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Question 1 Let S be the two-element set {a, b}. Show that there are precisely 16
distinct binary operations on S. How many of them make S a group?

Find a formula for the total number of binary operations on a set of n elements.

Question 2 Prove that multiplication of complex numbers is associative.

Question 3 Which of the following are groups?

(a) The set of all complex numbers z such that |z| = 1, with the usual complex multi-
plication.

(b) The set {x ∈ R | x ≥ 0}, with the operation x ∗ y = max(x, y).

(c) The set C \ {0}, with the operation a ∗ b = |a| · b.

(d) The set of all rational numbers with odd denominators, with the usual addition.

(e) The set {a, b}, where a 6= b, with the binary operation ∗ given by

a ∗ a = a, b ∗ b = b, a ∗ b = b, b ∗ a = b.

(f) The set {a, b}, with a 6= b, with the binary operation ∗ given by

a ∗ a = a, b ∗ b = a, a ∗ b = b, b ∗ a = b.

(g) The set R3, with the binary operation v ∗ w = v × w (the vector product).

(h) The set R3, with the usual vector addition.

Question 4 Let S be the set of all real numbers except −1. For a, b ∈ S define

a ∗ b = ab+ a+ b.

Show that (S, ∗) is a group. (Note: you need to check the closure axiom.)

Question 5 Let G be a group, and let a, b, c ∈ G. Prove the following facts.

(a) If ab = ac then b = c.

(b) The equation axb = c has a unique solution for x ∈ G.

(c) (a−1)−1 = a.
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(d) (ab)−1 = b−1a−1.

Question 6 Let G be a group, and let e be the identity of G. Suppose that x ∗ x = e
for all x ∈ G. Show that y ∗ z = z ∗ y for all y, z ∈ G. Can you find infinitely many
examples of groups G with the property that x ∗ x = e for all x ∈ G?

Question 7 (i) (Harder) Suppose X is a non-empty set and α, β are permutations of
X with the property that any element of X moved by α is fixed by β and any element of
X moved by β is fixed by α, i.e. for all x ∈ X:

(α(x) 6= x⇒ β(x) = x) and (β(x) 6= x⇒ α(x) = x).

Prove that α ◦ β = β ◦ α. [Hint: consider α(β(x)) in the cases where x is moved by β
and where it is moved by α; note that if x is moved by β, then so is β(x).]

(ii) Suppose (G, ·) is a group and g, h ∈ G are such that gh = hg. Show that for all
r ∈ N we have (gh)r = grhr. Give an example of g, h ∈ S3 (the symmetric group on
{1, 2, 3}) where (gh)2 6= g2h2.

Question 8 Which of the following subsets H are subgroups of the given group G?

(a) G = (Z,+), H = {n ∈ Z | n ≡ 0 mod 37}.

(b) G = GL(2,C), H = {A ∈ G | A2 = I}.

(c) G = GL(2,R), H = {A ∈ G | det(A) = 1}.

(d) G = Sn, H = {g ∈ G | g(1) = 1} (for n ∈ N).

(e) G = Sn, H = {g ∈ G | g(1) = 2} (for n ≥ 2).

(f) G = Sn, H is the set of all permutations g ∈ G such that
g(i)− g(j) ≡ i− j mod n for all i, j ∈ {1, . . . , n}.

Question 9 Prove the following statements.

(a) Every cyclic group is abelian.

(b) The group Sn is not abelian, unless n < 3.
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