[Note that using the un-normalised vector v1 rather than u1 will simplify the computations.
If you don’t believe this, try working with u1 from the outset.]

We take v2 = (0, 1, 0)T , v3 = (0, 0, 1)T . Lots of other choices are possible here.

Then we use the first stage of Gram - Schmidt to form an orthogonal set:

w1 = v1 ;

w2 = v2 − 1
3
(1, 1, 1)T = 1

3
(−1, 2,−1)T ...

... oh, that looks a bit messy: note that we can replace it by a scalar multiple and not change
any of the properties needed, so take

w2 = (−1, 2,−1)T . Then

w3 = (0, 0, 1)T − 1
3
(1, 1, 1)T − −1

6
(−1, 2,−1)T = 1

2
(−1, 0, 1).

[Check these are orthogonal!]
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Normalise (easier if you remember that you can normalise any scalar multiple and it will
give the same answer up to sign). We obtain:

u1, u2 =
1√
6

(−1, 2,−1)T , u3 =
1√
2

(−1, 0, 1)T .

End
L8

6.5 Real symmetric matrices

In this section we will show that if a matrix A ∈ Mn(R) is symmetric (that is, A = AT ),
then it is diagonalisable. In fact, the result is even better: there is an orthonormal basis
of Rn consisting of eigenvalues of A . This is a hugely important result, which has many
applications and generalisations. It is sometimes called the Spectral Theorem.

Symmetric matrices arise naturally in many areas of Mathematics, but they might seem a bit
special. However, the result can be used to provide information about an arbitrary matrix
B ∈ Mm×n(R). The matrices BTB and BBT are symmetric and so the spectral theorem
can be applied to these. This leads to the singular values decomposition of B , which also
has many applications.

The key property about a symmetric matrix A which makes the proof work is how it interacts
with the inner product.

Observation: If A ∈Mn(R) is symmetric and u, v ∈ Rn , then

(Au) · v = (Au)Tv = (uTAT )v = uT (Av) = u · (Av).

The linear map given by A is self-adjoint with respect to the inner product on Rn . (This is
the property used in more abstract and more general versions of the spectral theorem.)

We will need the following, proved by C. F. Gauss.

Fact: (Fundamental Theorem of Algebra) Suppose p(x) is a non-constant polynomial with
coefficients in C . Then there is α ∈ C with p(α) = 0 (i.e. there is a root of p(x) in C).

We will not prove this: you will see a proof when you study complex analysis in year 2.

Lemma 6.5.1. Suppose A ∈Mn(R) is symmetric. Suppose λ ∈ C is a root of χA(x). Then
λ ∈ R.

Before proving this we note that by the Fundamental Theorem of Algebra we then obtain:

Corollary 6.5.2. If A ∈Mn(R) is symmetric, then there is an eigenvalue of A in R.

Proof of Lemma: We may also regard A and a matrix in Mn(C). So λ is an eigenvalue of
A (over C) and there exists 0 6= v ∈ Cn with Av = λv . Write v = (α1, . . . , αn)T and let
v̄ = (ᾱ1, . . . , ᾱn)T where ¯ denotes complex conjugation.
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So
v̄T (Av) = v̄T (λv) = λv̄Tv.

Note that A = Ā = ĀT , so:

v̄T (Av) = v̄T (ĀTv) = (vT ĀT )v = (vTAT )v = (Av)Tv = λvTv = λ̄v̄Tv.

Comparing these, we obtain
λv̄Tv = λ̄v̄Tv.

Now v̄Tv =
∑n

i=1 |αi|2. This is non-zero, as v 6= 0. So λ = λ̄ , that is, λ ∈ R . 2

Lemma 6.5.3. Suppose A ∈ Mn(R) is symmetric and λ, µ ∈ R are distinct eigenvalues of
A with corresponding eigenvectors u, v ∈ Rn . Then u · v = 0.

Proof: As A is symmetric (Au) · v = u · (Av). Thus λu · v = µu · v . As λ 6= µ , this implies
u · v = 0. 2

Theorem 6.5.4. Suppose A ∈Mn(R) is symmetric. Then there exists an orthogonal matrix
P ∈Mn(R) with P−1AP a diagonal matrix. (In other words, there is an orthonormal basis
of Rn consisting of eigenvectors of A, namely the columns of P .)

Proof: The proof is by induction on n and the base case n = 1 is trivial. Suppose we have
the result for (n− 1)× (n− 1) matrices. We will deduce it for the n× n case.

By 6.5.2 there is an eigenvalue λ1 ∈ R of A ; let v1 be a corresponding eigenvector. We may
also assume that ‖v1‖ = 1.

Let P1 ∈Mn(R) be an orthogonal matrix with first column v1 . Write the columns of P1 as
v1, . . . , vn . Then P−11 = P T

1 and

P−11 AP1 =


vT1
vT2
...
vTn

 (Av1Av2 . . . Avn)

which is equal to
vT1
vT2
...
vTn

 (λ1v1Av2 . . . Avn) =


λ1 vT1 Av2 . . . vT1 Avn
0
... A′

0

 ,

Where A′ ∈ Mn−1(R). Now, P−11 AP1 = P T
1 AP1 , which is symmetric (compute the trans-

pose!). So

P−11 AP1 =


λ1 0 . . . 0
0
... A′

0


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and A′ is symmetric.

By the inductive assumption, there is an orthogonal P ′ ∈ Mn−1(R) with (P ′)−1A′P ′ a
diagonal matrix, say (P ′)−1A′P ′ = diag(λ2, . . . , λn). Let

P2 =


1 0 . . . 0
0
... P ′

0

 .

Then P2 ∈Mn(R) is an orthogonal matrix and:

P−12 (P−11 AP1)P2 =


λ1 0 . . . 0
0
... (P ′)−1A′P ′

0

 = diag(λ1, λ2, . . . , λn).

Let P = P1P2 . This is orthogonal and by the above, P−1AP = diag(λ1, λ2, . . . , λn), as
required.

This completes the inductive step. 2

Remarks 6.5.5. We can adapt the method in Summary 6.3.7 to find an orthonormal basis
of eigenvectors of a symmetric matrix A ∈Mn(R).

(1) Compute the distinct eigenvalues λ1, . . . , λr ∈ R of A .

(2) For each i ≤ r , find a basis of the eigenspace Eλi . Then use Gram - Schmidt to obtain
an orthonormal basis of Eλi .

(3) Take all of these bases together: this will give us a basis for Rn consisting of eigenvectors
of A , by 6.5.4 and 6.3.7.

(4) By Lemma 6.5.3, this is an orthonormal basis of Rn .

Example 6.5.6. Let

A =

 1 −1 −1
−1 1 −1
−1 −1 1

 .

Find an orthogonal matrix P ∈M3(R) such that P−1AP is diagonal.

Solution: After a bit of work, you find that χA(x) = (x+ 1)(x− 2)2 . So the eigenvalues are
2,−1. In the usual way, you find:

(i) E−1 = Span((1, 1, 1)T ). So an orthonormal basis of this is 1√
3
(1, 1, 1)T .

(ii) E2 = {(x, y, z)T ∈ R3 : x + y + z = 0} . So a basis of this is v1 = (1,−1, 0)T and
v2 = (0, 1,−1)T . But we want an orthonormal basis, so we apply Gram - Schmidt to this.
If you do the calculations as in Theorem 6.4.5, you obtain:

u1 =
1√
2

(1,−1, 0)T ; u2 =
1√
6

(1, 1,−2),
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as an orthonormal basis of E2 (this is easy to check, of course).

Finally we put these basis vectors in as the columns of P and obtain:

P =
1√
6

 √2
√

3 1√
2 −

√
3 1√

2 0 −2

 .

Remarks: If P ∈Mn(R) is orthogonal, then P TP = In and so det(P ) = ±1. In the above
example, det(P ) = 1 and of course n = 3. It then follows from Question sheet 4 (iii), (iv)
that P is a rotation matrix. Note that if we had written down the vectors u1, u2 in the
other order in P , then we would obtain a matrix with determinant −1. When n = 3 it’s
generally nicer to have a rotation matrix for the diagonalising matrix. End

L9
Further remarks: The notion of an inner product can be axiomatised and generalised to
other vector spaces over R . You will see more on this in Year 2 linear algebra.

Another very important generalisation is where the field of scalars is the complex numbers
C .

The correct notion of the inner product of vectors u = (α1, . . . , αn)T and v = (β1, . . . , βn)T

in Cn is

u · v = uT v̄ =
n∑
j=1

αjβ̄j

where the bar denotes complex conjugation. In particular u · u ∈ R≥0 and is equal to 0 iff
u = 0. With this definition and a bit of care, the Gram - Schmidt process can be made to
work.

We say that matrix A ∈Mn(C) is Hermitian if A = ĀT . Note that this has the key property
that (Au) · v = u · (Av) for all u, v ∈ Cn . For such matrices one proves, just as for the real
symmetric matrices, that:

(i) All eigenvalues of A are real;

(ii) A is diagonalisable;

(iii) The diagonalising matrix P can be taken to be unitary : PP̄ T = In .
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