MATH40005

4 Topics: Random variables and their distributions

4.1 Prerequisites: Lecture 10

Exercise 4-1: (Suggested for personal/peer tutorial) Poisson approximation to the Binomial: If $X \sim Bin(n,p)$ and we have $n \to \infty$ and $p \to 0$ such that $\lambda = np$ remains constant, then the p.m.f. of X converges to the p.m.f. of a Poi (λ) random variable.

Hint: Use the result that for all $t \in \mathbb{R}$,

$$\lim_{n \to \infty} \left(1 - \frac{t}{n} \right)^n = e^{-t}.$$

Remark: The same result holds, when for $n \to \infty$ and $p \to 0$, we have that np converges to a positive constant λ . In that case, we use the result, that for a sequence (t_n) converging to t when $n \to \infty$, we have

$$\lim_{n \to \infty} \left(1 - \frac{t_n}{n} \right)^n = e^{-t}.$$

Exercise 4-2: A company wishes to make two of a group of six employees, comprising three female and three male employees, redundant, by selecting two employees at random. Let X and Y be the random variables corresponding to the number of female and male employees made redundant, respectively.

Find the probability mass functions of X and Y.

- **Exercise 4- 3:** Five balls numbered 1,2,3,4 and 5 are placed in a bag. Two balls are selected without replacement. Find the probability mass function of the following random variables:
 - (a) X = the largest of the two selected numbers,
 - (b) Y = the sum of the two selected numbers
- **Exercise 4- 4:** A surgical procedure is successful with probability θ . The surgery is carried out on five patients, with the success or failure of each operation independent of all other operations. Let *X* be the discrete random variable corresponding to the number of successful operations.

Find the probability mass function of X, and evaluate the probability that

- (a) all five operations are successful, if $\theta = 0.8$,
- (b) exactly four operations are successful, if $\theta = 0.6$,
- (c) fewer than two are successful, if $\theta = 0.3$.

Exercise 4-5: If X has a Geometric distribution with parameter θ , so that

$$p_X(x) = (1 - \theta)^{x-1} \theta, \quad x = 1, 2, 3, ...$$

and zero otherwise, show that, for $n, k \ge 1$,

$$P(X = n + k | X > n) = P(X = k).$$

This result is known as the Lack of Memory property (for a discrete random variable).

4.2 **Prerequisites: Lecture 11**

Exercise 4- 6: Suppose $X \sim \text{DUnif}(\{1, \dots, n\})$. Find the c.d.f. of X.