Math40003 Linear Algebra and Groups Problem Sheet 1

- 1. Find all solutions of the following systems of linear equations.
 - (a) $x_1 2x_2 + x_3 x_4 = 8$ $3x_1 - 6x_2 + 2x_3 = 18$ $x_3 - 2x_4 = 5$ $2x_1 - 2x_2 + 3x_4 = 4$ (b) $x_1 - 3x_2 + x_3 = 2$ $3x_1 - 8x_2 + 2x_3 = 5$ $2x_1 - 5x_2 + x_3 = 1$

(c)
$$x_1 - 2x_3 + x_4 = 0$$
 (d) $-x_2 + x_3 - 3x_4 = 0$
 $2x_1 - x_2 + x_3 - 3x_4 = 0$ $x_1 + 3x_2 + x_3 - x_4 = 0$
 $4x_1 - 3x_2 - x_3 - 7x_4 = 4$ $2x_1 + 5x_2 + 3x_3 - 5x_4 = 0$

In each case write down all solutions with $x_2 = 5$.

2. Which of these matrices A is invertible (and for which a)?

$$\begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & -1 \\ 2 & -3 & 2 \\ -1 & 12 & -7 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & 0 \\ a & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

Calculate A^{-1} when it exists.

3. * How can you use Gaussian elimination to solve $\begin{pmatrix} 2 & 4 & 1 \\ 2 & 6 & 1 \\ 3 & 9 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$? Find *all* solutions (x_1, x_2, x_3) .

- 4. Let A be an $n \times m$ matrix, and $b \in \mathbb{R}^n$. Suppose Ax = b has at least one solution $x_0 \in \mathbb{R}^m$. Show all solutions are of the form $x = x_0 + h$, where h solves Ah = 0.
- 5. Let A and B be square $n \times n$ matrices with real entries. For each of the following statements, either give a **proof**, or find a **counterexample with** n = 2.
 - (i) If AB = 0 then A and B cannot both be invertible.
 - (ii) If A and B are invertible then A + B is invertible.
 - (iii) If A and B are invertible then AB is invertible.
 - (iv) If A and B are invertible and $(AB)^2 = A^2B^2$, then AB = BA.
 - (v) If ABA = 0 and B is invertible then $A^2 = 0$.
 - (vi) If ABA = I then A is invertible and $B = (A^{-1})^2$.
 - (vii) If A has a left inverse B and a right inverse C then B = C.

6. Let $n \ge 2$ and let $A_n = (a_{ij})$ be the $n \times n$ matrix such that

$$a_{i-1,i} = 1$$
 for $i = 2, \dots n$,
 $a_{i+1,i} = 1$ for $i = 1, \dots n - 1$.

and $a_{ij} = 0$ for all other i, j. Write down A_2, A_3 and A_4 . Prove that A_n is invertible for all even values of n, and is not invertible for all odd values of n. Find A_2^{-1} and A_4^{-1} .

7.* For which $a, b \in \mathbb{R}$ does the system of equations

$$x_1 + x_2 + x_3 = -1$$

$$2x_1 + x_2 + ax_3 = 1$$

$$3x_1 + x_2 + x_3 = b$$

have (i) no solutions, (ii) exactly one solution, (iii) infinitely many solutions?

What about the system

$$x_1 + x_2 + x_3 + x_4 = 0$$

$$x_1 - x_2 + ax_3 + x_4 = 1$$

$$2x_1 + ax_2 + x_3 + 2x_4 = b?$$

- 8. Which of the following are possible, find examples if possible:
 - (a) Two simultaneous equations in two unknowns which defines a line in \mathbb{R}^2 .
 - (b) Two simultaneous equations in two unknowns which defines the empty set in ℝ².
 - (c) One equation in no unknowns which defines the empty set.
 - (d) Two simultaneous equations in three unknowns which defines a point in \mathbb{R}^3 .