Math40003 Linear Algebra and Groups Problem Sheet 6

- 1. Let $\mathcal{B} = \{(1,3), (1,2)\} \subseteq \mathbb{R}^2$.
 - (a) Show that \mathcal{B} is a basis of \mathbb{R}^2 .
 - (b) Compute the basis change matrix form \mathcal{B} to the canonical basis of \mathbb{R}^2 $(\{(1,0)^t, (0,1)^t\}).$
 - (c) Compute the basis change matrix from the canonical basis to \mathcal{B} .

2. Let

$$\mathcal{B} = \left\{ \begin{pmatrix} -1\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\4 \end{pmatrix} \right\} \subseteq \mathbb{R}^3.$$

- (a) Show that \mathcal{B} is a basis of \mathbb{R}^3 .
- (b) Compute the basis change matrix from the canonical basis of \mathbb{R}^3 to \mathcal{B} .
- 3. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by

$$T\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x+y\\x+z\\x+z\end{pmatrix}$$

Write the matrix $_{\mathcal{B}}[T]_{\mathcal{B}}$ where \mathcal{B} is the basis

$$\mathcal{B} = \left\{ \begin{pmatrix} 2\\0\\-3 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\} \subseteq \mathbb{R}^3.$$

4. Let V be a vector space of dimension 2 (over an arbitrary field containing \mathbb{Q}) and let

$$\mathcal{B} = \{v_1, v_2\}$$
 $\mathcal{B}' = \{v'_1, v'_2\}$

be two bases of V such that

$$v_1 = 6v_1' - 2v_2' \qquad v_2 = 9v_1' - 4v_2'.$$

- (a) Compute the basis change matrix from \mathcal{B} to \mathcal{B}' .
- (b) Compute the coordinates of $-3v_1 + 3v_2$ with respect to \mathcal{B}' .
- (c) Why did we assume that the base field contained \mathbb{Q} ? What happens if we try and answer the same questions with base field $\mathbb{Z}/2\mathbb{Z}$?)
- 5. Let A be a square matrix of dimension n over an arbitrary field. Assume that there exists $m \in \mathbb{N}$ such that A^m is the zero matrix. Show that $I_n + A$ is invertible.