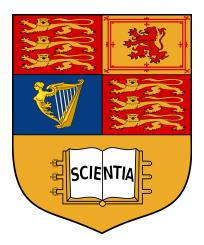
Analysis 2 - Concise Notes

MATH50001

Year 2 Content

Arnav Singh



Colour Code - Definitions are green in these notes, Consequences are red and Causes are blue

Content from MATH40002 assumed to be known.

Mathematics Imperial College London United Kingdom March 15, 2022

Contents

			Page
Ι	Te	rm 1	3
1	Diff	ferentiation in Higher Dimensions	3
	1.1	Euclidean Spaces	3
		1.1.1 Preliminaries	3
		1.1.2 Euclidean space of dim. n	3
		1.1.3 Convergence of Sequences in Euclidean Spaces	3
	1.2	Continuity	4
		1.2.1 Open sets in Euclidean Spaces	4
		1.2.2 Continuity at a point/on an open set	
	1.3	Derivative of a map of Euclidean Spaces	
		1.3.1 Derivative of a linear map	
		1.3.2 Chain Rule	
	1.4	Directional Derivatives	
		1.4.1 Rates of change and Partial Derivatives	
		1.4.2 Relation between partial derivatives and differentiability	
	1.5	Higher Derivatives	
	1.0	1.5.1 Higher derivatives as linear maps	
		1.5.2 Symmetry of mixed partial derivatives	
		1.5.3 Taylor's Theorem	
	1.6	Inverse & Implicit Function Theorem	
	1.0	1.6.1 Inverse Function Theorem	
		1.6.2 Implicit Function Theorem	
		1.6.4 Implicit Function Theorem - General Form	
		1.0.4 Implicit runction Theorem - General Form	0
2	Met	tric and Topological Spaces	9
_	2.1	Metric Spaces	
		2.1.1 Motivation + Definition	
		2.1.2 Examples of metrics	
		2.1.3 Normed Vector Spaces	
		2.1.4 Open sets in metric spaces	
		2.1.5 Convergence in Metric Spaces	
		2.1.6 Closed sets in metric spaces	
	0.0	2.1.8 Continuous maps of metric spaces	
	2.2	Topological Spaces	
		2.2.2 Topology on a set	
		2.2.3 Convergence, and Hausdorff property	
		2.2.4 Closed sets in topological spaces	
		2.2.5 Continuous maps on topological spaces	
	2.3	Connectedness	
		2.3.1 Connected sets	
		2.3.2 Continuous maps + Connected sets	
		2.3.3 Path Connected Sets	15
	2.4	Compactness	15
		2.4.1 Compactness by covers	15
		2.4.2 Sequential Compactness	16
		2.4.3 Continuous maps + Compact Sets	16
	2.5	Completeness	
		2.5.1 Complete metric spaces Banach space	
		2.5.2 Arzelà-Ascoli	
		2.5.3 Fixed point theorem	
		•	

Π	Term 2 - Complex Analysis	18
1	Holomorphic Functions 1.1 Complex Numbers 1.2 Sets in Complex Plane 1.3 Complex Functions 1.4 Complex Derivative 1.5 Cauchy-Riemann equations 1.6 Cauchy-Riemann equations in polar 1.7 Power Series 1.8 Elementary functions 1.8.1 Exponential function 1.8.2 Trigonometric functions 1.8.3 Logarithmic Functions 1.8.4 Powers	18 18 19 19 20 20 21 21 21 22
2	Cauchy's Integral Formula 2.1 Parametrised Curve 2.2 Integration along Curves 2.3 Primitive Functions 2.4 Properties of Holomorphic functions 2.5 Local existence of primitives and Cauch-Goursat theorem in a disc 2.6 Homotopies and simply connected domains 2.7 Cauchy's Integral Formulae	22 22 23 23 23 23 24 24
3	Applications of Cauchy's integral formula 3.1 Taylor + Maclaurin Series	25 25 25 25 26
4	Meromorphic Functions 4.1 Complex Logarithm 4.2 Laurent Series	26 26 27 27 27 28 28
5	Harmonic Functions 5.1 Harmonic functions	28 29 29 30 30 30 30

Part I

Term 1

1 Differentiation in Higher Dimensions

1.1 Euclidean Spaces

1.1.1 Preliminaries

Definition - Modulus Function

$$|x| := \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Having the following properties:

- (i) $\forall x \in \mathbb{R}, |x| > 0, |x| = 0 \iff x = 0$
- (ii) $\forall x, y \in \mathbb{R}, |xy| = |x||y|$
- (iii) $\forall x, y \in \mathbb{R}, |x+y| \le |x| + |y|$ (Triangle inequality)

1.1.2 Euclidean space of dim. n

Define - Euclidean Space of dim. n, \mathbb{R}^n

Defined as the set of ordered *n*-tuples (x^1, \ldots, x^n) , s.t each $x^i \in \mathbb{R} \forall i$ \mathbb{R}^n a vector space.

Define - Inner Product, $<\cdot,\cdot>$,: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

$$\langle (x^1, x^2, \dots, x^n), (y^1, y^2, \dots, y^n) \rangle = \sum_{i=1}^n x^i y^i$$

Define - Norm/Lengths, $||\cdot||: \mathbb{R}^n \to \mathbb{R}$

$$||x|| = \sqrt{\langle x, x \rangle}$$

Having the following properties:

- (i) $\forall x \in \mathbb{R}^n, ||x|| \ge 0, ||x|| = 0 \iff x = \vec{0}$
- (ii) $\forall \in \mathbb{R}, x \in \mathbb{R}^n ||\lambda x|| = |\lambda|||x||$
- (iii) $\forall x, y \in \mathbb{R}^n, ||x+y|| \le ||x|| + ||y||$ (Triangle inequality)

Definition - Cauchy-Schwartz Inequality

$$|\langle x, y \rangle| \le ||x|| ||y||$$

1.1.3 Convergence of Sequences in Euclidean Spaces

Definition - Sequence in \mathbb{R}^n

An infinite ordered list, $x_0, x_1, \ldots, \text{ s.t } x_i \in \mathbb{R}^n \ \forall i. \text{ Denoted } (x_i)_{i \geq 1} \text{ or } (x_i)_{i \in \mathbb{N}}$

Definition 1.1 - Convergence

A seq. $(x_i) \in \mathbb{R}^n$ converges to $x \in \mathbb{R}^n$ if $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t } \forall i \geq \mathbb{N}, ||x_i - x|| < \epsilon$ Corollary

seq. $(x_i) \in \mathbb{R}^n$ converges to $x \in \mathbb{R}^n \iff$

For
$$x_i = (x_i^1, \dots, x_i^n)$$
 and $x = (x^1, \dots, x^n)$
 $x_i \to x \iff \forall k \ x_i^k \to x^k \text{ as } i \to \infty$

1.2 Continuity

1.2.1 Open sets in Euclidean Spaces

Definition - Open Ball

Open ball of radius r is

$$B_r(x) = \{ y \in \mathbb{R}^n : ||x - y|| < r \}$$

Definition 1.2 - Open sets

A set $U \subseteq \mathbb{R}^n$ is called **open**, if

 $\forall x \in U, \exists r > 0 \text{ such that} B_r(x) \subseteq U$

1.2.2 Continuity at a point/on an open set

Definition 1.3 - Continuity at a point

Let $A \subset \mathbb{R}^n$ an open set, with $f: A \to R^n$

f continuous at $p \in A$ if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t } ||x - p|| < \delta \implies ||f(x) - f(p)|| < \epsilon$$

f is (pointwise) continuous on $A \subseteq \mathbb{R}^n \iff$ continuous $\forall p \in A$, we write f is continuous. For small enough δ , we have $f(B_{\delta}(p)) \subseteq B_{\epsilon}(f(p))$

Theorem 1.2 - Composition of continuous functions

Let $A \subseteq \mathbb{R}^n$ open, $B \subseteq \mathbb{R}^m$ open and suppose $f: A \to B$ continuous at $p \in A$, and $g: B \to \mathbb{R}^l$ continuous at f(p)

Then
$$g \circ f : A \to \mathbb{R}^l$$
 continuous at p

Definition 1.4 - Limit of a function at a point

 $A \subseteq \mathbb{R}^n$ an open set. f a function $f: A \to \mathbb{R}^m$, with $p \in A$ and $q \in \mathbb{R}^m$

Say $\lim_{x\to p} f(x) = q$ if $\forall \epsilon > 0, \exists \delta > 0$ s.t $\forall x \in A$ with $0 < ||x-p|| < \delta$ we have $||f(x)-p|| < \epsilon$

$$f$$
 continuous at $p \iff \lim_{x \to p} f(x) = q$

Theorem 1.3 - Algebra of Limits

Suppose $A \subseteq \mathbb{R}^n$ open, with $p \in A$ and $f, g : A \to \mathbb{R}^n$

$$\lim_{x \to p} f(x) = F \text{ and } \lim_{x \to p} g(x) = G$$

Then:

(i)
$$\lim_{x\to p} (f(x) + g(x)) = F + G$$

(ii)
$$\lim_{x\to p} (f(x)g(x)) = FG$$

(iii) If,
$$G \neq 0$$
 then $\lim_{x\to p} \frac{f(x)}{g(x)} = \frac{F}{G}$

1.3 Derivative of a map of Euclidean Spaces

1.3.1 Derivative of a linear map

Lemma 1.5

The map $f:(a,b)\to\mathbb{R}$ differentiable at $p\in(a,b)\iff\exists$ map of the form $A_{\lambda}(x)=\lambda(x-p)+f(p)$ for some $\lambda\in\mathbb{R}$ s.t

$$\lim_{x \to p} \frac{|f(x) - A_{\lambda}(x)|}{|x - p|} = 0$$

Notation

h[v] for h a linear map, v a vector

h(v) h a map, v a point in domain of h

 $L(\mathbb{R}^n;\mathbb{R}^m)$ – Set of linear maps from $\mathbb{R}^n \to \mathbb{R}^m$

Definition 1.5 - Derivative in higher dimension

Suppose $\Omega \subset \mathbb{R}^n$ open. The map $f: \Omega \to \mathbb{R}^m$ differentiable at $p \in \Omega$ if \exists a linear map $\Lambda \in L(\mathbb{R}^n; \mathbb{R}^m)$ such that

$$\lim_{x\to p}\frac{||f(x)-(\Lambda[x-p]+f(p))}{||x-p||}=0$$

We write

$$Df(p) := \Lambda$$

Calling Df(p) the derivative of f at p Λ a $m \times n$ matrix called the **Jacobian**

Lemma 1.6 - Differentiable then continuous

 $\Omega \subset \mathbb{R}^n$ open, $f: \Omega \to \mathbb{R}^m$ differentiable at $p \in \Omega \implies f$ continuous at p

Theorem 1.7 - Uniqueness of Derivative

The derivative, if it exists, is unique

1.3.2 Chain Rule

Chain rule in \mathbb{R}

 $f,g:\mathbb{R}\to\mathbb{R},g$ differentiable at p,f differentiable at g(p) Then $f\circ g$ differentiable at p with

$$(f \circ g)'(p) = f'(g(p))g'(p)$$

Theorem 1.8 - Chain rule in higher dim.

 $\Omega \subset \mathbb{R}^n$ open, $\Omega' \subset \mathbb{R}^m$ open

With $g: \Omega \to \Omega'$ differentiable at $p \in \Omega$, $f: \Omega' \to \mathbb{R}^l$ differentiable at $g(p) \in \Omega'$

Then $h = f \circ g : \Omega \to \mathbb{R}^l$, differentiable at p, s.t

$$Dh(p) = D(f(g(p)) \circ Dg(p)$$

1.4 Directional Derivatives

1.4.1 Rates of change and Partial Derivatives

Definition - Directional Derivative

The directional derivative of f at p in the direction v is

$$\frac{\partial f}{\partial v}(p) := \lim_{t \to 0} \frac{1}{t} [f(p+vt) - f(p)] = Df(p)[v]$$

Definition - Partial derivatives

We can find any directional derivative at p, given we know the partial derivatives of f

$$D_i f(p) = \frac{\partial f}{\partial e_i}(p)$$

In \mathbb{R}^3 we have,

$$Df(p)[v] = \begin{pmatrix} D_1 f(p) & D_2 f(p) & D_3 f(p) \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix}$$

Definition - Gradient

Gradient of f at p

$$\nabla f(p) = \begin{pmatrix} D_1 f(p) \\ D_2 f(p) \\ D_3 f(p) \end{pmatrix} \qquad Df(p) = (\nabla f(p))^t$$

Theorem 1.9 - Jacobian

Suppose $\Omega \subset \mathbb{R}^n$ open and $f:\Omega \to \mathbb{R}^m$ of the form

$$f(x) = (f^1(x), f^2(x), \dots, f^m(x))$$

If f differentiable for some $p \in \Omega$ Then Jacobian of f at p is:

$$Df(p) = \begin{pmatrix} D_1 f^1(p) & \dots & D_n f^1(p) \\ \vdots & \ddots & \vdots \\ D_1 f^m(p) & \dots & D_n f^m(p) \end{pmatrix}$$

1.4.2 Relation between partial derivatives and differentiability

Theorem 1.12

Let $\Omega \subset \mathbb{R}^n$ open, $f: \Omega \to \mathbb{R}$. Suppose the partial derivatives:

$$D_i f(x) := \lim_{t \to 0} \frac{f(x + te_i - f(x))}{t}$$

exist $\forall x \in \Omega$, with each map $x \mapsto D_i f(x)$ continuous at $p, \forall i \Longrightarrow f$ is differentiable at p

1.5 Higher Derivatives

1.5.1 Higher derivatives as linear maps

Can think of the differential of f, Df(p) as a map

$$Df:\Omega\to L(R^n;R^m)=\Omega\to\mathbb{R}^{mn}$$

$$p \mapsto Df(p)$$

if map Df is continuous $\implies f: \Omega \to \mathbb{R}$ is continuously differentiable

Definition - Higher derivative

If $Df: \Omega \to \mathbb{R}^{mn}$ differentiable at p, denote derivative of Df as $DDf(p): \mathbb{R}^n \to \mathbb{R}^{nm}$

$$DDf(p) \in L(\mathbb{R}^n; \mathbb{R}^{nm}) = L(\mathbb{R}^n; L(\mathbb{R}^n; \mathbb{R}^m))$$

Where DDf(p) is a linear map $\mathcal{L} \in L(\mathbb{R}^n; L(\mathbb{R}^n; \mathbb{R}^m))$, satisfying:

$$\lim_{x \to p} \frac{||Df(x) - Df(p) - \mathcal{L}[x - p]||}{||x - p||} = 0$$

DDf(p) takes an n-vector to a $m \times n$ matrix

Definition - Continuously differentiable

 $f: \Omega \to \mathbb{R}^m$ is k-times differentiable with all continuous derivatives $\implies f$ is k-times continuously differentiable Testing for k-times differentiability

For $f = (f^1(x), f^2(x), \dots, f^m(x))$

If f differentiable at $p \in \Omega \implies$ we have partial derivatives $D_i f^j : \Omega \to \mathbb{R}$.

If Df differentiable, then 2^{nd} partial derivatives exist

$$D_k D_i f^j(p) := \lim_{t \to 0} \frac{D_i f^j(p + te_k) - D_i f^j(p)}{t}$$

Easy to check these exist and are continuous \implies k-times differentiability at p

Symmetry of mixed partial derivatives

Theorem 1.13 - Schwartz' Theorem

Suppose $\Omega \subset \mathbb{R}^n$ open and $f:\Omega \to \mathbb{R}$ differentiable $\forall p \in \Omega$

Suppose also, for $i, j \in \{1, ..., n\}$, 2^{nd} partial derivatives $D_i D_j f$ and $D_j D_i f$ exist and are continuous $\forall p \in \Omega$

$$\forall p \in \Omega, D_i D_j f(p) = D_j D_i f(p)$$

Definition - Hessian

The matrix of 2^{nd} partial derivatives at the point p

Hess
$$f(p) = [D_i D_j f(p)]_{i,j=1,...,n}$$

Schwartz' Theorem says Hess f(p) is a symmetric matrix

1.5.3 Taylor's Theorem

Definition - Multi-inidices

Multi-index $\alpha \in (\mathbb{N})^n$, $\alpha = (\alpha_1, \dots, \alpha_n)$ We define $|a| = \sum_{i=1}^n \alpha_i$ and

$$D^{\alpha} f := (D_1)^{\alpha_1} (D_2)^{\alpha_2} \dots (D_n)^{\alpha_n} f,$$

And for a vector $h = (h_1, \ldots, h_n)$

$$h^{\alpha} := (h^1)^{\alpha_1} (h^2)^{\alpha_2} \dots (h^n)^{\alpha_n}$$

Also

$$\alpha! := \alpha_1! \alpha_2! \dots \alpha_n!$$

helpful examples

$$D^{(0,3,0)} f(p) = D_2^3 f(p)$$

$$D^{(1,0,1)} f(p) = D_1 D_3 f(p)$$

$$(x, y, z)^{(2,1,5)} = x^2 y^1 z^5$$

Theorem 1.14 - Taylor's Theorem in higher dim.

Suppose $p \in \mathbb{R}^n$ and $f: B_r(p) \to \mathbb{R}$ a k-times continuously differentiable $\forall q \in B_r(p)$, for some $k \geq 1 \in \mathbb{N}$ Then $\forall h \in \mathbb{R}^n$ with ||h|| < r We have

$$f(p+h) = \sum_{|\alpha| \le k-1} \frac{h^{\alpha}}{\alpha!} D^{\alpha} f(p) + R_k(p,h)$$

Sum over all $\alpha = (\alpha_1, \dots, \alpha_n)$ with $|\alpha| \le k-1$ and remainder term

$$R_k(p,h) = \sum_{|\alpha|=k} \frac{h^{\alpha}}{\alpha!} D^a f(x)$$

for some x s.t 0 < ||x - p|| < ||h||Evidently

$$\lim_{h \to 0} \frac{|R_k(p,h)|}{||h||^{k-1}} = 0$$

1.6 Inverse & Implicit Function Theorem

1.6.1 **Inverse Function Theorem**

Theorem 1.15 - (Inverse Function Theorem)

Let Ω an open set in \mathbb{R}^n , $f:\Omega\to\mathbb{R}^n$ continuously differentiable on Ω , $\exists q\in\Omega$ s.t Df(q) invertible Then \exists open sets $U \subset \Omega$ and $V \subset \mathbb{R}^n, q \in U, f(q) \in V$ s.t

- (i) $f: U \to V$, a bijection
- (ii) $f^{-1}: V \to U$, continuously differentiable
- (iii) $\forall y \in V$,

$$Df^{-1}(y) = [Df(f^{-1}(y))]^{-1}$$

1.6.2 Implicit Function Theorem

Theorem 1.16 - (Implicit Function Theorem - Simple version)

 $\Omega \subset \mathbb{R}^2$ open

 $F: \Omega \to \mathbb{R}$ continuously differentiable and $\exists (x', y') \in \Omega$ s.t

- (i) F(x', y') = 0, and
- (ii) $D_2F(x',y') \neq 0$
- $\implies \exists$ open sets $A, B \subset \mathbb{R}$ with $x' \in A, y' \in B$ with a map $f : A \to B$ s.t

$$(x,y) \in A \times B$$
 satisfies $F(x,y) = 0 \iff y = f(x)$ for some $x \in A$

with $f: A \to B$ continuously differentiable.

Definition - C^1 -diffeomorphism

 $\Omega, \Omega' \subset \mathbb{R}^n$ open.

Say $f: \Omega \to \Omega'$ a C^1 -diffeormorphism, if $f: \Omega \to \Omega'$ a bijection, continuously differentiable, and $\forall x \in \Omega, Df(x)$ invertible \mathcal{D} the set of all C^1 -diffeomorphisms from $\Omega \to \Omega$, a group under group law; composition.

1.6.4 Implicit Function Theorem - General Form

Theorem 1.17 - (Implicit Function Theorem)

 $\Omega \subset \mathbb{R}^n, \Omega' \subset \mathbb{R}^m$ open sets

 $F: \Omega \times \Omega' \to \mathbb{R}^m$ continuously differentiable on $\Omega \times \Omega'$ and sps $\exists (a,b) \in \Omega \times \Omega'$ s.t

- (i) f(p) = 0 and,
- (ii) $m \times n$ matrix

$$(D_{n+i}f^i(p)), \qquad 1 \le i, j \le m$$

invertible

 $\implies \exists$ open sets $A \subset \Omega, B \subset \Omega'$ with $a \in A, b \in B$ with a map $g: A \to B$ s.t

$$g(x,y) = 0$$
 for some $(x,y) \in A \times B \iff y = g(x)$ for some $x \in A$

with $g:A\to B$ continuously differentiable.

2 Metric and Topological Spaces

2.1 Metric Spaces

2.1.1 Motivation + Definition

Definition 2.1 - Metric

X an arbitrary set

Metric a function $d: X \times X \to \mathbb{R}$ satisfying:

(M1)
$$\forall x, y \in X$$
; $d(x, y) \ge 0, d(x, y) = 0 \iff x = y$ (positivity)

(M2)
$$\forall x, y \in X$$
; $d(x, y) = d(y, x)$ (symmetry)

(M3)
$$\forall x, y, z \in Xd(x, y) \leq d(x, z) + d(z, y)$$
 (triangle inequality)

Definition 2.2 - Metric space

Pair of a set and metric; M = (X, d)

Call elements of X points, with d(x, y) distance between x, y w.r.t d

Definition

$$C([a,b]) = \{f : [a,b] \to \mathbb{R} | f : [a,b] \to \mathbb{R} \text{continuous} \}$$

2.1.2 Examples of metrics

Examples

•
$$d_2(x,y) = ||x-y||$$
; Euclidean metric on \mathbb{R}^n

•
$$d_{\text{disc}}(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

•
$$d_{\infty}(x,y) = \sup_{k>1} |x^k - y^k|$$

•
$$d_{\infty}(f,g) = \max_{a < t < b} |f(t) - g(t)|$$
 where $f,g \in C([a,b])$ (supremum/uniform metric)

•
$$d_1()$$

Definition 2.3. Induced metrics

(X,d) a metric space

$$Y \subseteq X$$
, define $d|_Y : Y \times Y \to \mathbb{R}$ as $d|_Y(x,y) = d(x,y) \ \forall x,y \in Y$

Definition 2.3. Metric Subspace

Say $(Y, d|_Y)$ a metric subspace of (X, d)

Definition 2.4. Product metric space

 (X_1, d_1) and (X_2, d_2) metric spaces.

define metric using $d_1, d_2 d: (X_1 \times X_2) \times (X_1 \times X_2) \to \mathbb{R}$.

 $(X_1 \times X_2, d)$ a product metric space.

2.1.3 Normed Vector Spaces

Definition 2.5. Norm in Metric Spaces

V a vector space on \mathbb{R} . Say $||\cdot||:V\to\mathbb{R}$ a **norm** on V if

(N1)
$$\forall v \in V, ||v|| \ge 0 \text{ and } ||v|| = 0 \iff v = 0$$

(N2)
$$\forall v \in V, \forall \lambda \in \mathbb{R}, ||\lambda v|| = |\lambda| \cdot ||v||$$

(N3)
$$\forall u, v \in V, ||u+v|| \le ||u|| + ||v||$$

Definition - Normed vector space

A pair of a vector space $(V, ||\cdot||)$

note $||\cdot||$ is a metric on $V \Longrightarrow$ normed vector space a metric space.

2.1.4 Open sets in metric spaces

Definition 2.6. Open ball in metric spaces

$$(X, d)$$
, with $x \in X, \epsilon \in \mathbb{R}; \epsilon > 0$

Ball radius
$$\epsilon$$
; $B_{\epsilon}(x) = \{x' \in X | d(x, x') < \epsilon\}$

notation; $B_{\epsilon}(x, X, d)$

Definition 2.7. Open set in metric space

(X,d) a metric space. $U \subseteq X$ open in (X,d) if:

$$\forall u \in U, \ \exists \delta > 0 \in \mathbb{R} \text{ s.t } B_{\delta}(u) \subset U$$

Definition 2.8. Topologically equivalent

 d_1, d_2 metrics on a set X topologically equivalent if:

$$\forall U \subseteq X, U \text{ open in } (X, d_1) \iff U \text{ open in } (X, d_2)$$

2.1.5 Convergence in Metric Spaces

Definition 2.9. Convergence in Metric Spaces

(X, d) a metric space. $(x_n)_{n\geq 1}$ a sequence in X. Say $(x_n) \to x \in (X, d)$ if

$$\forall \ \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t } \forall \ n \geq N, d(x, x_n) < \epsilon$$

Lemma 2.7. - if (x_n) converges in $(X,d) \Longrightarrow \text{limit is unique}$ **Corollary** - d_1, d_2 topologically equivalent $\iff (x_n)$ converges in (X, d_1) and (X, d_2)

2.1.6 Closed sets in metric spaces

Definition 2.10. Closed set in Metric Spaces

(X,d) a metric space. $V \subseteq X$ a set.

$$V$$
 closed in (X,d) if $\forall (x_n) \in V$ s.t $(x_n) \to x$ convergent in $(X,d) \implies x \in V$

Theorem 2.9.

(X,d) a metric space. $V \subseteq X$

$$V$$
 closed in $(X,d) \iff X \setminus V$ open in (X,d)

Lemma 2.10

- (i) Intersection of closed sets in (X, d) is a closed set in (X, d)
- (ii) Finite union of closed sets in (X, d) a closed set in (X, d)

2.1.7 Interior, isolated, limit, and boundary points in metric spaces

Definition 2.11. - 2.12.

(X,d) a metric space, $V \subset X, x \in X$

(i) x an interior/inner point of V if

$$\exists \delta > 0$$
, s.t $B_{\delta}(x) \subset V$

- (a) Interior of V; V° $\{v \in V : v \text{ an interior point of } V\}$
- (ii) x a limit/accumulation point of V if

$$\forall \delta > 0, (B_{\delta}(x) \cap V) \setminus \{x\} \neq \emptyset$$

Note: not all limit points of V are in V

- (b) Closure of V; $\bar{V} V \cup \{v \text{ a limit point of } V\}$
- (iii) x a boundary point of V if

$$\forall \delta > 0, B_{\delta} \cap V \neq \emptyset \text{ and } B_{\delta}(x) \backslash V \neq \emptyset$$

- (c) Boundary of V; $\partial V \{v \in X : v \text{ a boundary point of } V\}$
- (iv) x an **isolated point** of V if

$$\exists \delta > 0, \text{ s.t } V \cap B_{\delta}(x) = \{x\}$$

Lemma 2.11 (X,d) a metric space, $V \subseteq X$ $x \in X$ a limit point of $V \iff \exists$ sequence in $V \setminus \{x\}$ converging to x.

Definition 2.13. Dense and Seperable subsets

(X,d) a metric space

- $V \subseteq X$ dense in X if $\bar{V} = X$
- (X,d) separable if, \exists dense countable subset of X

2.1.8 Continuous maps of metric spaces

Definition 2.14. Continuity in metric spaces

$$(X, d_X), (Y, d_Y)$$
 metric spaces.
 $f: X \to Y$ a map

(i) f continuous at $x \in X$ if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t } \forall x' \in X \text{ s.t } d_X(x', x) < \delta, d_Y(f(x), f(x')) < \epsilon$$

- (ii) $f: X \to Y$ continuous if f continuous $\forall x \in X$
- (iii) $f: X \to Y$ uniformly continuous if f continuous $\forall x \in X$ with $\delta = \delta(\epsilon)$ not depending on x

Theorem 2.12.

 $(A_1, d_1), (A_2, d_2)$ metric spaces

 $f: A_1 \to A_2$ continuous \iff pre-image of any open set in A_2 is an open set in A_1

 $f: A_1 \to A_2$ continuous \iff pre-image of any closed set in A_2 is a closed set in A_1

Theorem 2.13.

$$(X, d_X), (Y, d_Y)$$
 metric spaces

$$f: X \to Y \text{ a map};$$

f continuous at $x \in X \iff$ for any sequence $(x_n) \to x$; $f(x_n) \to f(x)$ in (Y, d_Y)

Definition 2.15. Homeomorphism

 $(X_1, d_1), (X_2, d_2)$ metric spaces.

- (i) $f: X_1 \to X_2$ a homeomorphism if
 - $f: X_1 \to X_2$ a bijection
 - $f: X_1 \to X_2$ and $f^{-1}: X_2 \to X_1$ continuous
- (ii) Say $(X_1, d_1), (X_2, d_2)$ homeomorphic if \exists homeomorphism from X_1 to X_2

Definition 2.16.

 $(X, d_X), (Y, d_Y)$ metric spaces with $f: X \to Y$

- (i) f is **Lipschitz** if \exists constant M > 0 s.t $\forall x_1, x_2 \in X, d_Y(f(x_1), f(x_2)) \leq M \cdot d_X(x_1, x_2)$
- (ii) f is **bi-Lipschitz** if \exists constants $M_1, M_2 > 0$ s.t $\forall x_1, x_2 \in X$

$$M_2 \cdot d_X(x_1, x_2) \le d_Y(f(x_1), f(x_2)) \le M_1 \cdot d_X(x_1, x_2)$$

Corollary; any bi-Lipschitz map is injective

(iii) f an isometry/distance preserving if $\forall x_1, x_2 \in X$;

$$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2)$$

2.2 Topological Spaces

2.2.2 Topology on a set

Definition 2.17. Topology

A an arbitrary set. τ a collection of subsets of A τ a topology on A if:

- **(T1)** $\emptyset \in \tau$ and $A \in \tau$
- **(T2)** $G_{\alpha} \in \tau$ for α in a (finite) set $I \implies \bigcup_{\alpha \in I} G_{\alpha} \in \tau$
- **(T3)** $G_1, G_2, \ldots, G_m \in \tau \implies \bigcap_{i=1}^m G_i \in \tau$

A topological space; (A, τ) a pair of a set A and topology τ on A. Each element in τ an open set in (A, τ) U a neighbourhood of a if $U \in \tau$ and $a \in U$

Example 2.25. Some Topologies

- 1. Coarse topology A arbitrary set, $\tau = \{\emptyset, A\}$
- 2. Induced topology (X,d) a metric space, with τ the collection of all open sets in (X,d)
- 3. Order Topology $A = \mathbb{R}$ with τ collection of subsets of \mathbb{R} of form $(a, +\infty)$, $a \in \mathbb{R} \cup \{-\infty, +\infty\}$, $(infty, +\infty) := \emptyset$
- 4. Discrete Topology A arbitrary, $\tau = \mathcal{P}(A)$
- 5. Product topology -

Definition. Metrisable topological space

Say topological space (X,τ) metrisable if \exists metric on X which induces a topology τ .

Definition. Induced and Subspace topology

 (X,τ) a topological space. $Y\subset X$

$$\tau_Y = \{ U \cap Y | U \in \tau \}$$

 τ_Y the **induced topology** on Y from (X, τ)

 (Y, τ_Y) has the subspace topology induced from (X, τ)

Definition 2.18. Stronger topology

A a set, with τ_1, τ_2

Say τ_1 stronger (or finer) than τ_2 if $\tau_2 \subset \tau_1$

Lemma 2.14.

 (A,τ)

A set $G \subset A$ open $\iff \forall x \in G, \exists$ neighbourhood of x contained in G

Definition 2.19. Interior in Topological space

 (A, τ) a topological space. $\Omega \subseteq A$ $z \in \Omega$ an interior point of Ω if

 $\exists U \in \tau \text{ s.t } z \in U \text{ and } U \subset \Omega$

interior of Ω ; $\Omega^{\circ} = \{z \in \Omega | z \text{ an interior point of } \Omega\}$ Properties of interior

- $S \subset T \implies S^{\circ} \subset T^{\circ}$
- S open in $A \iff S = S^{\circ}$
- S° largest open set contained in S

2.2.3Convergence, and Hausdorff property

Definition 2.20. Convergence in Topological Spaces

 (A,τ) a topological space. $(x_n)_{n\geq 1}$ a sequence in A (x_n) converges in (A, τ) if

 $\exists x \in A \text{ s.t } \forall G \in \tau \text{ with } x \in G, \ \exists N \in \mathbb{N}, \text{ s.t } \forall n \geq N, x_n \in G$

Definition 2.21. Hausdorff

 (A, τ) called **Hausdorff** if:

 $\forall x, y \in A \ x \neq y, \ \exists \text{ open set } U, V \text{ s.t } x \in U, y \in V \text{ and } U \cap V = \emptyset$

Say U and V separate x and y

Theorem 2.14.

 (A, τ) a Hausdorff topological space. (x_n) a sequence in A.

if (x_n) convergent in $(A, \tau) \implies \text{limit is unique}$.

2.2.4 Closed sets in topological spaces

Definition 2.22. Closed set in Topological space

 (A, τ) a topological space.

 $V \subseteq A$. Say V closed in $(A, \tau) \iff A \setminus V \in \tau$

Lemma 2.17.

 (A, τ) a topological space $\implies \emptyset$ and A closed in (A, τ)

- (i) intersection of closed sets in (A, τ) is a closed set in (A, τ)
- (ii) union of a finite number of closed sets in (A, τ) is a closed set in (A, τ)

Definition 2.23. Limit/Accumulation point in Topological Spaces

 (A, τ) , a topological space, $S \subseteq A$

 $x \in A$ a limit/accumulation point of S if

 $\forall U \text{ a neighbourhood of } x, (S \cap U) \setminus \{x\} \neq \emptyset$

x not necessarily in S

Closure of $S, \bar{S} = S \cup \{x \in A | x \text{ a limit point of } S\}$

Lemma

S closed in $(A, \tau) \iff S = \bar{S}$

2.2.5 Continuous maps on topological spaces

Definition 2.24. Continuity in topological space

$$(X, \tau_X), (Y, \tau_Y)$$
 with $f: X \to Y$
f continuous on X if:

$$\forall$$
open sets $U \in Y$, $f^{-1}(U)$ open in X

Theorem 2.20.

$$(X, \tau_X), (Y, \tau_Y)$$
 with $f: X \to Y$
f continuous \iff pre-image of closed set in Y is closed in X

Theorem 2.21.

$$(X, \tau_X), (Y, \tau_Y), (Z, \tau_Z)$$

 $f: X \to Y, g: Y \to Z$ continuous $\implies g \circ f: X \to Z$ continuous

Definition 2.25. Homeomorphisms in Topological space

 $f: X \to Y$ a homeomorphism is $f: X \to Y$ bijective with f and f^{-1} continuous

Definition 2.25. Topologically equivalent in Topological space

 $(X, \tau_X), (Y, \tau_Y)$ topologically equivalent/homeomorphic if \exists homeomorphism from $X \to Y$

2.3 Connectedness

2.3.1 Connected sets

Definition 2.26. Disconnected sets

For (X, d) a metric space, consider $T \subseteq X$. T disconnected, if \exists open sets $U, V \in X$ s.t:

- (i) $U \cap V = \emptyset$
- (ii) $T \subseteq U \cup V$
- (iii) $T \cap U \neq \emptyset$ and $T \cap V \neq \emptyset$

Set connected if not disconnected, i.e for any 2 of the properties that hold from above the 3rd cannot.

Lemma 2.23.

$$(X,d)$$
 a metric space. $T\subseteq X$

T disconnected
$$\iff$$
 \exists continuous $f: T \to \mathbb{R}$ s.t $f(T) = \{0,1\}$

Theorem 2.22.

Consider
$$(\mathbb{R}, d), S \subseteq \mathbb{R}$$

$$S$$
 connected $\iff S$ an interval

2.3.2 Continuous maps + Connected sets

Theorem 2.27.

$$(A, d_1)$$
 and (A, d_2) metric spaces. $f: A_1 \to A_2$ continuous map $S \subset A$ connected $\Longrightarrow f(S)$ connected Corollary 2.28. $f: (X, d_X) \to (Y, d_Y)$ a homeomorphism

$$X$$
 connected $\iff Y$ connected

Theorem 2.29.

(X,d) connected metric space, $f:X\to\mathbb{R}$ continuous. Assume $\exists a,b\in X$ s.t $f(a)<0, f(b)>0 \implies \exists c\in X$ s.t f(c)=0

2.3.3 Path Connected Sets

Definition 2.28. Path

Under (X, d) given $a, b \in X$

Path from $a \to b$ a continuous map $f: [0,1] \to X$ s.t f(0) = a, f(1) = b

Definition 2.29. Path Connected

(X,d) path connected if $\forall a,b \in X, \exists$ path from $a \to b$ in X

Theorem 2.30.

if (X, d) path connected \implies connected

2.4 Compactness

2.4.1 Compactness by covers

Definition 2.30. Covers

(X,d) a metric space. $Y \subseteq X$

(i) collection R of open subsets of X an **open cover** for Y if

$$Y\subseteq\bigcup_{v\in R}v$$

(ii) Given open cover R for YSay C a **sub-cover** of R for Y if $C \subseteq R$ and $Y \subseteq \bigcup_{v \in R} v$

(iii) Open cover R for Y is a **finite cover** if R has finitely many elements.

Definition 2.31. Compact

(X,d) a metric space

 $Y \subseteq X$ compact in (X,d) if every open cover for Y has a finite sub-cover.

Proposition 2.32.

 $a, b \in \mathbb{R}, \ a \leq b \text{ in } (R, d_1) \text{ we have } [a, b] \text{ compact}$

Proposition 2.33.

(X, d) a metric space, $Y \subseteq X$

X compact, Y closed $\implies Y$ compact.

Theorem 2.34.

(X,d) a metric space $Y \subset X$

 $Y \text{ compact } \Longrightarrow Y \text{ closed}$

Theorem 2.35.

 $(X, d_X), (Y, d_Y)$ metric spaces. Considering $(X \times Y, d)$

 $d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2)$

 $X, Y \text{ compact} \implies (X \times Y, d) \text{ compact}$

Corollary

 $[a_1,b_1]\times[a_2,b_2]\cdots\times[a_{n-1},b_{n-1}]\times[a_n,b_n]$ compact in \mathbb{R}^n

Definition 2.32. Bounded

(X,d) non-empty metric space, $Z \subseteq X$

Z bounded in (X, d) if $\exists M \in \mathbb{R}$ s.t $\forall x, y \in Z; d(x, y) \leq M$

S arbitrary set. $f: S \to X$ bounded if f(S) bounded in X

Lemma 2.37.

(X,d) compact metric space $\implies X$ bounded

Theorem 2.36. Heine-Borel

Consider $(\mathbb{R}^n, d_2), X \subseteq \mathbb{R}^n$

 $X \text{ compact} \iff X \text{ closed and bounded}$

2.4.2 Sequential Compactness

Definition 2.33. Sequentially compact

(X,d) sequentially compact, if for every sequence in X has convergent subsequence in (X,d)

$$\forall (x_n)_{n\geq 1} \in X, \ \exists (x_{n_k})_{k\geq 1}, \ x \in X \text{ s.t } x_{n_k} \to x$$

Lemma 2.39.

(X,d) a metric space. with sequence $(x_n)_{n\geq 1}$ s.t $\exists (x_{n_k})_{k\geq 1}, x\in X$ s.t $x_{n_k}\to x$.

 $\iff \exists x \in X \text{ s.t } \forall \epsilon > 0 \text{ there are infinitely many } i \text{ s.t } x_i \in B_{\epsilon}(x)$

Theorem 2.41. Bolzanno-Weierstrass

Any bounded sequence in \mathbb{R}^n has convergent subsequence.

Theorem 2.40. + 2.42.

(X,d) metric space.

X Compact $\iff X$ Sequentially Compact

2.4.3 Continuous maps + Compact Sets

Theorem 2.41.

 $(X, d_X), (Y, d_Y)$ metric spaces. $f: X \to Y$ a continuous map if

Z compact in $X \implies f(Z)$ compact in Y

Corollary 2.44.

 $(X, d_X), (Y, d_Y)$ metric spaces, $f: X \to Y$ a homeomorphism

 $\implies X \text{ compact } \iff Y \text{ compact}$

Theorem 2.45.

Every continuous map from compact metric space to a metric space is uniformly continuous.

Corollary 2.46. $f:[a,b] \to \mathbb{R}$ continuous $\implies f$ uniformly continuous

Theorem 2.47.

 (X, d_X) compact, $f: X \to \mathbb{R}$ continuous $\implies f$ bounded above and below attaining its upper & lower bounds

Theorem 2.48.

 $f: \mathbb{R} \to \mathbb{R}$ continuous w.r.t Euclidean metrics on domain and range.

 $\forall [a,b]$ we have f([a,b]) of the form [m,M] for $m,M \in \mathbb{R}$

2.5 Completeness

2.5.1 Complete metric spaces Banach space

Definition 2.34. Cauchy Sequence

(X,d) a metric $(x_n)_{n\geq 1}$ sequence in X

Say $(x_n)_{n\geq 1}$ a Cauchy sequence in (X,d) if

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} \text{ s.t } \forall n, m \geq N_{\epsilon} \text{ we have } d(x_n, x_m) < \epsilon$$

Definition 2.35. Complete & Banach

- (i) metric space (X,d) complete if every Cauchy sequence in X converges to a limit in X
- (ii) Normed vector space $(V, ||\cdot||)$ a Banach space if V with induced metric space $d_{||||}$ a complete metric space.

Theorem 2.51.

Assume $(f_n:[a,b]\to\mathbb{R})_{n\geq 1}$ sequence of continuous functions converging uniformly to $f:[a,b]\to\mathbb{R}\implies f:[a,b]\to\mathbb{R}$ continuous

Theorem 2.52.

Metric space $(C([a,b]), d_{\infty})$ is complete or equivalently $(C([a,b]), ||\cdot||_{\infty})$ a Banach space

Theorem 2.53.

(X,d) a compact metric space $\implies (X,d)$ complete

2.5.2 Arzelà-Ascoli

Definition 2.36. Uniformly bounded & Uniformly equi-continuous

Let \mathcal{C} a collection of functions $f:[a,b]\to\mathbb{R}$

- 1. Say collection \mathcal{C} uniformly bounded if $\exists M \text{ s.t } \forall f \in \mathcal{C} \text{ and } \forall x \in [a,b] \implies |f(x)| < M$
- 2. Say collection C uniformly equi-continuous if $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t } \forall f \in C \text{ and } \forall x_1, x_2 \in [a, b] \text{ s.t } |x_1 x_2| < \delta \text{ we have } |f(x_1) f(x_2)| < \epsilon$

Theorem 2.54. Arzelà-Ascoli

Assume \mathcal{C} collection of continuous functions $f:[a,b]\to\mathbb{R}$ if \mathcal{C} uniformly bounded and uniformly equi-continuous \Longrightarrow every sequence in \mathcal{C} has convergent subsequence in $(C([a,b],d_{\infty})$

2.5.3 Fixed point theorem

Definition 2.37. Contracting

$$(X_1, d_1)$$
 and (X_2, d_2) , with $f: X_1 \to X_2$
Say f contracting if $\exists K \in (0, 1)$ s.t $\forall a, b \in X$ we have

$$d_2(f(a), f(b)) \le K \cdot d_1(a, b)$$

Every contracting map is continuous.

Definition 2.37. Fixed point

$$f: X \to X$$
 say $x \in X$ a fixed point of f if $f(x) = x$

Theorem 2.55. Banach fixed point theorem

(X, d) a non-empty complete metric space.

 $f: X \to X$ a contracting map $\implies f$ has unique fixed point in X

Part II

Term 2 - Complex Analysis

1 Holomorphic Functions

1.1 Complex Numbers

Definition 1.1. i

 $i = \sqrt{-1}, \quad i^2 = -1$

Root of $x^2 + 1 = 0$

Basic properties

z = x + iy, Re(z) = x, Im(z) = y

The complex conjugate:

 $\bar{z} = x - iy$

Polar Coordinates

z = x + iy

 $r = |z| = \sqrt{x^2 + y^2}$

 $x = r\cos\theta, \ y = r\sin\theta$

 $z = r(\cos\theta + i\sin\theta)$

De-Moivre's Formula

 $z^n = r^n(\cos(n\theta) + i\sin(n'\theta)), \ n \in \mathbb{Z}^+$

Eulers's Formula

 $e^{i\theta} = (\cos\theta + i\sin\theta)$

1.2 Sets in Complex Plane

Definition 1.2. Discs in \mathbb{C}

Open Disc: $D_r(z_0) = \{z \in \mathbb{C} : |z - z_0| < r\}$

Boundary of Disc : $C_r(z_0) = \{z \in \mathbb{C} : |z - z_0| = r\}$

Unit Disc: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$

Definition 1.3. Interior Point

 $\Omega \in \mathbb{C}, z_0$ an **interior point** of Ω if $\exists r > 0$ s.t $D_r(z_0) \subset \Omega$

Definition 1.4.

Set Ω open if $\forall \omega \in \Omega$, ω an interior point

Definition 1.5.

Set Ω closed if $\Omega^C = \mathbb{C} \setminus \Omega$ open

Closed \iff contains all its limit points.

Definition 1.6. Closure

Closure of $\Omega = \bar{\Omega} = \{\Omega \cup \text{ limit points of } \Omega\}$

Definition 1.7. Boundary

Boundary of $\Omega = \underbrace{\bar{\Omega}}_{\text{Closure}} \setminus \underbrace{\partial \Omega}_{\text{interior}}$

Definition 1.8. Bounded

 Ω bounded if $\exists M > 0$ s.t $|\omega| < M \ \forall \omega \in \Omega$

Definition 1.9. Diameter

$$diam(\Omega) = \sup_{z,w \in \Omega} |z - w|$$

Definition 1.10. Compact

 Ω compact if closed and bounded

Theorem 1.1.

 Ω compact \iff every sequence $\{z_n\} \subset \Omega$ has a subsequence convergent in Ω \iff every open covering of Ω has a finite subcover

Theorem 1.2.

if $\Omega_1 \supset \Omega_2 \supset \dots \cap \Omega_n \supset \dots$ a sequence of non-empty compact sets s.t $\lim_{n\to\infty} diam(\Omega_n) \to 0$

$$\implies \exists! w \in \mathbb{C}, \ w \in \Omega_n \ \forall n$$

Definition 1.11. Connected

Open set Ω connected \iff any 2 points in Ω joined by curve γ entirely contained in Ω

1.3 Complex Functions

Definition 1.12.

$$\Omega_1,\Omega_2\subset\mathbb{C}$$

$$f:\Omega_1\to\Omega_2$$

a mapping $\Omega_1 \to \Omega_2$ if

$$\forall z = x + iy \in \Omega_1$$

$$\exists! w = u + iv \in \Omega_2, \ s.t \ w = f(z)$$

We have w = f(z) = u(x, y) + iv(x, y) $u, v : \mathbb{R}^2 \to \mathbb{R}$

Definition 1.13.

f defined on $\Omega_1 \subset \mathbb{C}$ f continuous at $z_0 \in \Omega$ if

$$\forall \epsilon > 0 \exists \delta > 0 \ s.t \ |z - z_0| < \delta \implies |f(z) - f(z_0)| < \epsilon$$

f continuous if continuous $\forall z \in \Omega$

1.4 Complex Derivative

Definition 1.14. Holomorphic

 $\Omega_1, \Omega_2 \subset \mathbb{C}$ open sets

$$f:\Omega_1\to\Omega_2$$

Say f differentiable/holomorphic at z_0 if

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = f'(z_0) \text{ exists}$$

f holomorphic on open set Ω if holomorphic at every point of Ω

Lemma

f holomorphic at $z_0 \in \Omega \iff \exists \ a \in \mathbb{C} \text{ s.t}$

$$f(z_0 + h) - f(z_0) - ah = h\Psi(h)$$

For Ψ a function defined for all small h with $\lim_{h\to 0} \Psi(h) = 0$, $a = f'(z_0)$

Corollary

f holomorphic $\implies f$ continuous

Proposition

f, g holomorphic in $\Omega \implies$

(i)
$$(f+g)' = f' + g'$$

(ii)
$$(fg)' = f'g + fg'$$

(iii)
$$g(z_0) \neq 0 \implies (\frac{f}{g})' = \frac{f'g - fg'}{g^2}$$

$$\begin{array}{ll} \text{(iv)} \ \ f:\Omega \to V, \ \ g:\to \mathbb{C} \ \ \text{holomorphic} \\ \Longrightarrow \ \ [g\circ f(z)]' = g'(f(z))f'(z) \ \ \forall z \in \Omega \end{array}$$

1.5 Cauchy-Riemann equations

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} \qquad \frac{\partial u}{\partial y} &= -\frac{\partial v}{\partial x} \\ u_x' &= v_y' \qquad u_y' &= -v_x' \end{split}$$

Definition 1.15.

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) \qquad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right)$$

Theorem 1.3.

$$f(z) = u(x, y) + iv(x, y)$$
 $z = x + iy$
f holomorphic at $z_0 \implies$

$$\frac{\partial f}{\partial \bar{z}}(z_0) = 0 \qquad f'(z_0) = \frac{\partial f}{\partial z}(z_0) = 2\frac{\partial u}{\partial z}(z_0)$$

Theorem 1.4.

f = u + iv complex-valued function on open set Ω u, v continuously differentiable, satisfying Cauchy-Riemann equations $\implies f$ holomorphic on Ω with $f'(z) = \frac{\partial f}{\partial z}(z)$

1.6 Cauchy-Riemann equations in polar

For f = u + iv we have

$$u_r' = \frac{1}{r}v_\theta' \qquad v_r' = -\frac{1}{r}u_\theta'$$

1.7 Power Series

Definition 1.16. Power Series

Of the form

$$\sum_{n=0}^{\infty} a_n z^n \quad a_n \in \mathbb{C}$$

Series converge at z if $S_N(z) = \sum_{n=0}^N a_n z^n$ has limit $S(z) = \lim_{n \to \infty} S_N(z)$

Theorem 1.5.

Given power series $\sum_{n=0}^{\infty} a_n z^n$, $\exists 0 \leq R \leq \infty$ s.t

- (i) if $|z| < R \implies$ series converges absolutely
- (ii) $|z| > R \implies$ series diverges

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{1/n} \qquad \text{(Radius of Convergence)}$$

20

Theorem 1.6.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

Defines holomorphic function on its disc of convergence. With

$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

with same radius of convergence as f.

Power series infinitely differentiable in the disc of convergence, achieved through term-wise differentiation.

Definition 1.17. Entire

A function said to be **entire** if holomorphic $\forall z \in \mathbb{C}$

1.8 Elementary functions

1.8.1 Exponential function

$$e^z = e^x \cos y + ie^x \sin y$$
 $z = x + iy \in \mathbb{C}$

Properties

- (i) $y = 0 \implies e^z = e^x$
- (ii) e^z is entire
- (iii) g(z) holomorphic $\Rightarrow \frac{\partial}{\partial z} e^{g(z)} = e^{g(z)} g'(z)$
- (iv) $z_1, z_2 \in \mathbb{C}$ $e^{z_1+z_2} = e^{z_1}e^{z_2}$
- (v) $|e^z| = |e^x||e^{iy}| = e^x \sqrt{\cos^2 x + \sin^2(x)} = e^x$
- (vi) $(e^{iy})^n = e^{iny}$
- (vii) $arg(z) = \arctan(y/x)$ $arg(e^z) = y + 2\pi k, \quad k \in \mathbb{Z}$

1.8.2 Trigonometric functions

Definition 1.18.

$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz})$$
 $\sin z = \frac{1}{2i} (e^{iz} - e^{-iz})$

Properties

- (i) $\sin z$, $\cos z$ are entire
- (ii) $\frac{\partial}{\partial z}\sin z = \cos z$ $\frac{\partial}{\partial z}\cos z = -\sin z$
- (iii) $\sin^2 z + \cos^2 z = 1$
- (iv) $\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2$ $\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$

1.8.3 Logarithmic Functions

Definition 1.19.

$$log(z) = ln|z| + i\arg(z) = log(r) + i(\theta + 2\pi k)$$
 $z \neq 0, k \in \mathbb{Z}$

 $\log(z)$ a multi-valued function

Definition 1.20.

 $Log(z) = \ln|z| + i Arg(z)$ for Arg(z) principal value $\in [-\pi, \pi]$

Properties

- (i) $\log(z_1 z_2) = \log(z_1) + \log(z_2)$
- (ii) Log(z) holomorphic in $\mathbb{C}\setminus\{(\infty,0]\}$

1.8.4 Powers

Definition 1.21.

 $\alpha \in \mathbb{C}$ define $z^{\alpha} := e^{\alpha \log(z)}$ as a multi-valued function

Definition 1.22.

Principal value of z^{α} , $\alpha \in \mathbb{C}$ as $z^{\alpha} = e^{\alpha \operatorname{Log}(z)}$ **Properties**

(i)
$$z^{a_1}z^{a_2} = z^{a_1+a_2}$$

2 Cauchy's Integral Formula

2.1 Parametrised Curve

Definition 2.1.

Parametrised curve a function $z(t): [a,b] \to \mathbb{C}$

Smooth if z'(t) exists and is continuous on [a,b] with $z'(t) \neq 0 \forall t \in [a,b]$ Taking one-sided limits for z'(a), z'(b).

Piecewise-smooth if z continuous on [a, b] and if \exists finitely many points $a = a_0 < a_1 < \cdots < a_n = b$ s.t z(t) smooth on $[a_k, a_{k+1}]$

$$z:[a,b]\to\mathbb{C}$$
 $\tilde{z}:[c,d]\to\mathbb{C}$

equivalent if \exists continuously differentiable bijection $s \to t(s)$ from [c,d] to [a,b] s.t t'(s) > 0 and $\tilde{z}(s) = z(t(s)) = z(t(s))$

Definition 2.2. Path Integrals

Path integral given smooth $\gamma \subset \mathbb{C}$ parametrised by $z:[a,b] \to \mathbb{C}$.

f continuous function on γ

$$\int_{\mathcal{C}} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt$$

independent of choice of parametrization.

If γ piece-wise smooth

$$\int_{\gamma} f(z)dz = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} f(z(t))z'(t)dt$$

Definition 2.3.

Define curve γ^- obtained by reversing orientation of γ

Can take $z^-: [a,b] \to \mathbb{C}$ s.t $z^-(t) = z(b+a-t)$

Definition 2.4. Closed Curve

Smooth/piece-wise smooth curve closed if z(a) = z(b) for any parametrisation.

Definition 2.5. Simple Curve

Smooth/piece-wise smooth curve simple if not self-intersecting

$$z(t) \neq z(s)$$
 unless $s = t \in [a, b]$

2.2 Integration along Curves

Definition 2.6. Length of smooth curve

$$Length(\gamma) = \int_a^b |z'(t)| dt = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt$$

Theorem 2.1. Properties of Integration

- (i) $\int_{\gamma} af(z) + bg(z)dz = a \int_{\gamma} f(z)dz + b \int_{\gamma} g(z)dz$
- (ii) γ^- reverse orientation of γ

$$\implies \int_{\gamma} f(z)dz = -\int_{\gamma^{-}} f(z)dz$$

(iii) M-L inequality

$$\left| \int_{\gamma} f(z) dz \right| \leq \sup_{z \in \gamma} |f(z)| \cdot \operatorname{length}(\gamma) = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$

2.3 Primitive Functions

Definition 2.7. Primitive

A **Primitive** for f on $\Omega \subset \mathbb{C}$ a function F holomorphic on Ω s.t $F'(z) = f(z) \ \forall z \in \Omega$

Theorem 2.2.

Continuous function f with primitive F in open set Ω and curve γ in Ω from $w_1 \to w_2$

$$\int_{\gamma} f(z)dz = F(w_2) - F(w_1)$$

Corollary

 γ closed curve in open set Ω f continuous and has primitive in Ω

$$\oint_{\gamma} f(z)dz = 0$$

Corollary

 $Omega \text{ with } f' = 0 \implies f \text{ constant}$

2.4 Properties of Holomorphic functions

Theorem 2.3.

Let $\Omega \subset \mathbb{C}$ open set

 $T \subset \Omega$ a triangle whose interior contained in Ω

$$\implies \oint_T f(z)dz = 0$$

for f holomorphic in Ω

Corollary

f holomorphic on open set Ω containing rectangle R in its interior

$$\implies \oint_{R} f(z)dz = 0$$

2.5 Local existence of primitives and Cauch-Goursat theorem in a disc

Theorem 2.4.

Holomorphic functions in open disc have a primitive in that disc

Corollary - (Cauchy-Goursat Theorem for a disc)

f holomorphic in disc $\implies \oint_{\gamma} f(z)dz = 0$

for any closed curve γ in that disc

Corollary

Suppose f holomorphic in open set containing circle C and its interior

$$\implies \oint_C f(z)dz = 0$$

2.6 Homotopies and simply connected domains

Definition 2.8. Homotopic

 γ_0, γ_1 homotopic in Ω if $\forall s \in [0, 1], \exists$ curve $\gamma \subset \Omega$ with $\gamma_s(t)$ s.t

$$\gamma_s(a) = \alpha \qquad \gamma_s(b) = \beta$$

 $\forall t \in [a,b]: \gamma_s(t)|_{s=0} = \gamma_0(t) \quad \gamma_s(t)|_{s=1} = \gamma_1(t)$ With $\gamma_s(t)$ jointly continuous in $s \in [0,1]$ and $t \in [a,b]$

Theorem 2.5.

 γ_0, γ_1 homotopic, f holomorphic

$$\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz$$

Definition 2.9.

Open set $\Omega \subset \mathbb{C}$ simply connected if any 2 pair of curves in Ω with shared end-points homotopic.

Theorem 2.6.

Any holomorphic function in simply connected domain has a primitive.

Corollary - (Cauchy-Goursat Theorem)

f holomorphic in simply connected open set Ω

$$\implies \oint_{\gamma} f(z)dz = 0$$

for any closed piecewise-smooth curve $\gamma \subset \Omega$

Theorem 2.7. (Deformation Theorem)

 γ_1 and γ_2 , 2 simple closed piecewise-smooth curves with γ_2 lying wholly inside γ_1 f holomorphic in domain containing region between γ_1, γ_2

$$\implies \oint_{\gamma_1} f(z)dz = \oint_{\gamma_2} f(z)dz$$

2.7 Cauchy's Integral Formulae

Theorem 2.8. (Cauchy's Integral Formula)

f holomorphic inside and on simple closed piecewise-smooth curve γ $\forall z_0$ interior $to\gamma$

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz$$

Theorem 2.9. (Generalised cauchy's integral formula)

 $\begin{array}{l} f \text{ holomorphic in open set } \Omega. \\ \gamma \text{ simple,closed piecewise-smooth } \Omega \\ \forall z \text{ interior to } \gamma \end{array}$

$$\implies \frac{d^n f(z)}{dz^n} = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(t)}{(t-z)^{n+1}} dt$$

Corollary

f holomorphic \implies all its derivatives are too.

3 Applications of Cauchy's integral formula

Corollary - (Liouville's theorem)

if an entire function bounded $\implies f$ constant

Theorem 3.1. (Fundamental theorem of algebra)

Every polynomial of degree > 0 with complex coefficients has at least one zero.

Corollary Every polynomial $P(z) = a_n z^n + \cdots + a_0$ of degree $n \ge 1$ has precisely n roots in C

Theorem 3.2. (Morera's theorem)

Suppose f continuous in open disc D s.t \forall triangle $T \subset D$

$$\int_T f(z)dz = 0 \implies f \text{ holomorphic}$$

3.1 Taylor + Maclaurin Series

Theorem 3.3. (Taylor's expansion theorem

f holomorphic in Ω , $z_0 \in \Omega$

$$\implies f(z) = f(z_0) = f'(z_0)(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots$$

Valid in all circles $\{z : |z - z_0| < r\} \subset \Omega$

Definition 3.1. (Taylor Series)

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots = \sum_{i=0}^{\infty} \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n$$

Definition 3.2. (Maclaurin Series)

Taylor series for $z_0 = 0$

$$f(z) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} z^n$$

3.2 Sequences of holomorphic functions

Theorem 3.4.

if $\{f_n\}_{n=1}^{\infty}$ a sequence of holomorphic functions converging uniformly to f in every compact subset of $\Omega \implies f$ holomorphic in Ω

Corollary

$$F(z) = \sum_{n=1}^{\infty} f_n(z)$$

 f_n holomorphic in $\Omega \subset \mathbb{C}$

Given series converges uniformly in compact subsets of $\Omega \implies F(z)$ holomorphic

Theorem 3.5.

Sequence $\{f_n\}_{n=1}^{\infty} \xrightarrow[unif]{} f$ in every compact subset of $\Omega \implies$ sequence $\{f'_n\}_{n=1}^{\infty} \xrightarrow[unif]{} f'$ in every compact subset of Ω

3.3 Holomorphic functions defined in terms of integrals

Theorem 3.6.

Let F(z,s) defined for $(z,s) \in \Omega \times [0,1]$

 $\Omega \subset \mathbb{C}$ open set. Given F satisfies

- (i) F(z,s) holomorphic in $\Omega \forall s$
- (ii) F continuous on $\Omega \times [0,1]$

 $\implies f(z) := \int_0^1 F(z,s)ds$ holomorphic

3.4 Schwarz reflection principle

Definition 3.3.

 $\Omega \subset \mathbb{C}$ open and **symmetric** w.r.t real line

$$z \in \Omega \iff \bar{z} \in \Omega$$

Definition 3.4.

$$\Omega^+ = \{ z \in \Omega : Im(z) > 0 \} \quad \Omega^- = \{ z \in \Omega : Im(z) < 0 \} \quad I = \{ z \in \Omega : Im(z) = 0 \}$$

Theorem 3.7. (Symmetry Principle)

 f^+, f^- holomorphic in Ω^+, Ω^- respectively. Extend continuously to I s.t $f^+(x) = f^-(x) \quad \forall x \in I$

$$f(z) := \begin{cases} f^+(z), & z \in \Omega^+ \\ f^+(z) = f^-(z), & z \in I \\ f^-(z), & z \in \Omega^- \end{cases}$$
holomorphic

Theorem 3.8. (Schwarz relfection principle)

f holomorphic in Ω^+ extend continuously to I s.t f real-valued on I \Longrightarrow $\exists F$ holomorphic in Ω s.t $F|_{\Omega^+}=f$

4 Meromorphic Functions

4.1 Complex Logarithm

Theorem 4.1.

 $\begin{array}{l} \Omega \text{ simply connected, } 1 \in \Omega, 0 \not \in \Omega \\ \Longrightarrow \text{ in } \Omega \text{ there is a branch of logarithm} \end{array}$

$$F(z) = \log_{\Omega}(z)$$

Satisfying

- (i) F holomorphic in Ω
- (ii) $e^{F(z)} = z \ \forall z \in \Omega$
- (iii) $F(r) = \log(r), r \in \mathbb{R}$ close to 1

Theorem 4.2.

Holomorphic f has 0 of order m at $z_0 \iff$ can be written in form

$$f(z) = (z - z_0)^m g(z)$$

g holomorphic at $z_0, g(z_0) \neq 0$

Corollary

Os of non-constant holomorphic function are isolated. Every zero has neighbourhood, inside of which it is the only 0

4.2 Laurent Series

Definition 4.1.

Laurent Series for f at z_0 , where series converge

$$f(z) = \sum_{-\infty}^{\infty} a_n (z - z_0)^n = \dots + a_{-2} (z - z_0)^{-2} + a_{-1} (z - z_0)^{-1} + a_0 + a_1 (z - z_0)^1 + a_2 (z - z_0)^2 + \dots$$

Theorem 4.3. (Laurent Expansion theorem)

f holomorphic in an unulus $D = \{z: r < |z-z_0| < R\}$ $\implies f(z)$ expressed in form $f(z) = \sum_{-\infty}^{\infty} a_n (z-z_0)^n$

$$a_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\eta)}{(\eta - z_0)^{n+1}} d\eta$$

 γ simple, closed piecewise smooth curve in D with z_0 in its interior.

4.3 Poles of holomorphic functions

Definition 4.2.

 z_0 a singularity of complex function f

if f not holomorphic at z_0 , but every neighbourhood of z_0 has at least 1 holomorphic point.

Definition 4.3.

Singularity z_0 is **isolated** if \exists neighbourhood of z_0 , where it is the only singularity.

Definition 4.4.

f holomorphic with isolated singularity z_0

Considering Laurent expansion valid in some annulus

$$f(z) = \sum_{-\infty}^{\infty} a_n (z - z_0)^n$$

==

- $a_n = 0 \ \forall n < 0 \implies z_0$ a removable singularity
- $a_n = 0 \forall n < -m, m \in \mathbb{Z}^+, a_{-m} \neq 0 \implies z_0$ pole of order m
- $a_n \neq 0$ for infinitely many negative $n \implies z_0$ a essential singularity

Theorem 4.4.

f has pole of order m at $z_0 \iff$ written in form

$$f(z) = \frac{g(z)}{(z - z_0)^m}$$

g holomorphic at $z_0, g(z_0) \neq 0$

4.4 Residue Theory

Definition 4.5.

Let $f(z) = \sum_{-\infty}^{\infty} a_n (z - z_0)^n$ for $0 < |z - z_0| < R$ the Laurent series for f at z_0 Residue of f at z_0 is

$$\implies Res[f, z_0] - a_{-1}$$

Theorem 4.5.

 $\gamma \subset \{z: 0 < |z-z_0| < R\}$ simple closed piecewise-smooth curve containing z_0

$$\implies Res[f, z_0] = \frac{1}{2\pi i} \oint_{\gamma} f(z) dz$$

Theorem 4.6.

f holomorphic function inside and on simple closed piecewise-smooth curve γ except at the singularities z_1, \ldots, z_n in its interior

$$\implies \oint_{\gamma} f(z)dz = 2\pi i \sum_{j=1}^{n} Res[f, z_j]$$

4.5 The argument principle

Theorem 4.7. (Princple of argument)

f holomorphic in open Ω , except for finitely many poles.

 γ simple closed piecewise-smooth curve in Ω not passing through poles or zeroes of f

$$\implies \oint_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i (N - P)$$

$$N = \sum order(zeroes)$$
 $P = \sum order(poles)$

Theorem 4.8. (Rouche's Theorem)

f,g holomorphic in open Ω

 $\gamma \subset \Omega$ simple closed piecewise-smooth curve with interior containing only points of Ω

if
$$|g(z)| < |f(z)|, z \in \gamma$$

$$\implies \sum_{0s \text{ of } f+g \text{ in } \gamma} order(zeros) = \sum_{0s \text{ of } f \text{ in } \gamma} order(zeros)$$

Definition 4.6.

Mapping **open** if maps open sets \mapsto open sets

Theorem 4.9. (Open mapping theorem)

if f holomorphic and non-constant in open $\Omega\subset\mathbb{C}$

$$\implies f$$
 open

Remark

 $f \text{ open} \implies |f| \text{ open}$

Theorem 4.10. (Max modulus principle)

f non-constant holomorphic in open $\Omega \subset \mathbb{C}$

 $\implies f$ cannot attain maximum in Ω

Corollary

 Ω open with closure $\bar{\Omega}$ compact

f holomorphic on Ω and continuous on Ω

$$\sup_{z \in \Omega} |f(z)| \le \sup_{z \in Omega \setminus \Omega} |f(z)|$$

4.6 Evaluation of definite integrals

5 Harmonic Functions

5.1 Harmonic functions

Definition 5.1.

$$\varphi = \varphi(x,y) : \mathbb{R}^2 \to \mathbb{R}, \ x,y \in \mathbb{R}$$

 φ harmonic in open $\Omega \subset \mathbb{R}^2$ if

$$\underbrace{\Delta \varphi(x,y)}_{\text{laplace operator}} := \frac{\partial^2 \varphi}{\partial x^2}(x,y) + \frac{\partial^2 \varphi}{\partial y^2}(x,y)$$
$$:= \varphi''_{xx}(x,y) + \varphi''_{yy}(x,y)$$
$$:= 0$$

Theorem 5.1.

f(z)=u(x,y)+iv(x,y) holomorphic in open $\Omega\subset\mathbb{C}$ $\Longrightarrow u,v$ harmonic

Theorem 5.2. (Harmonic conjugate)

u harmonic in open disc $D \subset \mathbb{C}$

 $\implies \exists$ harmonic v s.t f = u + iv holomorphic in D

v the harmonic conjugate to u

Remark

In simply connected domain $\Omega \subset \mathbb{R}^2$ every harmonic function u has harmonic conjugate v s.t

$$v(x,y) = \int_{\gamma} \left(-\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy \right)$$

Integral independent of path, by Green's theorem as u harmonic and Ω simply connected.

5.2 Properties of real + imaginary parts of holomorphic function

Theorem 5.3.

Assume f = u + iv holomorphic on open connected $\Omega \subset \mathbb{C}$

$$u(x,y) = C (1)$$

$$v(x,y) = K (2)$$

$$C, K \in \mathbb{R}$$
 (3)

If (1) and (2) have same solution (x_0, y_0) and $f'(x_0 + iy_0) \neq 0$ \implies curve defined by (1) orthogonal to curve defined by (2)

5.3 Preservation of angles

Definition 5.2.

Consider smooth curve $\gamma \subset \mathbb{C}$

$$z(t) = x(t) + iy(t)$$
 $t \in [a, b]$

 $\forall t_0 \in [a, b]$ we have direction vector

$$L_{t_0} = \{ z(t_0) + tz'(t_0) : t \in \mathbb{R} \}$$

= $\{ x(t_0) = tx'(t_0 + i(y(t_0) + ty'(t_0)) : t \in \mathbb{R} \}$

For γ_1, γ_2 curves parameterised by functions $z_1(t), z_2(t), t \in [0, 1]$ s.t $z_1(0) = z_2(0)$

Define angle between γ_1, γ_2 as angle between tangents

$$\arg z_2'(0) - \arg z_1'(0)$$

Theorem 5.4. (Angle preservation theorem)

f holomorphic in open $\Omega \subset \mathbb{C}$

Given γ_1, γ_2 inside Ω , parameterised by $z_1(t), z_2(t)$

Take $z_0 = z_1(0) = z_2(0)$ with $z'_1(0), z'_2(0), f'(z_0) \neq 0$

$$\underbrace{\arg z_2'(t) - \arg z_1'(t)}_{\text{angle between } z_1(0), z_2(0)}|_{t=0} = \underbrace{\arg f(z_2'(t)) - \arg f(z_1'(t))}_{\text{angle between } f(z_1(0)), f(z_2(0))}|_{t=0} (\mod 2\pi)$$

Definition 5.3.

 Ω open $\subset \mathbb{C}$

 $f:\Omega\to\mathbb{C}$ conformal if holomorphic in Ω and if $f'(z)\neq 0 \forall z\in\Omega$

Conformal mappings preserve angles.

Definition 5.4.

Holomorphic function a local injection on open $\Omega \subset \mathbb{C}$ if

$$\forall z_0 \in \Omega, \exists D = \{z : |z - z_0| < r\} \subset \Omega \text{ s.t } f : D \to f(D) \text{ an injection}$$

Theorem 5.5.

 $f:\Omega\to\mathbb{C}$ local injection and holomorphic

$$\implies f'(z) \neq 0 \quad \forall z \in \Omega$$

Inverse of f defined on its range holomorphic

⇒ inverse of conformal mapping also holomorphic

5.4 Möbius Transformations

Definition 5.5.

Mobius Transformation / Bilinear transformation a map

$$f(z) = \frac{az+b}{cz+d}$$
 $a,b,c,d \in \mathbb{C}, ad-bc \neq 0$

Remark

Mobius Transformations holomorphic except for simple pole $z=-\frac{d}{c}$ with derivative

$$f'(z) = \frac{ad - bc}{(cz + b)^2}$$

 \implies mapping conformal for $\mathbb{C}\setminus\{-\frac{d}{c}\}$

Theorem 5.6.

- (i) Inverse of mobius transformation a mobius transformation
- (ii) Composition of mobius transformations a mobius transformations

Corresponding to matrix multiplication and inverses

Definition 5.6. (Special/Simple mobius tranformations)

- (M1) f(z) = az Scaling and rotation by a
- (M2) f(z) = z + b Translation by b
- (M3) $f(z) = \frac{1}{z}$ Inverse and reflection w.r.t real axis

Theorem 5.7.

Every mobius transformations a composition of M1, M2, M3

Corollary

Mobius transformations:

 $circles \mapsto circles$ interior points \mapsto interior points

Straight lines, considered to be circles of infinite radius

5.5 Cross-ratios Mobius Transformations

Theorem 5.8.

w = f(z) a Mobius Transformation s.t distinct $(z_1, z_2, z_3) \mapsto (w_1, w_2, w_3)$

$$\implies \left(\frac{z-z_1}{z-z_3}\right)\left(\frac{z_2-z_3}{z_2-z_1}\right) = \left(\frac{w-w_1}{w-z_3}\right)\left(\frac{w_2-w_3}{w_2-w_1}\right) \quad \forall z$$

5.6 Conformal mapping of half-plane to unit disc

Theorem 5.9.

5.7 Riemann mapping theorem

Definition 5.7.

 $\Omega \subset \mathbb{C}$ proper if non-empty and $\Omega \neq \mathbb{C}$

Theorem 5.10.

 Ω proper and simply connected

if
$$z_0 \in \Omega \implies \exists ! \text{ conformal } f: \Omega \to \mathbb{D} \text{ s.t } f(z_0) = 0 \text{ and } f'(z_0) > 0$$

Corollary

Any 2 simply connected open subsets in \mathbb{C} conformally equivalent.