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Part 1
Term 1

1 Differentiation in Higher Dimensions

1.1 Euclidean Spaces
1.1.1 Preliminaries

Definition - Modulus Function

Having the following properties:
(i) Ve eR,|z| >0,|z] =0 <= z=0
(ii) Va,y € R, |zy| = |z||y|
(iii) Vz,y € R, |z +y| < |z| + |y| (Triangle inequality)

1.1.2 Euclidean space of dim. n

Define - Euclidean Space of dim. n,R"
Defined as the set of ordered n-tuples (z!,...,2"), s.t each 2 € RVi
R™ a vector space.

Define - Inner Product, < -,- > :R" x R" — R

Define - Norm/Lengths, ||| : R" - R

2l = V<Tw >
Having the following properties:
(i) Yoz e R™, ||z|| > 0,|jz]| =0 <= =0
(i) ¥V € R,z € R™||Az|| = |A|||=|
(ili) Yo,y € R™, ||z +y|| < ||z|| + ||ly|| (Triangle inequality)

Definition - Cauchy-Schwartz Inequality

[{z, 9)| < [lll[lyll

1.1.3 Convergence of Sequences in Euclidean Spaces

Definition - Sequence in R"
An infinite ordered list, zo, x1, ..., s.t &; € R™ Vi. Denoted (z;);>1 or (z;)ien

Definition 1.1 - Convergence

A seq. (z;) € R" converges to = € R" if Ve > 0,3N € N s.t Vi > N, ||z; — z|| < ¢
Corollary

seq. (z;) € R™ converges to z € R" <—

1

For x; = (z},...,2") and z = (z!,...,2")

i

;= x = Ykt = 2" asi— oo



1.2 Continuity
1.2.1 Open sets in Euclidean Spaces

Definition - Open Ball
Open ball of radius r is
Br(z) ={y eR" : [z —y|| <7}

Definition 1.2 - Open sets
A set U C R” is called open, if
Vo € U,3r > 0 such thatB,(z) CU

1.2.2 Continuity at a point/on an open set

Definition 1.3 - Continuity at a point
Let A C R™ an open set, with f: A — R"
f continuous at p € A if
Ve>0,30>0st ||z —pl|<d = [|[f(z) - )| <e

f is (pointwise) continuous on A C R" <= continuous Vp € A, we write f is continuous.
For small enough 0, we have f(Bs(p)) C Be(f(p))

Theorem 1.2 - Composition of continuous functions
Let A C R" open, B C R™ open and suppose f : A — B continuous at p € A, and g : B — R! continuous at f(p)

Then go f : A — R! continuous at p

Definition 1.4 - Limit of a function at a point
A C R™ an open set. f a function f: A — R™, with p € A and ¢ € R™
Say lim,_,, f(z) = ¢ if Ve > 0,35 > 0 s.t Vo € A with 0 < ||z — p|| < § we have ||f(z) —p|| <e

f continuous at p <= lim f(z) =¢
T—p

Theorem 1.3 - Algebra of Limits
Suppose A C R"™ open, with p € A and f,g: A — R"

lim f(z) = F and lim g(z) =G

T—p T—p

Then:
(i) limy—p,(f(x) +9(z)=F+G
(ii) limy—,(f(2)g(z)) = FG

(iii) If, G # 0 then lim,_,, % =z

=



1.3 Derivative of a map of Euclidean Spaces
1.3.1 Derivative of a linear map

Lemma 1.5
The map f : (a,b) — R differentiable at p € (a,b) <= 3 map of the form Ax(z) = Az — p) + f(p) for some X € R s.t

Lo @) = @)

=0
w=p |z —p|

Notation
h[v] for h a linear map, v a vector
h(v) h a map, v a point in domain of h
L(R™;R™) — Set of linear maps from R" — R™

Definition 1.5 - Derivative in higher dimension
Suppose 2 C R™ open. The map [ : {2 — R™ differentiable at p € Q if 3 a linear map A € L(R™; R™) such that

o (@) = (Alz = 1) + ()

=0
=P ||z = pll

We write

Df(p):=A
Calling D f(p) the derivative of f at p
A a m x n matrix called the Jacobian

Lemma 1.6 - Differentiable then continuous
Q C R" open, f:Q — R™ differentiable at p € = f continuous at p

Theorem 1.7 - Uniqueness of Derivative
The derivative, if it exists, is unique
1.3.2 Chain Rule

Chain rule in R
f,g: R — R, g differentiable at p, f differentiable at g(p) Then f o g differentiable at p with

(fog)(p) = f(9(r)d (»)

Theorem 1.8 - Chain rule in higher dim.

Q C R™ open, ' C R™ open

With g : Q — Q' differentiable at p € , f : Q' — R! differentiable at g(p) € '
Then h = fog:Q — R, differentiable at p, s.t

Dh(p) = D(f(g(p)) o Dg(p)

1.4 Directional Derivatives
1.4.1 Rates of change and Partial Derivatives

Definition - Directional Derivative
The directional derivative of f at p in the direction v is

O () i= lim 2113+ v0) — 7] = DI

Definition - Partial derivatives
We can find any directional derivative at p, given we know the partial derivatives of f

Dif) = 5o0)
In R? we have, 1
Df(Pl = (Dif () Daf(p) Dsf(p) ) | v2



Definition - Gradient
Gradient of f at p
Dy f(p)
Vip) = | D2f(p) Df(p) = (Vf(p))
Dsf(p)

Theorem 1.9 - Jacobian
Suppose 2 C R™ open and f : Q — R™ of the form

flx) = (@), f2(2), ..., f"(2))
If f differentiable for some p € ) Then Jacobian of f at p is:

Dif'(p) ... Dnf(p)
Df(p) = : :
Dif™p) ... Dnf™(p)

1.4.2 Relation between partial derivatives and differentiability

Theorem 1.12
Let 2 C R™ open, f: Q) — R. Suppose the partial derivatives:

Dif(w) = lim flotte - /@) “’Z — /@)

exist Va € 2, with each map x — D, f(z) continuous at p,Vi = [ is differentiable at p

1.5 Higher Derivatives
1.5.1 Higher derivatives as linear maps

Can think of the differential of f, Df(p) as a map
Df:Q— L(R";R™) =0 —R™

p+ Df(p)

if map Df is continuous = f: ) — R is continuously differentiable

Definition - Higher derivative
If Df: Q — R™ differentiable at p, denote derivative of D f as DD f(p) : R"® — R™™

DDf(p) € L(R™R™™) = L(R"; L(R"; R™))
Where DD f(p) is a linear map £ € L(R™; L(R"; R™)), satisfying:

i [PS (@) = Df(p) = L[z — ]|

=P ||z — pl|

=0
DD f(p) takes an n-vector to a m X n matrix

Definition - Continuously differentiable

f:Q = R™ is k-times dfferentiable with all continuous derivatives —> [ is k-times continuously differentiable
Testing for k-times differentiability

For f = (fl(x),fZ(x),,fm(x)) )

If f differentiable at p € = we have partial derivatives D, f7 :  — R.

If Df differentiable, then 2™ partial derivatives exist

DyD;f(p) := lim Dif'(p + tel;) — Dif’(p)

Easy to check these exist and are continuous = k-times differentiability at p



1.5.2 Symmetry of mixed partial derivatives

Theorem 1.13 - Schwartz’ Theorem
Suppose 2 C R” open and f :  — R differentiable Vp € )
Suppose also, for 4,5 € {1,...,n},2" partial derivatives D; D; f and D;D; f exist and are continuous Vp €

Vpe Q,D;D;f(p) = D;D;f(p)

Definition - Hessian
The matrix of 2°? partial derivatives at the point p

Hess f(p) = [DiD; f(p))ij=1,...n

Schwartz’ Theorem says Hess f(p is a symmetric matrix

1.5.3 Taylor’s Theorem

Definition - Multi-inidices
Multi-index o € (N)", o = (ov1, ..., ()
We define |a| = > | ; and
Df = (Dl)m(D2>a2 s (Dn>a” I
And for a vector h = (hl, N hn)
R = (RY)*r(h?)22 ... (R")*"
Also

al = oqlas! ... ay!

helpful examples

D(073’0)f(p> = Dgf(p)
DXV £(p) = Dy D3 f(p)

(2,9,2) 21 = a2yl

Theorem 1.14 - Taylor’s Theorem in higher dim.
Suppose p € R"™ and f : B,.(p) — R a k-times continuously differentiable Vg € B,.(p), for some k > 1 € N
Then Vh € R™ with ||h|| < r We have

foh) = 3 D)+ Rulp )

la|<h—1
Sum over all o = (al, ey Oén)
with |a| < k — 1 and remainder term

h(l
Ri(p,h) = aDaf(»’U)
la|=k

for some z s.t 0 < ||z — p|| < ||A]]
Evidently

oy BB

ns0 [[B|FT

1.6 Inverse & Implicit Function Theorem
1.6.1 Inverse Function Theorem

Theorem 1.15 - (Inverse Function Theorem,)
Let Q an open set in R”, f: Q — R"™ continuously differentiable on 2, 3¢g € Q s.t Df(q) invertible
Then Jopen sets U C Qand V CR", qe U, f(q) €V s.t

(i) f:U — V, a bijection
(ii) f~':V — U, continuously differentiable
(iii) Yy e V,
Df~Hy) = DS )™



1.6.2 Implicit Function Theorem

Theorem 1.16 - (Implicit Function Theorem - Simple version)
Q C R? open
F : Q — R continuously differentiable and 3(z’,y’) € Q s.t

(i) F(«',y") =0, and
(ii) DoF(2',y') #0
—> Jopen sets A, B C R with2' € A;y’ € Bwithamap f: A— Bs.t
(z,y) € A x B satisfies F(z,y) =0 <= y = f(z)for some z € A
with f: A — B continuously differentiable.

Definition - C'-—diffeomorphism

Q,Q C R™ open.

Say f: Q — Q' a Cl-diffeormorphism, if f : 2 — Q' a bijection, continuously differentiable, and Vo € Q, Df(x) invertible
D the set of all C'—diffeomorphisms from Q — €, a group under group law; composition.

1.6.4 Implicit Function Theorem - General Form

Theorem 1.17 - (Implicit Function Theorem)
Q C R™", Q' C R™ open sets
F:QxQ — R™ continuously differentiable on € x Q" and sps 3(a,b) € 2 x O s.t

(i) f(p) =0 and,

(ii) m x n matrix ,

invertible

= Jopensets ACQ,BCQ withaec A,be Bwithamapg: A— B st
g(x,y) =0 for some (x,y) € A x B <= y = g(x)for some z € A

with g : A — B continuously differentiable.



2 DMetric and Topological Spaces

2.1 Metric Spaces
2.1.1 Motivation + Definition

Definition 2.1 - Metric
X an arbitrary set
Metric a function d : X x X — R satisfying:

(M1) Va,y € X; d(z,y) > 0,d(z,y) =0 < z =y (positivity)
(M2) Va,y € X; d(x,y) = d(y,x)  (symmetry)
(M3) Vz,y,z € Xd(z,y) < d(z,z) +d(z,y) (triangle inequality)

Definition 2.2 - Metric space
Pair of a set and metric; M = (X, d)
Call elements of X points,with d(z,y) distance between z,y w.r.t d

Definition
C([a,b]) ={f : [a,b] = R|f : [a, b] — Rcontinuous}

2.1.2 Examples of metrics
Examples
o dy(z,y) = ||z — y||; Euclidean metric on R™

0, ifex=y
o daisc(z, =
aisc(2, ) {1, ife#y
d doo(x7y) = Supk21|xk - yk|
o doo(f,9) = max,<i<p|f(t) — g(t) where f,g € C([a,b]) (supremum/uniform metric)
« di()

Definition 2.3. Induced metrics

(X,d) a metric space
Y C X, definedly : Y xY = Rasd|y(z,y) =d(z,y) Ve,y €Y

Definition 2.3. Metric Subspace

Say (Y, d|y) a metric subspace of (X, d)

Definition 2.4. Product metric space

(X1,dy) and (X3, ds) metric spaces.

define metric using dy,ds d: (X1 x X3) x (X7 x Xa2) =» R.
(X7 x Xs,d) a product metric space.

2.1.3 Normed Vector Spaces

Definition 2.5. Norm in Metric Spaces

V a vector space on R. Say ||-||: V — R a norm on V if
(N1) Yo eV, ||[v]| >0 and |[v]| =0 <= v=0

(N2) Yo e VYA R, ||M]| = |A] - ||v]]

(N3) Vu,v €V, |lu+v|| < [Jul[ + []]]

Definition - Normed vector space
A pair of a vector space (V|| -||)
note || - || is a metric on V. = normed vector space a metric space.



2.1.4 Open sets in metric spaces

Definition 2.6. Open ball in metric spaces
(X,d), withz € X,e e R;e >0

Ball radius €; Be(z) = {2’ € X|d(z,2') < €}
notation; Be(z, X, d)
Definition 2.7. Open set in metric space
(X,d) a metric space. U C X open in (X, d) if:

YueU, 30 >0€Rs.t Bs(u) CU

Definition 2.8. Topologically equivalent

d1,ds metrics on a set X topologically equivalent if:

VU CX, Uopenin (X,d;) <= U open in (X,ds)

2.1.5 Convergence in Metric Spaces

Definition 2.9. Convergence in Metric Spaces

(X, d) a metric space. (,)n>1 & sequence in X.
Say (zn,) = x € (X,d) if
Ve>0,INeNstVn>N,dx,z,) <e

Lemma 2.7. - if (x,) converges in (X,d) = limit is unique
Corollary - dy,dy topologically equivalent <= (z,,) converges in (X, d;) and (X, ds)

2.1.6 Closed sets in metric spaces

Definition 2.10. Closed set in Metric Spaces

(X,d) a metric space. V C X a set.
V closed in (X,d) it V (x,) € V s.t (x,,) = = convergent in (X,d) = z €V

Theorem 2.9.
(X,d) a metric space. V C X
V closed in (X,d) <= X\V open in (X,d)
Lemma 2.10
(i) Intersection of closed sets in (X, d) is a closed set in (X, d)

(ii) Finite union of closed sets in (X, d) a closed set in (X, d)

10



2.1.7 Interior, isolated, limit, and boundary points in metric spaces

Definition 2.11. - 2.12.
(X, d) a metric space, VC X, z € X

(i) @ an interior/inner point of V if

36 >0, st Bs(z)CV
(a) Interior of V; V° - {v € V : v an interior point of V'}

(ii)  a limit/accumulation point of V if

V6 >0, (Bs(z) N V)\{z} # 0
Note: not all limit points of V are in V
(b) Closure of V5 V - V U {v a limit point of V'}

(iii) = a boundary point of V if
V6 >0,B;NV # 0 and Bs(x)\V # 0

(¢) Boundary of V; 9V - {v € X : v a boundary point of V'}

(iv) x an isolated point of V if
36 > 0, s.t VN Bs(z) = {z}

Lemma 2.11 (X,d) a metric space, V C X
x € X a limit point of V' <= 3 sequence in V\{z} converging to x.

Definition 2.13. Dense and Seperable subsets
(X,d) a metric space
e VCXdensein Xif V=X

o (X,d) seperable if, 3 dense countable subset of X

2.1.8 Continuous maps of metric spaces

Definition 2.14. Continuity in metric spaces

(X,dx), (Y,dy) metric spaces.
f: X —Y amap

(i) f continuous at x € X if

Ve> 0,36 > 0s.t Ve € X st dx(a',z) <6,dy(f(z), f(z) <e

(ii) f:X — Y continuous if f continuous Vr € X
(iii) f: X — Y uniformly continuous if f continuous Vz € X with § = d(¢) not depending on x
Theorem 2.12.

(A1,dy), (A2, ds) metric spaces
f: Ay — Ay continuous <= pre-image of any open set in Ay is an open set in A
f: Ay — Ay continuous <= pre-image of any closed set in As is a closed set in A;

Theorem 2.13.

(X,dx), (Y,dy) metric spaces
f: X —Y amap;

f continuous at x € X <= for any sequence (x,) — z; f(z,) — f(x) in (Y,dy)

11



Definition 2.15. Homeomorphism
(X1,d1), (X2, ds) metric spaces.
(i) f: X1 — X5 a homeomorphism if

e f:X; — X5 a bijection
e f:X; = Xyand f~!: Xy — X, continuous

(ii) Say (X1,d1), (X2,d2) homeomorphic if 3 homeomorphism from X; to X»
Definition 2.16.

(X,dx), (Y,dy) metric spaces with f: X - Y

(i) f is Lipschitz if 3 constant M > 0 s.t Va1, 22 € X, dy (f(x1), f(x2)) < M - dx(x1,22)

(ii) f is bi-Lipschitz if 3 constants My, Ma > 0 s.t Vay, 20 € X

M; - dx(z1,22) < dy(f(21), f(22)) < My - dx(z1,22)
Corollary; any bi-Lipschitz map is injective

(iii) f an isometry/distance preserving if Vzi,z2 € X

dY(f(Il)v f(‘TQ)) = dX(zlv IQ)

2.2 Topological Spaces
2.2.2 Topology on a set
Definition 2.17. Topology

A an arbitrary set. 7 a collection of subsets of A
7 a topology on A if:

(T1) erand Aer

(T2) G, €7 for ain a (finite) set I = |J_ .;Ga €T

acl
(T3) Gl,GQ,...,GmET — ﬂ;ilGiET

A topological space; (A, T) a pair of a set A and topology 7 on A. Each element in 7 an open set in (A, 7)
U a neighbourhood of ¢ if U € T and a € U

Example 2.25. Some Topologies

1. Coarse topology - A arbitrary set, 7 = {0, A}

2. Induced topology - (X,d) a metric space, with 7 the collection of all open sets in (X, d)

. Order Topology - A =R with 7 collection of subsets of R of form (a,+00), a € RU{—o00,+oc}, (infty, +o0) := 0

3
4. Discrete Topology - A arbitrary, 7 = P(A)

5. Product topology -

Definition. Metrisable topological space
Say topological space (X, 7) metrisable if 3 metric on X which induces a topology 7.
Definition. Induced and Subspace topology
(X, 7) a topological space. Y C X
v ={UNY|U € 7}

7y the induced topology on Y from (X, 1)
(Y, 7v) has the subspace topology induced from (X, 7)

12



Definition 2.18. Stronger topology

A a set, with 7,7

Say 71 stronger (or finer) than 75 if 79 C 7y

Lemma 2.14.

(4,7)

A set G C Aopen <= V z € G, 3 neighbourhood of x contained in G

Definition 2.19. Interior in Topological space

(A, 7) a topological space. 2 C A
z € Q) an interior point of € if
UV erstzeUandU C

interior of Q;2° = {z € Q|z an interior point of 0}
Properties of interior

e SCT = S°CT°
e Sopenin A <— S§=5°

e 5° largest open set contained in S

2.2.3 Convergence, and Hausdorff property
Definition 2.20. Convergence in Topological Spaces

(A, 7) a topological space. (z,)n>1 & sequence in A
(z,,) converges in (4, 7) if

dJreAstVGerTwithereG, AN €N, st Vn> N,x, € G
Definition 2.21. Hausdorff
(A, 7) called Hausdorf if:
Ve,yc Az #y, Jopenset U,VstzelUyeVandUNV =0

Say U and V seperate z and y
Theorem 2.14.
(A, 7) a Hausdorff topological space. (z,) a sequence in A.
if (x,) convergent in (A,7) = limit is unique.
2.2.4 Closed sets in topological spaces
Definition 2.22. Closed set in Topological space
(A, 7) a topological space.
V C A Say Vclosedin (A,7) < A\Ver
Lemma 2.17.
(A, 7) a topological space = 0 and A closed in (4, 7)

(i) intersection of closed sets in (A, 7) is a closed set in (4, 7)

(ii) union of a finite number of closed sets in (A, 7) is a closed set in (A, T)
Definition 2.23. Limit/Accumulation point in Topological Spaces

(A, 7), a topological space, S C A
z € A a limit/accumulation point of S if

V U a neighbourhood of z, (SNU)\{z} # 0

x not necessarily in S

Closure of S, S= S U {z € Alz a limit point of S}
Lemma

S closed in (A,7) <= S=2S5
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2.2.5 Continuous maps on topological spaces

Definition 2.24. Continuity in topological space

(X, 7x),(Y,7y) with f : X - Y
f continuous on X if:
Yopen sets U € Y, f~1(U) open in X

Theorem 2.20.

(X,7x),(Y,7y) with f: X =Y
f continuous <= pre-image of closed set in Y is closed in X

Theorem 2.21.

(X,7x), Y,7v),(Z,72)
f: X =Y g:Y — Z continuous = go f: X — Z continuous

Definition 2.25. Homeomorphisms in Topological space
f:X =Y a homeomorphism is f : X — Y bijective with f and f~! continuous
Definition 2.25. Topologically equivalent in Topological space

(X,7x), (Y, 7v) topologically equivalent/homeomorphic if 3 homeomorphism from X — Y

2.3 Connectedness
2.3.1 Connected sets

Definition 2.26. Disconnected sets

For (X, d) a metric space, consider T'C X. T disconnected,if 3 open sets U,V € X s.t:
i) UNV =0

(i) TCUUV

(iii) TNU #Oand TNV #0

Set connected if not disconnected. i.e for any 2 of the properties that hold from above the 3rd cannot.
Lemma 2.23.
(X, d) a metric space. T C X

T disconnected <= 3 continuous f:7T — Rs.t f(T) = {0,1}
Theorem 2.22.
Consider (R,d), SCR

S connected <= S an interval

2.3.2 Continuous maps + Connected sets

Theorem 2.27.

(A,dy) and (A, do) metric spaces. f: A; — As continuous map
S C A connected = f(S) connected

Corollary 2.28.

f:(X,dx)— (Y,dy) a homeomorphism

X connected <= Y connected
Theorem 2.29.

(X, d) connected metric space, f : X — R continuous. Assume Ja,b € X s.t f(a) <0, f(b) >0 = Jce X s.t f(¢) =0

14



2.3.3 Path Connected Sets
Definition 2.28. Path

Under (X, d) given a,b € X
Path from a — b a continuous map f : [0,1] = X s.t f(0) =a, f(1)=b

Definition 2.29. Path Connected
(X, d) path connected if Va,b € X, 3 path from a — b in X
Theorem 2.30.

if (X, d) path connected = connected

2.4 Compactness
2.4.1 Compactness by covers
Definition 2.30. Covers
(X, d) a metric space. Y C X
(i) collection R of open subsets of X an open cover for YV if

Y C Uv

vER

(ii) Given open cover R for YV
Say C a sub-cover of Rfor Y if C C Rand Y CJ,cpv

(iii) Open cover R for Y is a finite cover if R has finitely many elements.
Definition 2.31. Compact

(X, d) a metric space
Y C X compact in (X, d) if every open cover for Y has a finite sub-cover.

Proposition 2.32.
a,b € R, a <bin (R,d;) we have [a,b] compact

Proposition 2.33.
(X,d) a metric space, Y C X
X compact, Y closed = Y compact.

Theorem 2.34.

(X,d) a metric space Y C X
Y compact = Y closed

Theorem 2.35.

(X,dx), (Y,dy) metric spaces. Considering (X x Y, d)
d((z1,91), (v2,92)) = d1 (21, 32) + da2(y1, y2)

X,Y compact = (X x Y,d) compact

Corollary.

[a1,b1] X [ag,b2] -+ X [@n—1,bn—1] X [an,by] compact in R™
Definition 2.32. Bounded

(X, d) non-empty metric space, Z C X

Z bounded in (X,d) if IM € Rs.t Vo, y € Z;d(z,y) < M
S arbitrary set. f:S — X bounded if f(S) bounded in X

Lemma 2.37.
(X,d) compact metric space = X bounded

Theorem 2.36. Heine-Borel

Consider (R™,ds), X CR"
X compact <= X closed and bounded
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2.4.2 Sequential Compactness

Definition 2.33. Sequentially compact

(X, d) sequentially compact, if for every sequence in X has convergent subsequence in (X, d)
V(zn)n>1 € X, I@n, )k>1, v € X st ap, =

Lemma 2.39.
(X, d) a metric space. with sequence (zy)n>1 8.t (@, )k>1, ¢ € X 8.t 2y, — .

<= Jz € X s.t Ve > 0 there are infinitely many i s.t z; € Be(x)
Theorem 2.41. Bolzanno-Weierstrass
Any bounded sequence in R™ has convergent subsequence.
Theorem 2.40. + 2.42.

(X, d) metric space.
X Compact <= X Sequentially Compact

2.4.3 Continuous maps + Compact Sets

Theorem 2.41.

(X,dx), (Y,dy) metric spaces.
f: X — Y a continuous map if
Z compact in X = f(Z) compact in Y

Corollary 2.44.
(X,dx), (Y,dy) metric spaces, f: X — Y a homeomorphism

—> X compact <= Y compact
Theorem 2.45.

Every continuous map from compact metric space to a metric space is uniformly continuous.
Corollary 2.46. f :[a,b] — R continuous = f uniformly continuous

Theorem 2.47.
(X,dx) compact, f: X — R continuous = f bounded above and below attaining its upper & lower bounds
Theorem 2.48.

f R — R continuous w.r.t Euclidean metrics on domain and range.
Y [a,b] we have f([a,b]) of the form [m, M] for m, M € R

2.5 Completeness
2.5.1 Complete metric spaces Banach space

Definition 2.34. Cauchy Sequence

(X,d) a metric (zp)n>1 sequence in X
Say (2 )n>1 a Cauchy sequence in (X, d) if

Ve > 0,3N, € N s.t Vn,m > N, we have d(zp, Tm) < €
Definition 2.35. Complete & Banach
(i) metric space (X,d) complete if every Cauchy sequence in X converges to a limit in X
(ii) Normed vector space (V|| -||) a Banach space if V' with induced metric space djj| a complete metric space.
Theorem 2.51.

Assume (f, : [a,b] — R),>1 sequence of continuous functions converging uniformly to f : [a,b)] = R = f :[a,b] = R
continuous

Theorem 2.52.

Metric space (C([a,b]),ds) is complete or equivalently (C([a,b]),]|| - ||sc) & Banach space
Theorem 2.53.

(X, d) a compact metric space = (X, d) complete
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2.5.2 Arzela-Ascoli

Definition 2.36. Uniformly bounded & Uniformly equi-continuous
Let C a collection of functions f : [a,b] = R
1. Say collection C uniformly bounded if 3M s.t Vf € C and Vx € [a,b] = |f(z)| < M

2. Say collection C uniformly equi-continuous if Ve > 0,35 > 0s.t Vf € C and Vzq, 22 € [a,b] s.t |21 — 22| < § we have

|f(z1) — flz2)| <€
Theorem 2.54. Arzela-Ascoli

Assume C collection of continuous functions f : [a,b] — R if C uniformly bounded and uniformly equi-continuous = every
sequence in C has convergent subsequence in (C([a, b], dso)

2.5.3 Fixed point theorem
Definition 2.37. Contracting

(Xl,dl) and (Xg,dg), with f: X7 — X5
Say f contracting if 3K € (0,1) s.t Va,b € X we have

dy(f(a), f(b)) < K - dy(a,b)
Every contracting map is continuous.
Definition 2.37. Fixed point
f: X — X say z € X a fixed point of f if f(z) =2
Theorem 2.55. Banach fixed point theorem

(X, d) a non-empty complete metric space.
f: X — X a contracting map = f has unique fixed point in X
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Part 11
Term 2 - Complex Analysis

1 Holomorphic Functions

1.1 Complex Numbers
Definition 1.1. ¢

Root of 22 +1 =0
Basic properties

z=x+1iy, Re(z)=uz, Im(z)=y
The complex conjugate:
Z=x—1y
Polar Coordinates
z=x+1y

r=lzl =V +y?
r=rcosf, y=rsinb
z =r(cosf + isinf

De-Moivre’s Formula

2™ = r"(cos(nb) + isin(n'0)), n € Z*

Fulers’s Formula
e = (cos @ + isinh)

1.2 Sets in Complex Plane
Definition 1.2. Discs in C

Open Disc : D,(z9) ={2€C: |z —z| <r}
Boundary of Disc : Cy(z)) ={z€C:|z— 2| =7}
Unit Disc: D={z2€C:|z| < 1}

Definition 1.3. Interior Point

Q € C, 29 an interior point of Q if Ir > 0 s.t D,.(20) C Q
Definition 1.4.

Set 2 open if Yw € ), w an interior point

Definition 1.5.

Set Q closed if Q¢ = C\Q open
Closed <= contains all its limit points.

Definition 1.6. Closure

Closure of Q = Q = {QU limit points of Q}
Definition 1.7. Boundary

Boundary of 2 = \_Q/ \ QQ/

Closure interior

Definition 1.8. Bounded
2 bounded if IM > 0 8.t |w| < M Yw € Q
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Definition 1.9. Diameter

diam(Q) = sup |z — w|
ERTISIY)

Definition 1.10. Compact

Q compact if closed and bounded

Theorem 1.1.
) compact <= every sequence{z,} C 2 has a subsequence convergent in
<= every open covering of ) has a finite subcover
Theorem 1.2.
if Q3 D0 D...Q, D... asequence of non-empty compact sets

s.t limy, 00 diam(Q2,) — 0
= JwelC, we, Vn

Definition 1.11. Connected

Open set Q2 connected <= any 2 points in 2 joined by curve v entirely contained in 2

1.3 Complex Functions
Definition 1.12.

2,0, cC
f!Ql—>QQ

a mapping Q; — Qs if
Vz=x+iy €

HNw=u+iv €Dy, stw= f(z)

We have w = f(z) = u(z,y) + v(z,y)
u,v:R2 =R

Definition 1.13.
f defined on 2y C C f continuous at zg € Q if
Ve > 030 >0 s.t|z—2] <d = [f(2) — f(z0)| <€

f continuous if continuous Vz € Q2

1.4 Complex Derivative
Definition 1.14. Holomorphic

Q1,05 C C open sets
f : Ql — QQ
Say f differentiable/holomorphic at zg if

lim f(z0+h) = f(z0)

_ :
Lim A = f'(20) exists

f holomorphic on open set € if holomorphic at every point of
Lemma
f holomorphic at zp € ) < JaecCst

f(z0+h) — f(20) — ah = h¥(h)

For U a function defined for all small A with limy,_,o U(h) =0, a = f'(20)
Corollary
f holomorphic = f continuous
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Proposition
f, g holomorphic in Q =

i) (f+9)'=f+4

(i) (fg)'=f'9+fg

(iii) g(z0) #0 = (%)’ - %
)

(iv) f:Q—V, g :— C holomorphic
= 9o f(A)] =g(f(2))f'(z) Vz €

1.5 Cauchy-Riemann equations

du_ov  ou_ o
or Oy oy Oz

Definition 1.15.

Theorem 1.3.

f holomorphic at zp —

Theorem 1.4.
f = u+ iv complex-valued function on open set €2

u, v continuously differentiable, satisfying Cauchy-Riemann equations = f holomorphic on Q with f/(z2) = ﬂ(z)

1.6 Cauchy-Riemann equations in polar

For f = u + iv we have

1.7 Power Series

Definition 1.16. Power Series

Of the form

oo
E apz" a, €C
n=0

Series converge at z if Sy(z) = Zﬁ;o anz™ has limit S(z) = lim, 00 Sy (2)
Theorem 1.5.
Given power series ZZOZO apz™, 0 < R < > s.t

(i) if |z2| < R = series converges absolutely

(i) |2] > R = series diverges

- :1 n l/n
7 imsup |ay,|

n— oo

(Radius of Convergence)
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Theorem 1.6.

f(z)= Z anz"
n=0

Defines holomorphic function on its disc of convergence. With
o0
f'(z)= Znanz"*1
n=1
with same radius of convergence as f.
Power series infinitely differentiable in the disc of convergence, achieved through term-wise differentiation.

Definition 1.17. Entire

A function said to be entire if holomorphic Vz € C

1.8 Elementary functions
1.8.1 Exponential function
e® = e cosy + e’ siny z=xz+iyeC
Properties
(i) y=0 = e*=¢€"
(ii) e* is entire

(iii) ¢(z) holomorphic
:> %eg(z) p— eg(z)g/(z)

21,20 € C e 772 = e71e®

6] = [e7] ] = e+ /oo & F sinZ(a] = e
(eiy)n — einy

arg(z) = arctan(y/x)

arg(e®) =y +2nk, keZ

1.8.2 Trigonometric functions

Definition 1.18.

1, ) 1, . .
cosz = o (e” + e*”) sin z = % (e“ — e*“’)
Properties
(i) sinz,cosz are entire
ii) £sinz =cosz -Zcosz=—sinz
.e 502 . aaz .
(iii) sin?z 4 cos? z = 1
1v) SIn(zp Z9 ) = SIN Z1 COS 22 COS Z1 S1 29
. . n . 4 .

cos(z1 & 2z3) = €Os 21 cOS 2o F sin 21 sin 29
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1.8.3 Logarithmic Functions
Definition 1.19.

log(z) = In|z| + iarg(z) = log(r) +i(0 +27k) z#0, k€ Z
log(z) a multi-valued function
Definition 1.20.

Log(z) =In|z| + i Arg(z) for Arg(z) principal value € [—m, 7]
Properties

(i) log(z122) = log(z1) + log(z2)
(ii) Log(z) holomorphic in C\{(o0,0]}

1.8.4 Powers

Definition 1.21.

a € C define 2 := e*1°8(%) a5 a multi-valued function
Definition 1.22.

Principal value of 2%, a € C as z® = e®8(2) Properties

(i) 201,02 — yaitaz

2 Cauchy’s Integral Formula

2.1 Parametrised Curve
Definition 2.1.

Parametrised curve a function z(t) : [a,b] — C
Smooth if 2/(¢) exists and is continuous on [a, b] with 2/(¢) # 0Vt € [a, b] Taking one-sided limits for 2’(a), 2’ (b).

Piecewise-smooth if z continuous on [a,b] and if 3 finitely many points ¢ = ag < a3 < -+ < a, = b s.t z(t) smooth on

[ak, k1]
z:la,b) = C Z:[e,d = C

equivalent if 3 continuously differentiable bijection s — t(s) from [c,d] to [a,b] s.t t'(s) > 0 and Z(s) = z(¢(s)) =
Definition 2.2. Path Integrals

Path integral given smooth v C C parametrised by z : [a,b] — C.
f continuous function on ~

L feyaz = | " Fe) 0

independent of choice of parametrization.
If v piece-wise smooth

Definition 2.3.

Define curve 4~ obtained by reversing orientation of ~y
Can take z7 : [a,b] > Cst 27 (t) = 2(b+a —1t)

Definition 2.4. Closed Curve
Smooth/piece-wise smooth curve closed if z(a) = z(b) for any parametrisation.
Definition 2.5. Simple Curve

Smooth/piece-wise smooth curve simple if not self-intersecting

z(t) # z(s) unless s =t € [a, b]
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2.2 Integration along Curves

Definition 2.6. Length of smooth curve

b b
Length(y) = / |2/ (t)|dt = / V' (t)? +y'(t)2dt
Theorem 2.1. Properties of Integration
(i) [, af(z) +bg(z)dz =a [ f(z)dz+b [ g(z)dz

(ii) v~ reverse orientation of

(iii) M-L inequality

b
SwMﬂM»mgmw=/\hmw+yw%t

zEey

[Yf(z)dz

2.3 Primitive Functions

Definition 2.7. Primitive

A Primitive for f on Q C C a function F' holomorphic on  s.t F'(z) = f(z) Vz € Q
Theorem 2.2.

Continuous function f with primitive F' in open set 2 and curve « in Q from w; — wq
[ #(dz = Fluwa) - Fun)
2l

Corollary
v closed curve in open set {2 f continuous and has primitive in @ —

éf(z)dz =0

Corollary
Omega with f' =0 = f constant

2.4 Properties of Holomorphic functions

Theorem 2.3.

Let Q C C open set
T C Q a triangle whose interior contained in 2

= %Tf(z)dz =0

for f holomorphic in £
Corollary
f holomorphic on open set ) containing rectangle R in its interior

= y%f(z)dz =0

2.5 Local existence of primitives and Cauch-Goursat theorem in a disc

Theorem 2.4.

Holomorphic functions in open disc have a primitive in that disc
Corollary - (Cauchy-Goursat Theorem for a disc)

f holomorphic in disc = ¢ f(z)dz =0

for any closed curve « in that disc

Corollary

Suppose f holomorphic in open set containing circle C' and its interior

= y/éf(z)dz =0
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2.6 Homotopies and simply connected domains

Definition 2.8. Homotopic

0,71 homotopic in Q if Vs € [0, 1], 3 curve v C Q with ~(¢) s.t
Ys(a) = a 7s(b) = 8

vt € [av b} : ’Ys(t)|s:O = ’)’O(t) ’)/s(t)|s:1 =M (t)
With ~,(t) jointly continuous in s € [0,1] and ¢ € [a, D]

Theorem 2.5.

70,71 homotopic, f holomorphic

Definition 2.9.
Open set Q C C simply connected if any 2 pair of curves in €2 with shared end-points homotopic.
Theorem 2.6.

Any holomorphic function in simply connected domain has a primitive.
Corollary - (Cauchy-Goursat Theorem)

f holomorphic in simply connected open set (2
= 55 f(z)dz=0
gl
for any closed piecewise-smooth curve v C 2
Theorem 2.7. (Deformation Theorem)

~v1 and 2, 2 simple closed piecewise-smooth curves with v lying wholly inside v,
f holomorphic in domain containing region between 1, yo

= f(z)dz :?/) f(z)dz

71
2.7 Cauchy’s Integral Formulae
Theorem 2.8. (Cauchy’s Integral Formula)

f holomorphic inside and on simple closed piecewise-smooth curve
Vzq interior toy
1 f(z)
f(z0) = 5=

211 5 Z— 20

dz

Theorem 2.9. (Generalised cauchy’s integral formula)

f holomorphic in open set (2.
~ simple,closed piecewise-smooth €2
Vz interior to ~y

) f S0
1

dzn 2w t— z)ntl

Corollary

f holomorphic = all its derivatives are too.
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3 Applications of Cauchy’s integral formula

Corollary - (Liouville’s theorem)
if an entire function bounded = f constant

Theorem 3.1. (Fundamental theorem of algebra)

Every polynomial of degree > 0 with complex coefficients has at least one zero.
Corollary Every polynomial P(z) = a,2"™ + -+ + ag of degree n > 1 has precisely n roots in C

Theorem 3.2. (Morera’s theorem)

Suppose f continuous in open disc D s.t V triangle T C D

/ f(z)dz=0 = f holomorphic
T

3.1 Taylor + Maclaurin Series
Theorem 3.3. (Taylor’s expansion theorem
f holomorphic in Q, zg €
= f(2) = f(20) = ['(20)(z — 20) + —;—
Valid in all circles {z : |z — zp| < r} C Q

Definition 3.1. (Taylor Series)

ae 0 £(n)(,
F2) = Flz0) + F ()2 — ) + L2 (o sy S L) (g

Definition 3.2. (Maclaurin Series)

Taylor series for zg =0

o /(0) ,

o =3 110,

n=0 ’
3.2 Sequences of holomorphic functions
Theorem 3.4.
if {f,}22, a sequence of holomorphic functions converging uniformly to f in every compact subset of 2 = f holomorphic
in
Corollary

n=1
fn holomorphic in Q C C
Given series converges uniformmly in compact subsets of Q@ = F(z) holomorphic
Theorem 3.5.

Sequence {f,}52, —f> f in every compact subset of @ = sequence {f}22, —f> /' in every compact subset of Q
unt unt

3.3 Holomorphic functions defined in terms of integrals
Theorem 3.6.

Let F(z,s) defined for (z,s) €  x [0,1]
Q C C open set. Given F satisfies

(i) F(z,s) holomorphic in QVs
(ii) F continuous on § x [0, 1]

= f(z):= fol F(z,s)ds holomorphic
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3.4 Schwarz reflection principle

Definition 3.3.

Q C C open and symmetric w.r.t real line
2€€) <= z€

Definition 3.4.

O ={z€Q:Im(2) >0} Q ={2€Q:Im(2) <0} I={2€Q:Im(z) =0}
Theorem 3.7. (Symmetry Principle)

fT, f~ holomorphic in QT, Q™ respectively.
Extend continuously to I s.t fT(x) = f"(x) Vxel

f(z), zeQt
f2)=qfTR)=f(2), z€l holomorphic
(=), z€Q”

Theorem 3.8. (Schwarz relfection principle)

f holomorphic in Q7 extend continuously to I s.t f real-valued on I
= 3JF holomorphic in 2 s.t F|o+ = f

4 Meromorphic Functions

4.1 Complex Logarithm
Theorem 4.1.

Q simply connected, 1 € 2,0 & )
= in  there is a branch of logarithm
F(z) = logg(z)

Satisfying
(i) F holomorphic in §2
(i) ef*) =2 V2 €Q
(iii) F(r) =log(r), r € R close to 1
Theorem 4.2.

Holomorphic f has 0 of order m at zg
<= can be written in form

f(2) = (2= 20)"g(2)
¢ holomorphic at zg, g(z0) # 0
Corollary

Os of non-constant holomorphic function are isolated.
Every zero has neighbourhood, inside of which it is the only 0
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4.2 Laurent Series

Definition 4.1.

Laurent Series for f at zp, where series converge
o0

fz)= Zan(z — ) = taolz—2) 2 Fa_1(z—20) V4 ao+ai(z—z2) +ax(z— )2 +...
— 00

Theorem 4.3. (Laurent Expansion theorem)

f holomorphic in anunulus D = {z : r < |z — 20| < R}
= f(z) expressed in form f(z) =>.> _ an(z — 20)"

R S 1)
T o 9% =yt

~ simple,closed piecewise smooth curve in D with zg in its interior.

4.3 Poles of holomorphic functions

Definition 4.2.

zo a singularity of complex function f
if f not holomorphic at zy, but every neighbourhood of zy has at least 1 holomorphic point.

Definition 4.3.
Singulartiy zq is isolated if 9 neighbourhood of zy, where it is the only singularity.
Definition 4.4.

f holomorphic with isolated singularity zg
Considering Laurent expansion valid in some annulus

f(z) = Zan(z — 20)"
=
e a, =0Vn <0 = 2y a removable singularity
e a,=0Vn<-mmeZ,a_,, #0 = 2z pole of order m

e ay, # 0 for infinitely many negative n = 2y a essential singularity
Theorem 4.4.

f has pole of order m at zg <= written in form

¢ holomorphic at zg, g(z0) # 0

4.4 Residue Theory

Definition 4.5.

Let f(z) =27 an(z — 20)™ for 0 < |z — 29| < R the Laurent series for f at zo
Residue of f at zg is
= Res|f,z0] —a_1

Theorem 4.5.

v C{z:0< |z — 29| < R} simple closed piecewise-smooth curve containing z
1
= R =— d
el 0] = g S

Theorem 4.6.

f holomorphic function inside and on simple closed piecewise-smooth curve v except at the singularities
Z1,...,2n in its interior

., ygf(z)dz = ZWiZRBS[f, 2]
v j=1
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4.5 The argument principle

Theorem 4.7. (Princple of argument)

f holomorphic in open 2, except for finitely many poles.
~ simple closed piecewise-smooth curve in €2 not passing through poles or zeroes of f

(2 g o
:>§éf(z)dz_2 (N - P)

N = > order(zeroes) P =) order(poles)

Theorem 4.8. (Rouche’s Theorem)

f, g holomorphic in open §2
v C Q simple closed piecewise-smooth curve with interior containing only points of 2

if lg(2)] < [f(2)l,z €

= Z order(zeros) = Z order(zeros)

0s of f+g in v 0s of f in
Definition 4.6.
Mapping open if maps open sets — open sets
Theorem 4.9. (Open mapping theorem)

if f holomorphic and non-constant in open 2 C C
= f open

Remark
f open = |f]| open

Theorem 4.10. (Max modulus principle)

f non-constant holomorphic in open 2 C C
— f cannot attain maximum in )
Corollary

Q open with closure Q compact

f holomorphic on © and continuous on

sup [f(z)] < sup  [f(2)]
z€Q 2€0mega\Q

4.6 Evaluation of definite integrals
5 Harmonic Functions

5.1 Harmonic functions

Definition 5.1.

o=p(r,y) R2=SR, r,yeR

¢ harmonic in open Q C R? if

0% 0%
A = —
o(z,y) 2 () + oy (,y)
laplace operator
= . (2,y) + @, (2, )
=0
Theorem 5.1.

f(z) = u(z,y) + iv(x,y) holomorphic in open  C C
=—> u, v harmonic

28



Theorem 5.2. (Harmonic conjugate)

u harmonic in open disc D C C

— 3 harmonic v s.t f = u + ¢v holomorphic in D

v the harmonic conjugate to u

Remark

In simply connected domain  C R? every harmonic function u has harmonic conjugate v s.t

ou ou
v(z,y) =/ (—dl‘+ dy)
~ Jy Or

Integral independent of path, by Green’s theorem as u harmonic and 2 simply connected.

5.2 Properties of real 4+ imaginary parts of holomorphic function

Theorem 5.3.
Assume f = u + iv holomorphic on open connected Q2 C C
u(z,y) =C (1)
v(z,y) = K (2)
C,KeR (3)

If (1) and (2) have same solution (xo,yo) and f'(xo +iyo) # 0
= curve defined by (1) orthogonal to curve defined by (2)

5.3 Preservation of angles

Definition 5.2.

Consider smooth curve v C C
z(t) = x(t) +iy(t) t € [a,b]
Vto € [a,b] we have direction vector

Ly, = {z(to) + t2'(to) : t € R}
= {a(to) = ta'(to +i(y(to) + ty/ (1)) : t € R}
For 71,72 curves parameterised by functions z1(t), z2(t), t € [0,1] s.t 21(0) = 22(0)

Define angle between 1,2 as angle between tangents
arg z3(0) — arg 21 (0)
Theorem 5.4. (Angle preservation theorem)

f holomorphic in open Q2 C C
Given 71,y inside €2, parameterised by z1(t), z2(¢)
Take zg = 21(0) = 22(0) with 21(0), 25(0), f'(z0) # 0
arg zy(t) — arg 21 (¢) li=o = arg f(25(t)) — arg (21 (t))l1=o( mod 27)

angle between z1(0),z2(0) angle between f(z1(0)),f(z2(0))

Definition 5.3.

Q open C C
f:Q — C conformal if holomorphic in  and if f'(z) # 0Vz € Q
Conformal mappings preserve angles.

Definition 5.4.

Holomorphic function a local injection on open 2 C C
if

Vzo € Q, 3D ={z: |z — 2| <r} CQs.t f: D — f(D) an injection
Theorem 5.5.

f: 9 — C local injection and holomorphic
= fl(2) #0 VzeQ

Inverse of f defined on its range holomorphic
—> inverse of conformal mapping also holomorphic
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5.4 Mobius Transformations

Definition 5.5.

Mobius Transformation/ Bilinear transformation a map

b
f(z) = Zid a,b,¢,d € C,ad —be #0
Remark
Mobius Transformations holomorphic except for simple pole z = —% with derivative
'(z) = 2 =be
f (Z) - (CZ+b)2

=—> mapping conformal for (C\{—%
Theorem 5.6.

(i) Inverse of mobius transformation a mobius transformation
(if) Composition of mobius transformations a mobius transformations
Corresponding to matrix multiplication and inverses
Definition 5.6. (Special/Simple mobius tranformations)
(M1) f(z) = az Scaling and rotation by a
(M2) f(z) = z + b Translation by b
(M3) f(z) = % Inverse and reflection w.r.t real axis
Theorem 5.7.

Every mobius transformations a composition of M1, M2 M3

Corollary

Mobius transformations:
circles — circles

interior points — interior points
Straight lines, considered to be circles of infinite radius

5.5 Cross-ratios Mobius Transformations

Theorem 5.8.

w = f(z) a Mobius Transformation
s.t distinct (21, 22, 23) — (w1, wa, w3)

zZ— 2z Z9 — 23 w — Wy wo — W3
= = Vz
Z — Zz3 zZ9 — 21 w — zZ3 wo — W1

5.6 Conformal mapping of half-plane to unit disc

Theorem 5.9.
D={z:]z] <1} H={z=z+iy:Im(z)=y >0}

1—w

w=f(z)=i7  9(w) =5

5.7 Riemann mapping theorem
Definition 5.7.

Q C C proper if non-empty and Q # C
Theorem 5.10.

Q proper and simply connected

if 2o € @ = 3! conformal f:Q — D s.t f(z) =0and f'(z) >0
Corollary

Any 2 simply connected open subsets in C conformally equivalent.
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