Math40003 Linear Algebra and Groups Problem Sheet 2

1. (a) Let M_{θ} be the reflection in the line $L_{\theta} = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_2 = x_1 \tan \theta\}$. Using any school geometry or trigonometry you like, show that the matrix representing M_{θ} is

$$\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$$

- (b) Let R_{α} be a rotation about the origin, and let M_{β} be the reflection in a line through the origin. Prove that $M_{\beta}R_{\alpha}$ is a reflection.
- (c) Let M_{α} and M_{β} be reflections in straight lines through the origin. Prove that $M_{\alpha}M_{\beta}$ is a rotation.
- 2. * Let $\mathbb{R}[x]$ be the set of all polynomials with variable x and real coefficients, with standard addition and scalar multiplication. Show that this is a vector space over \mathbb{R} .
- 3. Decide for each of the following sets, whether it is a vector space with the indicated operations of addition and scalar multiplication:
 - (a) The set \mathbb{R}^2 , with the usual addition but with scalar multiplication defined by

$$r \odot \left(\begin{array}{c} x\\ y \end{array}\right) = \left(\begin{array}{c} ry\\ rx \end{array}\right)$$

(b) The set \mathbb{R}^2 , with the usual scalar multiplication but with addition defined by

$$\left(\begin{array}{c} x\\ y\end{array}\right) \oplus \left(\begin{array}{c} r\\ s\end{array}\right) = \left(\begin{array}{c} y+s\\ x+r\end{array}\right)$$

(c) The set \mathbb{R}^2 , with addition and scalar multiplication defined by

$$\begin{pmatrix} x \\ y \end{pmatrix} \oplus \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} x+a+1 \\ y+b \end{pmatrix} \text{ and } r \odot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} rx+r-1 \\ ry \end{pmatrix}.$$

- 4. Let F be a field. Show every F-vector space V with additive identity 0_V has the following properties:
 - (a) The vector 0_V is the unique vector satisfying the equation $0_V \oplus v = v$ for all vectors v in V.
 - (b) Let 0 be the additive identity in F. Then $0 \odot v = 0_V$ for all vectors v in V.
- 5. Describe all subspaces of \mathbb{R}^3 .
- 6. Let U, W be subspaces of a vector space V over F. Show that $U \cup W$ is a subspace of V iff either $U \subseteq W$ or $W \subseteq U$.