
MATH50001 COMPLEX ANALYSIS 2021
LECTURES

Lecture 1

Section: Syllabus & Historical Remarks

• Holomorphic Functions: Definition using derivative, Cauchy-Riemann

equations, Polynomials, Power series.

• Cauchys Integral Formula: Complex integration along curves, Gour-

sats theorem, Local existence of primitives and Cauchys theorem in a disc,

Evaluation of some integrals, Homotopies and simply connected domains,

Cauchys integral formulas.

• Applications of Cauchys integral formula: Moreras theorem, Sequences of

holomorphic functions, Holomorphic functions defined in terms of integrals,

Schwarz reflection principle.

• Meromorphic Functions: Zeros and poles. Laurent series. The residue

formula, Singularities and meromorphic functions, The argument principle

and applications, The complex logarithm.

• Harmonic functions: Definition, and basic properties, Maximum modu-

lus principle. Conformal Mappings: Definitions, Preservation of Angles,

Statement of the Riemann mapping theorem, Rational functions, Möbius

transformations.

Course website: http://www2.imperial.ac.uk/⇠alaptev/CA21
see also Blackboard
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Section: Complex numbers

The complex number i =
p
-1 ie associated with solutions of the equation

x2 + 1 = 0

that does not have real solutions. However, historically complex numbers

came through the cubic equation

x3 - ax- b = 0.

In 1515 Scipione del Ferro (1465-1526, Italian) found but not published the

solution

x =
p
3
b

2
+

r
b2

4
-

a3

27
+
p
3
b

2
-

r
b2

4
-

a3

27

It was interesting that even if
b2

4
- a3

27
< 0 the equation has real solutions for

a, b real. This formula was published by Girolamo Cardano (1501-15-76,

Italian) in 1545.

In 1572, Rafael Bombelli (1526-1572, Italian) published a book which spelled

out rules of arithmetic for complex numbers and used them in Cardanos

formula for finding real solutions of cubics.

Key later work is by John Wallis (1616 - 1703, English) and Leonhard

Euler (1707-1783, Swiss). In particular, Euler clarified complex roots of

unity and found the multiple roots. He used complex numbers extensively.

He introduced i as the symbol for
p
-1 and linked the exponential and

trigonometric functions in the famous formula

eit = cos t+ i sin t.

Carl Friedrich Gauss (1777-1855, German), who gave a proof of the Funda-

mental Theorem of Algebra in 1799.

It took almost another century before mathematicians as a community fully

accepted complex numbers.
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The founding fathers of complex analysis are Augustin-Louis Cauchy, Karl

Weierstrass and Bernhard Riemann.

• To A.-L. Cauchy - the central aspect is the di↵erential and integral

calculus of complex-valued functions of a complex variable. Here the fun-

damentals are the Cauchy integral theorem and Cauchy integral formula

Augustin-Louis Cauchy (1789 -1857) - French

• To K. Weierstrass - sums and products and especially power series are

the central object.

Karl Weierstrass (1815-1897) - German

• To B. Riemann - conformal maps and associated geometry.

Bernhard Riemann (1826-1866) - German



4

Modern state of art:

• The Mandelbrot set, Complex dynamics:

Benoit Mandelbrot, (1924, Warszawa, - 2010, Cambridge)

The Mandelbrot set is the set of complex numbers ⌘ for which the function

f⌘(z) = z2 + ⌘

does not diverge when iterating from z = 0 so that the sequence

f⌘(0), f⌘(f⌘(0)), f⌘(f⌘(f⌘(0))), . . .

remains bounded

• Riemann Hypothesis is still open (1859)

⇣(z) =
1X

n=1

1

nz
=

Y

pprime

1

1- p-z
.

This series converges if Re z > 1.

If z is a complex number then in the above sum there some cancellation. In

particular the Riemann Hypothesis states

⇣(z) = 0 =) Re z = 1/2.
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Section: Basic properties

A complex number takes the form z = x + iy, where x and y are real,

x, y 2 R, and i is an imaginary number that satisfies i2 = -1. We call x
and y the real part and the imaginary part of z, respectively, and we write

x = Re (z) and y = Im (z).

The real numbers are complex numbers with zero imaginary parts. A com-

plex number with zero real part is said to be purely imaginary.

The complex conjugate of z = x+ iy is defined by

z̄ = x- iy.

The complex numbers can be visualised as the usual Euclidean plane:

z = x+ iy 2 C is identified with the point (x, y) 2 R2
.

• in this case 0 corresponds to the origin,

• i corresponds to (0, 1).
• the x and y axis of R2

are called the real axis and imaginary axis respec-

tively.

• Polar coordinates.

z = x+ iy, r = |z| =
p

x2 + y2 =
p
z · z̄,

x = r cos ✓, y = r sin ✓,

where

cos ✓ =
x

r
sin ✓ =

y

r
.

and thus

z = r(cos ✓+ i sin ✓).
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Example. Let z = 1- i. Then r =
p
2 and sin ✓ = -1/

p
2. Then

✓ = -
⇡

4
+ 2⇡k, k = 0,±1,±2, . . . .

So arg z = -⇡/4+ 2⇡k.

Definition. Arg z = ✓ such that -⇡ < ✓  ⇡ is called the Principal value of

the argument of z.

Example.

Arg (1- i) = -
⇡

4
.

Theorem. Let z1 = r1(cos✓1 + i sin ✓1) and z2 = r2(cos✓2 + i sin ✓2). Then

z1 · z2 = r1r2(cos(✓1 + ✓2) + i sin(✓1 + ✓2)).

Proof. Use elementary trigonometric formulae.

Corollary. ( De Moivres formula)

zn = rn(cosn ✓+ i sinn ✓), n = 1, 2, 3, . . . .

Abraham De Moivres (French, 1667-1754)
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Remark. Theorem implies

arg z1 + arg z2 = arg (z1 · z2),
however,

Arg z1 + Arg z2 6= Arg (z1 · z2).
WHY ???

Section: Sets in the complex plane

Definition. Let z0 2 C and r > 0. Define the open disc Dr(z0)

Dr(z0) = {z 2 C : |z- z0| < r}.

The boundary of the open or closed disc is the circle

Cr(z0) = {z 2 C : |z- z0| = r}.

The unit disc is the disc centred at the origin and of radius one

D = {z 2 C : |z| < 1}.

Given a set ⌦ ⇢ C, a point z0 is an interior point of ⌦ if there exists r > 0
such that Dr(z0) ⇢ ⌦. The interior of ⌦ consists of all its interior points.

Definition. A set ⌦ is open if every point in that set is an interior point of

⌦. This definition coincides precisely with the definition of an open set in

R2
.

Definition. A set ⌦ is closed if its complement ⌦c = C \⌦ is open.

A set is closed if and only if it contains all its limit points. The closure of

any set ⌦ is the union of ⌦ and its limit points, and is often denoted by ⌦.

Definition. The boundary of a set ⌦ is equal to its closure minus its interior,

and is often denoted by @⌦.

Definition. A set ⌦ is bounded if there exists M > 0 such that |z| < M
whenever z 2 ⌦.

Definition. If ⌦ is bounded, we define its diameter by

diam (⌦) = sup
z,w2⌦

|z-w|.

Definition. A set ⌦ is said to be compact if it is closed and bounded.

Arguing as in the case of real variables, one can prove the following.

Theorem. The set ⌦ ⇢ C is compact if and only if every sequence {zn} ⇢ ⌦
has a subsequence that converges to a point in ⌦.
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An open covering of ⌦ is a family of open sets {U↵} (not necessarily count-

able) such that

⌦ ⇢ [↵U↵.

In analogy with the situation in R2
, we have the following equivalent for-

mulation of compactness.

Theorem. A set ⌦ is compact if and only if every open covering of ⌦ has

a finite subcovering.

Another property of compactness is that of “nested sets”.

Theorem. If ⌦1 � ⌦2 � · · · � ⌦n . . . is a sequence of non-empty compact

sets in C with the property that diam (⌦n) ! 0 as n ! 1, then there

exists a unique point w 2 C such that w 2 ⌦n for all n.

Proof. Choose a point zn in each ⌦n. The condition diam (⌦n) ! 0 says

that {zn} is a Cauchy sequence, therefore this sequence converges to a limit

that we call w. Since each set ⌦n is compact we must have w 2 ⌦n for all

n. Finally, w is the unique point satisfying this property, for otherwise, if

w 0
satisfied the same property with w 0 6= w we would have |w 0 - w| > 0

and the condition diam (⌦n) ! 0 would be violated.

Definition. An open set ⌦ is connected if and only if any two points in ⌦
can be joined by a curve � entirely contained in ⌦.
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Section: Complex functions

Definition. Let ⌦1,⌦2 ⇢ C.
f : ⌦1 ! ⌦2

is said to be a mapping from ⌦1 to ⌦2 if for any z = x + iy 2 ⌦1 there

exists only one complex number w = u+ iv 2 ⌦2 such that

w = f(z).

We use notations:

w = f(z) = u(x, y) + iv(x, y),

where u and v are two real functions of two real variables.

Example. Let w = f(z) = z
2 = x

2 - y
2 + i2xy, z 2 C. Then

u(x, y) = x
2 - y

2
and v(x, y) = 2xy.

Example. Let w = f(z) = 1/z = z̄/|z|2, z 2 C \ {0}. Then

u(x, y) =
x

x2 + y2
and v(x, y) = -

y

x2 + y2
.

Example. Möbius transformation

w = f(z) =
az+ b

cz+ d
, a, b, c, d 2 C, cz+ d 6= 0.

Definition. Let f be a function defined on a set ⌦ ⇢ C. We say that f is

continuous at the point z0 2 ⌦ if for every " > 0 there exists � > 0 such

that whenever z 2 ⌦ and |z- z0| < � then |f(z)- f(z0)| < ".

Definition. The function f is said to be continuous on ⌦ if it is continuous

at every point of ⌦.

Section: Complex derivative

1
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Definition. Let ⌦1,⌦2 ⇢ C be open sets and let f : ⌦1 ! ⌦2. We say that

f is di↵erentiable (holomorphic) at z0 2 ⌦1 if the quotient

f(z0 + h)- f(z0)

h

converges to a limit when h ! 0. Here h 2 C, h 6= 0 and z0 +h 2 ⌦1. The

limit of this quotient, when it exists, is denoted by f
0(z0), and is called the

derivative of f at z0:

f
0(z0) = lim

h!0

f(z0 + h)- f(z0)

h
.

This means that for any " > 0 there is � > 0 such that as soon |h| < � we

have ����
f(z0 + h)- f(z0)

h
- f

0(z0)

���� < ".

f
0(z0) = lim

h!0

f(z0 + h)- f(z0)

h
.

It should be emphasised that in the above limit that h = h1 + ih2 2 C is a

complex number that may approach 0 from any direction.

Remark. The word ”holomorphic” was introduced by two of Cauchy’s stu-

dents, Briot (1817-1882) and Bouquet (1819-1895), and derives from the

Greek (holos) meaning ”entire”, and (morphe) meaning ”form” or ”appear-

ance”.

Definition. The function f is said to be holomorphic on open set ⌦ if f is

holomorphic at every point of ⌦ .

If C is a closed subset of C, we say that f is holomorphic on C if f is

holomorphic in some open set containing C. Finally, if f is holomorphic in

all of C we say that f is entire.

Example. The function f(z) = z is holomorphic on any open set in C and

f
0(z) = 1.

Example. If f(z) = z
n
then f

0(z) = nz
n-1

. Indeed we use induction to find:

• If n = 1 then (z) 0 = 1.

• Assuming (zn) 0 = nz
n-1

we obtain

(zn+1) 0 = (z · zn) 0 = z
0 · zn + z · (zn) 0 = z

n + z · nzn-1 = (n+ 1)zn.
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Example. Any polynomial

p(z) = a0 + a1z+ · · ·+ anz
n

is holomorphic in the entire complex plane and

p
0(z) = a1 + · · ·+ nanz

n-1
.

Example. The function 1/z is holomorphic on any open set in C that does

not contain the origin, and f
0(z) = -1/z

2
.

Proof it.

Example. The function f(z) = z̄ is not holomorphic. Indeed, we have

f(z0 + h)- f(z0)

h
=

h̄

h
.

which has no limit as h ! 0, as one can see by first taking h real and then

h purely imaginary.

Proposition. A function f is holomorphic at z0 2 ⌦ if and only if there

exists a complex number a such that

f(z0 + h)- f(z0)- ah = h (h),

where  is a function defined for all small h and

lim
h!0

 (h) = 0.

In this case

a = f
0(z0).

Proof. The proof follow directly from the Definition. Indeed, dividing by h

we have

f(z0 + h)- f(z0)

h
- a =  (h) ! 0 as h ! 0.

Corollary. If a function f is holomorphic then it is continuous.

Proposition. If f and g are holomorphic in ⌦ then:

(i) f+ g is holomorphic in ⌦ and (f+ g) 0 = f
0 + g

0
.

(ii) fg is holomorphic in ⌦ and (fg) 0 = f
0
g+ fg

0
.

(iii) If g(z0) 6= 0, then f/g is holomorphic at z0 and

(f/g) 0 =
f
0
g- fg

0

g2
.
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(iv) Moreover, if f : ⌦! U and g : U ! C are holomorphic, the chain rule

holds

(g � f)(z) = g
0(f(z))f 0(z), 8z 2 ⌦.

Proof. Arguing as in the case of one real variable, use the expression

f(z0 + h)- f(z0)- ah = h (h).

Section: Cauchy-Riemann equations

Consider first

f
0(z0) = lim

h!0

f(z0 + h)- f(z0)

h
, h = h1 + ih2,

assuming that h = h1 (namely that h2 = 0). Then if

f(z0) = f(x0 + iy0) = u(x0, y0) + iv(x0, y0),

we have

f
0(z0) = lim

h!0

f(z0 + h)- f(z0)

h

= lim
h1!0

u(x0 + h1, y0) + iv(x0 + h1, y0)- u(x0, y0)- iv(x0, y0)

h1

=
@u

@x
(x0, y0) + i

@v

@x
(x0, y0) = u

0
x
(x0, y0) + i v

0
x
(x0, y0).

Let now h = ih2 (namely that h1 = 0). Then

f
0(z0) = lim

h!0

f(z0 + h)- f(z0)

h

= lim
h2!0

u(x0, y0 + h2) + iv(x0, y0 + h2)- u(x0, y0)- iv(x0, y0)

ih2

=
1

i

@u

@y
(x0, y0) +

@v

@y
(x0, y0) =

1

i
u

0
y
(x0, y0) + v

0
y
(x0, y0)

= -i u
0
y
(x0, y0) + v

0
y
(x0, y0).

Thus the function u and v satisfy the following

@u

@x
=
@v

@y
and

@u

@y
= -

@v

@x

- Cauchy-Riemann equations.
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Example. Let f(z) = z
2
. Then u(x, y) = x

2 - y
2
and v(x, y) = 2xy. Then

u
0
x
= 2x = v

0
y

and u
0
y
= -2y = -v

0
x
, -O

0
K.

Example. Let f(z) = z̄. Then u(x, y) = x and v(x, y) = -y.

u
0
x
= 1 6= -1 = v

0
y
.

This means that f(z) = z̄ is not di↵erentiable.

The Cauchy-Riemann equations link real and complex analysis.

Definition.

@

@z
=

1

2

✓
@

@x
+

1

i

@

@y

◆

and
@

@z̄
=

1

2

⇣
@

@x
-

1

i

@

@y

⌘
.

Theorem. Let f(z) = u(x, y) + iv(x, y), z = x + iy. If f is holomorphic at

z0, then

@f

@z̄
(z0) = 0 and f

0(z0) =
@f

@z
(z0) = 2

@u

@z
(z0).

Proof. Using the Cauchy-Riemann equations u
0
x
= v

0
y
and u

0
y
= -v

0
x
we

obtain

@f

@z̄
=

1

2

⇣
u

0
x
-

1

i
u

0
y

⌘
+

i

2

⇣
v
0
x
-

1

i
v
0
y

⌘
=

1

2
(u 0

x
+ iu

0
y
+ iv

0
x
- v

0
y
) = 0.

and

@f

@z
=

1

2

⇣
u

0
x
+

1

i
u

0
y

⌘
+

i

2

⇣
v
0
x
+

1

i
v
0
y

⌘
=

1

2
(u 0

x
- iu

0
y
+ iv

0
x
+ v

0
y
)

=
1

2
(2u 0

x
- i2u

0
y
) = u

0
x
+

1

i
u

0
y
= 2

@u

@z
.

The fact that f
0(z0) =

@f

@z
(z0) follows from our computations before. Indeed,

we have seen that

f
0(z0) = u

0
x
(x0, y0) + iv

0
x
(x0, y0) = u

0
x
(x0, y0)- iu

0
y
(x0, y0) = 2

@u

@z
(x0, y0).

The proof is complete.

The next theorem contains an important converse.

Theorem. Suppose f = u + iv is a complex-valued function defined on

an open set ⌦. If u and v are continuously di↵erentiable and satisfy the
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Cauchy-Riemann equations on ⌦, then f is holomorphic on ⌦ and f
0(z) =

@f(z)/@z.
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The next theorem contains an important converse.

Theorem. Suppose f = u + iv is a complex-valued function defined on

an open set ⌦. If u and v are continuously di↵erentiable and satisfy the

Cauchy-Riemann equations on ⌦, then f is holomorphic on ⌦ and f 0(z) =
@f(z)/@z.

Proof. Assuming h = h1 + ih2 we have

u(x+ h1, y+ h2)- u(x, y) = u 0
x(x, y)h1 + u 0

y(x, y)h2 + |h| 1(h),

where  1(h) ! 0 as h ! 0. Indeed,

u(x+h1, y+h2)-u(x, y) = u(x+h1, y+h2)-u(x, y+h2)+u(x, y+h2)-u(x, y)

= u 0
x(x, y+ h2)h1 + h1'1(h) + u 0

y(x, y)h2 + h2'2(h).

Since u 0
x(x, y+ h2) is continuous we have

u 0
x(x, y+ h2)- u 0

x(x, y) = '3(h) ! 0 as h2 ! 0

and thus

u(x+ h1, y+ h2)- u(x, y) = u 0
x(x, y)h1 + u 0

y(x, y)h2

+ h1('3(h) +'1(h)) + h2'2(h) = |h| 1(h),

where  1(h) = |h|-1(h1('3(h) +'1(h)) + h2'2(h)) ! 0, h ! 0.

Similarly

v(x+ h1, y+ h2)- v(x, y) = v 0
x(x, y)h1 + v 0

y(x, y)h2 + |h| 2(h),

where  2(h) ! 0 as h ! 0.

1
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Using the Cauchy-Riemann equations v 0
x = -u 0

y and v 0
y = u 0

x, we find

f(z+h)- f(z) = u(x+h1, y+h2)+ iv(x+h1, y+h2)-u(x, y)- iv(x, y)

= u 0
x(x, y)h1 + u 0

y(x, y)h2 + i(v 0
x(x, y)h1 + v 0

y(x, y)h2) + |h| (h)

= u 0
x(x, y)h1 + u 0

y(x, y)h2 - iu 0
y(x, y)h1 + iu 0

xh2 + |h| (h)

= (u 0
x - iu 0

y)(h1 + ih2) + |h| (h),

where  (h) =  1(h) + i 2(h) ! 0, as h ! 0. Therefore f is holomorphic

and

f 0(z) = 2
@u

@z
=
@f

@z
.

Section: Cauchy-Riemann equations in polar coordinates

Usual Cauchy-Riemann equations for a holomorphic function f = u+ iv as

they were defined before are:

u 0
x = v 0

y u 0
y = -v 0

x

Introduce polar coordinate

x = r cos ✓, y = r sin ✓, r =
p
x2 + y2, ✓ = arctany/x.

Then
@r

@x
=

xp
x2 + y2

= cos ✓,
@r

@y
=

yp
x2 + y2

= sin ✓,

@✓

@x
=

1

1+ (y/x)2
(-1)

y

x2
= -

sin ✓

r
,

@✓

@y
=

1

1+ (y/x)2
1

x
=

cos ✓

r
.

Therefore

u 0
x = u 0

r cos ✓+ u 0
✓

- sin ✓

r
, v 0

y = v 0
r sin ✓+ v 0

✓

cos ✓

r
,

u 0
y = u 0

r sin ✓+ u 0
✓

cos ✓

r
, v 0

x = v 0
r cos ✓+ v 0

✓

- sin ✓

r
.

Multiplying u 0
x by cos ✓ and u 0

y by sin ✓ and adding the results we find

u 0
r = u 0

r cos
2 ✓+ u 0

r sin
2 ✓ = u 0

x cos ✓+ u 0
y sin ✓.

Using u 0
x = v 0

y and u 0
y = -v 0

x we conclude

u 0
x cos ✓+ u 0

y sin ✓ = v 0
y cos ✓- v 0

x sin ✓

=
⇣
v 0
r sin ✓+ v 0

✓

cos ✓

r

⌘
cos ✓-

⇣
v 0
r cos ✓- v 0

✓

sin ✓

r

⌘
sin ✓ = v 0

✓

1

r
.
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Then

u 0
r =

1

r
v 0
✓ and similarly v 0

r = -
1

r
u 0
✓.

Example. Let

f(z) = u(x, y) + iv(x, y) = ln(x2 + y2) + 2i arctan
y

x
= ln |z|2 + 2iArg (z) = 2(ln r+ i✓),

where z = r(cos ✓+ i sin ✓). Then

u 0
r =

2

r
=

1

r
· 2 =

1

r
v 0
✓ and 0 = v 0

r = -
1

r
u 0
✓ = 0.

Section: Power series

Definition. A power series is an expansion of the form

1X

n=0

anz
n,

where an 2 C.
The series is convergent at z if the partial sum SN(z) =

PN
n=0 anz

n

has a limit

S(z) = lim
N!1

SN(z).

In this case we write S(z) =
P1

n=0 anz
n
.

For its absolute convergence we consider

1X

n=0

|an||z|
n.

Proposition. If S(z) =
P1

n=0 anz
n
, then limN!1(S(z)-SN(z)) =

0.

Theorem. Given a power series
P1

n=0 anz
n
, there exists 0 

R  1 such that:

(i) If |z| < R the series converges absolutely.
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(ii) If |z| > R the series diverges.

Moreover, R is given by the formula

1

R
= lim sup

n!1
|an|

1/n

The number R is called the radius of convergence of the power

series, and the domain |z| < R the disc of convergence.

Example. The complex exponential function, which is defined

by

ez =
1X

n=0

zn

n!

converges absolutely for any z 2 C and R = 1.

Example. The geometric series

1

1- z
=

1X

n=0

zn

converges absolutely |z| < 1 and its radius of convergence R = 1.

Proof. Let L = 1/R and suppose that L 6= 0,1. If |z| < R,
choose " > 0 so that

(L+ ")|z| = r < 1.

By the definition L, we have |an|
1/n  L + " for all large n,

therefore

|an||z|
n  ((L+ ")|z|)n = rn

Comparison with the geometric series
P1

n=0 r
n
shows that

P1
n=0 anz

n

converges.

If |z| > R, then a similar argument proves that there exists a

sequence of terms in the series whose absolute value goes to

infinity, hence the series diverges.
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Remark. Prove the above result for R = 0 and R = 1 (L = 1
and L = 0 respectively).

Remark. On the boundary of the disc of convergence, |z| = R,
one can have either convergence or divergence.

Power series provide an important class of holomorphic func-

tions.

Theorem. The power series

f(z) =
1X

n=0

anz
n

defines a holomorphic function in its disc of convergence. The

derivative of f is also a power series obtained by di↵erentiating

term by term the series for f, that is,

f 0(z) =
1X

n=1

nanz
n-1

Moreover, f has the same radius of convergence as f.

Proof. Indeed, note that

lim
n!1

n1/n = lim
n!1

e
1
n lnn = e0 = 1.

Therefore
1X

n=1

anz
n-1

and

1X

n=1

nanz
n

have the same radius of convergence and thus this is also true

for
P1

n=1 anz
n-1

and
P1

n=1 nanz
n-1

.

It remains to show that g(z) =
P1

n=1 nanz
n-1

coincides with

f 0(z).
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Let R be the radius of convergence of f, |z0| < r < R and let

SN(z) =
NX

n=0

anz
n, EN(z) =

1X

n=N+1

anz
n.

Then if h is chosen so that |z0 + h| < r we have

f(z0 + h)- f(z0)

h
-g(z0) =

✓
SN(z0 + h)- SN(z0)

h
- S 0

N(z0)

◆

+ (S 0
N(z0)- g(z0)) +

✓
EN(z0 + h)- EN(z0)

h

◆
.

We find that

����
EN(z0 + h)- EN(z0)

h

���� 
1X

n=N+1

|an|

����
(z0 + h)n - zn0

h

����


1X

n=N+1

|an|n rn-1 ! 0, as N ! 1.

Given " > 0 there is N1 such that for any N > N1 we have
����
EN(z0 + h)- EN(z0)

h

���� < ".

Since limN!1 S 0
N(z0) ! g(z0) there is N2 such that for any

N > N2 we have

|S 0
N(z0)- g(z0)| < "

Finally for any fixed N > max(N1,N2) we choose � > 0 such

that if |h| < �
����
SN(z0 + h)- SN(z0)

h
- S 0

N(z0)

���� < ".

We now conclude����
f(z0 + h)- f(z0)

h
- g(z0)

���� < 3", |h| < �.
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The proof is complete.

Corollary. A power series is infinitely complex di↵erentiable

in its disc of convergence, and the higher derivatives are also

power series obtained by termwize di↵erentiation.
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Section: Elementary functions.

1. Exponential function.

Definition. We define exponential ez (z = x+ iy 2 C) as:

ez = ex cosy+ iex siny.

Properties:

a) If y = 0 then ez = ex.

b) ez is entire (holomorphic for any z 2 C)

Indeed, for that we check the C-R equations. Since u = Re f = ex cosy and
v = Im f = ex siny, we have

u 0
x = ex cosy = v 0

y and u 0
y = ex(- siny) = -v 0

x.

c)
@

@z
ez =

@

@x
ex cosy+ i

@

@x
ex siny = ez.

d) Let g(z) be holomorphic. Then
@

@z
eg(z) = eg(z) g 0(z).

e) Let z1 = x1 + iy1 and z2 = x2 + iy2. Then

ez1+z2 = ex1+x2
�

cos(y1 + y2) + i sin(y1 + y2)
�

= ex1+x2
�

cosy1 cosy2 - siny1 siny2 + i(siny1 cosy2 + cosy1 siny2)
�

= ex1+x2(cosy1 + i siny1)(cosy2 + i siny2) = ez1 ez2.

f) |ez| = |ex| |eiy| = ex
p

cos2 y+ sin2 y = ex.

The function ez is 2⇡-periodic with respect to y.

1
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g) Applying the De Moivres formula

(cosy+ i siny)n = cosny+ i sinny

we obtain ⇣
eiy

⌘n

= einy.

h) Since arg z = arctany/x

arg ez = arctan
ex siny
ex cosy

= arctan(tany) = y+ 2⇡k, k = 0,±1,±2, . . . .

Definition. If f is holomorphic for all z 2 C then it calls entire.

Clearly the exponential function ez is entire.

2. Trigonometric functions.
�
ei✓ = cos ✓+ i sin ✓
e-i✓ = cos ✓- i sin ✓

)

8
<

:
cos ✓ = 1

2

⇣
ei✓ + e-i✓

⌘

sin ✓ = 1
2i

⇣
ei✓ - e-i✓

⌘
.

Definition. For any z 2 C we define

sin z =
1

2i

⇣
eiz - e-iz

⌘
, cos z =

1

2

⇣
eiz + e-iz

⌘
.

Properties:

a) sin z and cos z are entire functions

b) @
@z

sin z = cos z and @
@z

cos z = - sin z.

c) sin2 z+ cos2 z = 1.
Indeed:

-
1

4

⇣
eiz - e-iz

⌘2

+
1

4

⇣
eiz + e-iz

⌘2

= · · · = 1.

d)
sin(z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2,
cos(z1 ± z2) = cos z1 cos z2 ⌥ sin z1 sin z2.

3. Logarithmic functions.

Let z = r(cos ✓+ i sin ✓) = r ei ✓.

Definition. log z = ln |z|+ i arg z = log r+ i(✓+ 2⇡k), z 6= 0,

where k = 0,±1,±2, . . . .
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Clearly:
elog z = eln r+i (✓+2⇡k) = r ei (✓+2⇡k) = r (cos ✓+ i sin ✓) = x+ i y = z.

Remark. The function log is a multi-valued function.
Definition. We define Log z as the singe-valued function:

Log z = ln |z|+ iArg z,
where Arg z is the principal value of the argument, namely, -⇡ < Arg z  ⇡.
Remark. The function Log is a single-valued function.
Examples.

Log (-1) = i⇡,
Log (2i) = ln 2+ i⇡/2,
Log (1- i) = ln

p
2- i⇡/4.

Properties:
a) log(z1 · z2) = log(z1) + log(z2). Indeed

log(z1 · z2) = ln |z1z2|+ i arg (z1 · z2)
= ln |z1|+ ln |z2|+ i arg z1 + i arg z2 = log z1 + log z2.

Remark. Log (z1 · z2) 6= Log z1 + Log z2, because Arg (z1 · z2) 6= Arg z1 +
Arg z2.

b) The function Log z is holomorphic in C \ {(-1, 0]}.
Indeed, we have already checked that the C-R equations are satisfied:

Log z = ln r+ i ✓ = u+ iv, -⇡ < ✓  ⇡.

Therefore we have
@u

@r
=

1

r
· 1 =

1

r

@v

@✓
,

@v

@r
= 0 = -

1

r

@u

@✓
.

Exercise. Compute (Log z) 0.

4. Powers.
Definition. For any ↵ 2 C, we define z↵ = e↵ log z as a multi-valued function.
Example. ii = ei log i = ei (i⇡/2+i2⇡k) = e-⇡/2 e-2⇡k, k = 0,±1,±2, . . . .
Definition. We define the principal value of z↵, ↵ 2 C, as

z↵ = e↵Log z.

Property:
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a) z↵1 · z↵2 = e↵1Log z e↵2Log z = e(↵1+↵2)Log z = z↵1+↵2.

Section: Parametrised curve.

Definition. A parametrised curve is a function z(t) which maps a closed interval
[a, b] ⇢ R to the complex plane. We say that the parametrised curve is smooth
if z 0(t) exists and is continuous on [a, b], and z 0(t) 6= 0 for t 2 [a, b]. At the
points t = a and t = b, the quantities z 0(a) and z 0(b) are interpreted as the
one-sided limits

z 0(a) = lim
h!0, h>0

z(a+ h)- z(a)

h
, z 0(b) = lim

h!0, h<0

z(b+ h)- z(b)

h
.

Similarly we say that the parametrised curve is piecewise - smooth if z is con-
tinuous on [a, b] and if there exist a finite number of points a = a0 < a1 <
· · · < an = b , where z(t) is smooth in the intervals [ak, ak+1]. In particular,
the righthand derivative at ak may differ from the left-hand derivative at ak for
k = 1, 2, . . . , n- 1.

Two parametrisations,

z : [a, b] ! C and z̃ : [c, d] ! C,
are equivalent if there exists a continuously differentiable bijection s ! t(s)
from [c, d] to [a, b] so that t 0(s) > 0 and

z̃(s) = z(t(s)).

The condition t 0(s) > 0 says precisely that the orientation is preserved: as s
travels from c to d, then t(s) travels from a to b.

Given a smooth curve � in C parametrised by z : [a, b] ! C , and f a continuous
function on � we define the integral of f along � by

Z

�

f(z)dz =

Zb

a

f(z(t)) z 0(t)dt.

In order for this definition to be meaningful, we must show that the right-hand
integral is independent of the parametrisation chosen for �. Say that z̃ is an
equivalent parametrisation as above. Then the change of variables formula and
the chain rule imply that

Zb

a

f(z(t)) z 0(t)dt =

Zd

c

f(z(t(s))) z 0(t(s)) t 0(s)ds

=

Zd

c

f(z̃(s)) z̃ 0(s)ds.
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This proves that the integral of f over � is well defined.
If � is piecewise smooth, then the integral of f over � is the sum of the integrals
of f over the smooth parts of �, so if z(t) is a piecewise-smooth parametrisation
as before, then Z

�

f(z)dz =
n-1X

k=0

Zak+1

ak

f(z(t)) z 0(t)dt.

We can define a curve �- obtained from the curve � by reversing the orienta-
tion (so that � and �- consist of the same points in the plane). As a particular
parametrisation for �- we can take z- : [a, b] ! C defined by

z-(t) = z(b+ a- t).

A smooth or piecewise-smooth curve is closed if z(a) = z(b) for any of its
parametrisations. A smooth or piecewise-smooth curve is simple if it is not self-
intersecting, that is, z(t) 6= z(s) unless s = t, s, t 2 (a, b).
A basic example consists of a circle. Consider the circle Cr(z0) centred at z0 and
of radius r, which by definition is the set

Cr(z0) = {z 2 C : |z- z0| = r}.

The positive orientation (counterclockwise) is the one that is given by the stan-
dard parametrisation

z(t) = z0 + r eit, where t 2 [0, 2⇡],

while the negative orientation (clockwise) is given by
z(t) = z0 + r e-it, where t 2 [0, 2⇡].

Section: Integration along curves.

By definition, the length of the smooth curve � is

length (�) =
Zb

a

|z 0(t)|dt =

Zb

a

p
(x 0(t))2 + (y 0(t))2 dt.
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Section: Integration along curves.

By definition, the length of the smooth curve � is

length (�) =
Zb

a

|z 0(t)|dt =

Zb

a

p
(x 0(t))2 + (y 0(t))2 dt.

Theorem. Integration of continuous functions over curves satisfies the following
properties:

• Z

�

(↵ f(z) + �g(z))dz = ↵

Z

�

f(z)dz+ �

Z

�

g(z)dz.

• If �- is � with the reverse orientation, then
Z

�

f(z)dz = -

Z

�-

f(z)dz.

• (ML-inequality)
���
Z

�

f(z)dz
���  supz2� |f(z)| · length (�).

Proof. The first property follows from the definition and the linearity of the
Riemann integral. The second property is left as an exercise. For the third one,
we note that
���
Z

�

f(z)dz
���  supt2[a,b] |f(z(t))|

Zb

a

|z 0(t)|dt = supz2� |f(z)| · length (�).

Section: Primitive functions.

Definition. A primitive for f on ⌦ ⇢ C is a function F that is holomorphic on ⌦
and such that F 0(z) = f(z) for all z 2 ⌦.

1
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Theorem. If a continuous function f has a primitive F in an open set ⌦, and � is
a curve in ⌦ that begins at w1 and ends at w2, then

Z

�

f(z)dz = F(w2)- F(w1).

Proof. If � is smooth, the proof is a simple application of the chain rule and the
fundamental theorem of calculus. Indeed, if z(t) : [a, b] ! C is a parametriza-
tion for �, then z(a) = w1 and z(b) = w2, and we have

Z

�

f(z)dz =

Zb

a

f(z(t)) z 0(t)dt =

Zb

a

F 0(z(t))z 0(t)dt

=

Zb

a

d

dt
F(z(t))dt = F(z(b))- F(z(a)).

If � is only piecewise-smooth then arguing the same as we did we have
Z

�

f(z)dz =
n-1X

k=0

(F(z(ak+1)- F(z(ak))

= F(z(an))- F(z(a0)) = F(z(b))- F(z(a)).

Corollary. If � is a closed curve in an open set ⌦, f is continuous and has a
primitive in ⌦, then

 
Z

�

f(z)dz = 0.

Proof. This is immediate since the end-points of a closed curve coincide.

For example, the function f(z) = 1/z does not have a primitive in the open set
C \ {0}, since if C is the unit circle parametrized by z(t) = eit, 0  t  2⇡, we
have

 
Z

C

f(z)dz =

Z 2⇡

0

i eit

eit
dt = 2⇡i 6= 0.

Corollary. If f is holomorphic in an open connected set ⌦ and f 0 = 0, then f is
constant.

Proof. Fix a point w0 2 ⌦. It suffices to show that f(w) = f(w0) for all w 2 ⌦.
Since ⌦ is connected, for any w 2 ⌦, there exists a curve � which joins w0 to
w. Since f is clearly a primitive for f 0, we have

Z

�

f 0(z)dz = f(w)- f(w0),
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By assumption, f 0 = 0 so the integral on the left is 0, and we conclude that
f(w) = f(w0) as desired.

Section: Properties of holomorphic functions.

Theorem. Let ⌦ ⇢ C be an open set and T ⇢ ⌦ be a triangle whose interior is
also contained in ⌦, then

 
Z

T

f(z)dz = 0,

whenever f is holomorphic in ⌦.

Proof. Let T (0) be our original triangle (with a fixed orientation which we choose
to be positive), and let d(0) and p(0) denote the diameter and perimeter of T (0),
respectively. At the first step we find middle point of each side of T (0) and intro-
duce four triangles T (1)

1 , T (1)
2 , T (1)

3 , T (1)
4 that are similar to the original triangle as

follows:

Then

 
Z

T (0)

f(z)dz =  
Z

T
(1)
1

f(z)dz+  
Z

T
(1)
2

f(z)dz+  
Z

T
(1)
3

f(z)dz

+  
Z

T
(1)
4

f(z)dz.

There is some j 2 {1, 2, 3, 4} such that (WHY?)

���� 
Z

T (0)

f(z)dz

����  4

�����
 
Z

T
(1)
j

f(z)dz

����� .

We choose a triangle that satisfies this inequality, and rename it T (1). Observe
that if d(1) and p(1) denote the diameter and perimeter of T (1), respectively. Then

d(1) =
1

2
d(0) and p(1) =

1

2
p(0).
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We now repeat this process for the triangle T (1). Continuing this process, we
obtain a sequence of triangles

T (1), T (1), T (2), . . . , T (n), . . .

with the properties that
���� 
Z

T (0)

f(z)dz

����  4n

�����
 
Z

T
(n)
j

f(z)dz

�����

and
d(n) = 2-n d(0) and p(n) = 2-n p(0),

where d(n) and p(n) denote the diameter and perimeter of T (n).
Let ⌦(n) be the closed triangle such that @⌦(n) = T (n). Clearly we have a
sequence of compact nested sets

⌦(0) � ⌦(1) � · · · � ⌦(n) � . . . ,

whose diameter goes to 0. Then there exists a unique point z0 that belongs to all
triangles⌦(n). Since f is holomorphic then

f(z) = f(z0) + f 0(z0)(z- z0) + (z- z0) (z),

where  (z) ! 0 as z ! z0.

Since the constant f(z0) and the linear function f(z0)(z-z0) have primitives, we
can integrate the above equality over T (n) and obtain

 
Z

T (n)

f(z)dz =  
Z

T (n)

 (z)(z- z0)dz.

Since z0 belongs to all triangles we have |z - z0|  d(n) and using the ML-
inequality we arrive at

���� 
Z

T (n)

f(z)dz

����  "n d
(n) p(n),

where "n = supz2T (n) | (z)| ! 0 as n ! 1. Therefore
���� 
Z

T (n)

f(z)dz

����  "n 4
-nd(0) p(0),

and thus finally we obtain
���� 
Z

T (0)

f(z)dz

����  4n

�����
 
Z

T
(n)
j

f(z)dz

�����  "n d
(0) p(0) ! 0, as n ! 1.
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Corollary. If f is holomorphic in an open set ⌦ that contains a rectangle R and
its interior, then

 
Z

R

f(z)dz = 0.

Proof. This immediately follows from the equality

 
Z

R

f(z)dz =  
Z

T1

f(z)dz+  
Z

T2

f(z)dz.
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Section: Properties of holomorphic functions.

In Lecture 5 we have proved the following

Theorem. Let ⌦ ⇢ C be an open set and T ⇢ ⌦ be a triangle whose interior is
also contained in ⌦, then

 
Z

T

f(z)dz = 0,

whenever f is holomorphic in ⌦.

Corollary. If f is holomorphic in an open set ⌦ that contains a rectangle R and
its interior, then

 
Z

R

f(z)dz = 0.

Proof. This immediately follows from the equality

 
Z

R

f(z)dz =  
Z

T1

f(z)dz+  
Z

T2

f(z)dz.

Section: Local existence of primitives and Cauchy-Goursat theorem in a disc.

Theorem. A holomorphic function in an open disc has a primitive in that disc.
Proof. We may assume that the disc D is centered at the origin. For any z 2 D
we consider �z given by

1
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Define

F(z) =

Z

�z

f(w)dw.

Consider the difference

F(z+ h)- F(z) =

Z

�z+h

f(w)dw-

Z

�z

f(w)dw

The function f is first integrated along �z+h with the original orientation, and
then along �z with the reverse orientation.

Using the fact that the integration over the triangle and the rectangle equal zero
we obtain

F(z+ h)- F(z) =

Z

⌘

f(w)dw,

where ⌘ is the straight line segment from z to z + h. Since f is continuous at z
we can write

f(w) = f(z) + (w),

where  (w) ! 0 as w ! z. Then

F(z+ h)- F(z) =

Z

⌘

f(z)dw+

Z

⌘

 (w)dw = f(z)h+

Z

⌘

 (w)dw.

Finally we note that using the LM-inequality
����
Z

⌘

 (w)dw

����  |h| sup
w2⌘

| (w)|
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Since  (w) ! 0 as w ! z we obtain

lim
h!0

F(z+ h)- F(z)

h
= f(z).

Corollary. (Cauchy-Goursat theorem for a disc)
If f is holomorphic in a disc, then

 
Z

�

f(z)dz = 0

for any closed curve � in that disc.

Corollary. Suppose f is holomorphic in an open set containing the circle C and
its interior. Then

 
Z

C

f(z)dz = 0.

Proof. Let D be the disc with boundary circle C. Then there exists a slightly
larger disc D̃ � D and so that f is holomorphic on D̃. We may now apply
Cauchy-Goursat theorem in D̃ to conclude that  

R
C
f(z)dz = 0.

Section: Homotopies and simply connected domains.

Let �0 and �1 be two curves in an open set⌦ with common end-points.
That is if �0 and �1 are two parametrizations defined on [a, b], we have

�0(a) = �1(a) = ↵ and �0(b) = �1(b) = �.

Definition. The curves �0 and �1 are said to be homotopic in ⌦ if for each
0  s  1 there exists a curve �s ⇢ ⌦, parametrized by �s(t) defined on [a, b],
such that for every s

�s(a) = ↵ and �s(b) = �,

and for all t 2 [a, b]

�s(t)|s=0 = �0(t) and �s(t)|s=1 = �1(t).

Moreover, �s(t) should be jointly continuous in s 2 [0, 1] and t 2 [a, b].

Theorem. If f is holomorphic in⌦, then
Z

�0

f(z)dz =

Z

�1

f(z)dz.

Proof. We first show that if two curves are close to each other and have the same
end-points, then the integrals over them are equal.
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Due to definition, the function F(s, t) = �s(t) is continuous on [0, 1] ⇥ [a, b].
Then the image of F denoted by K is compact.

Then there is " > 0 such that every disc of radius 3" > 0 centred at a point in
the image of F is completely contained in ⌦.

WHY ??? Show it.

Since F is uniformly continuous we choose � such that

sup
t2[a,b]

|�s1(t)- �s2(t)| < " whenever |s1 - s2| < �.

We now choose discs {D0, . . . ,Dn} of radius 2", and points {z0, . . . , zn+1} on �s1

and {w0, . . . , wn+1} on �s2 such that the union of these discs covers both curves,
and

zi, zi+1,wi,wi+1 2 Di.

Here z0 = w0 = �s1(a) = �s2(a) and
zn+1 = wn+1 = �s1(b) = �s2(b).
On each Di, let Fi be a primitive of f.
In Di \Di+1 the primitives Fi and Fi+1

are two primitives of the same function, so they must
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differ by a constant.
Therefore

Fi+1(zi+1)- Fi(zi+1) = Fi+1(wi+1)- Fi(wi+1),

or
Fi+1(zi+1)- Fi+1(wi+1) = Fi(zi+1)- Fi(wi+1).

Finally we have
Z

�s1

f(z)dz-

Z

�s2

f(z)dz

=
n+1X

i=0

(Fi(zi+1)- Fi(zi))-
n+1X

i=0

(Fi(wi+1)- Fi(wi))

n+1X

i=0

(Fi(zi+1)- Fi(wi+1)- (Fi(zi)- Fi(wi)))

= Fn(zn+1)- Fn(wn+1)- (F0(z0)- F0(w0)) = 0.

By subdividing the interval [0, 1] into subintervals [sk, sk+1], k = 0, . . .m, of
length less than � and using the above arguments for each pair �sk and �sk+1

with
�s0 = �0 and �sm+1

= �1 we complete the proof.

Definition. An open set ⌦ ⇢ C is simply connected if any two pair of curves in
⌦ with the same end-points are homotopic.

Example. A disc D is simply connected. Indeed, let �0(t) and �1(t) be two
curves lying in D. We can define �s(t) by �s(t) = (1- s)�0(t) + s�1(t). Note
that if 0  s  1, then for each t, the point �s(t) is on the segment joining �0(t)
and �1(t), and so is in D.

The same argument works if D is replaced any open convex set.
WHY ??? - show it

Example. The set C \ {(-1, 0]} is simply connected.
WHY ??? - show it

Example. The punctured plane C \ {0} is not simply connected.

Theorem. Any holomorphic function in a simply connected domain has a primi-
tive.
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Proof. Fix a point z0 in ⌦ and define

F(z) =

Z

�

f(w)dw,

where the integral is taken over any curve in ⌦ joining z0 to z. This definition is
independent of the curve chosen, since ⌦ is simply connected. Consider

F(z+ h)- F(z) =

Z

⌘

f(w)dw,

where ⌘ is the line segment joining z and z + h. Arguing as in the proof of the
Theorem where we constructed a primitive to a holomorphic function in a disc,
we obtain

lim
h!0

F(z+ h)- F(z)

h
= f(z).

The proof is complete.
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To remind:

In the previous lecture we introduced homotopic curves:

and proved

Theorem. If �0 and �1 are homotopic in ⌦ and if f is holomorphic

in ⌦, then Z

�0

f(z)dz =

Z

�1

f(z)dz.

Besides, we had

Definition. An open set ⌦ ⇢ C is simply connected if any two pair

of curves in ⌦ with the same end-points are homotopic.

The next theorem is about holomorphic function in a simply con-

nected domains:

Theorem. Any holomorphic function in a simply connected domain

has a primitive.

1



2

Proof. Fix a point z0 in ⌦ and define

F(z) =

Z

�

f(w)dw,

where the integral is taken over any curve in ⌦ joining z0 to z. This

definition is independent of the curve chosen, since ⌦ is simply

connected. Consider

F(z+ h)- F(z) =

Z

⌘

f(w)dw,

where ⌘ is the line segment joining z and z + h. Arguing as in

the proof of the Theorem where we constructed a primitive to a

holomorphic function in a disc, we obtain

lim
h!0

F(z+ h)- F(z)

h
= f(z).

The proof is complete.

Corollary. (Cauchy-Goursat theorem)

If f is holomorphic in the simply connected open set ⌦, then

 
Z

�

f(z)dz = 0,

for any closed, piecewise-smooth, curve � ⇢ ⌦.

Theorem. (Deformation Theorem)

Let �1 and �2 be two simple, closed, piecewise-smooth curves with

�2 lying wholly inside �1 and suppose f is holomorphic in a domain

containing the region between �1 and �2. Then

 
Z

�1

f(z)dz =  
Z

�2

f(z)dz.

Proof.
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Example. Let � = {z 2 C : |z- 1| = 2}. Then

 
Z

�

1

z2 - 4
dz =  

Z

�

1

(z- 2)(z+ 2)
dz =

1

4
 
Z

�

⇣ 1

z- 2
-

1

z+ 2

⌘
dz.

Since 1/(z+ 2) is holomorphic inside and on �, then

 
Z

�

1

z+ 2
dz = 0.

On the other hand

 
Z

�

1

z- 2
dz =  

Z

{z: |z-2|=1}

1

z- 2
dz = 2⇡ i.

Therefore

 
Z

�

1

z2 - 4
dz = i

⇡

2
.

Example. We show that if ⇠ 2 R then

e-⇡⇠2 =

Z1

-1
e-⇡x2 e-2⇡ix⇠ dx.

This gives a proof of the fact that e-⇡x2
is its own Fourier transform.

If ⇠ = 0, the formula is precisely the known integral

1 =

Z1

-1
e-⇡x2 dx.
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Now suppose that ⇠ > 0, and consider the function f(z) = e-⇡z2
,

which is entire, and in particular holomorphic in the interior of the

contour �R

The contour �R consists of a rectangle with vertices R, R + i⇠,

-R+ i⇠, -R and the positive counterclockwise orientation.

By the Cauchy-Goursat theorem theorem

 
Z

�R

f(z)dz = 0 (⇤)

The integral over the real segment is simply

ZR

-R

e-⇡x2 dx

which converges to 1 as R ! 1. The integral on the vertical side

on the right is

|I(R)| =
���
Z⇠

0

f(R+ iy) i dy
��� =

���
Z⇠

0

e-⇡(R2+2iRy-y2) dy
���

 e-⇡R2

Z⇠

0

|e-⇡(2iRy-y2)|dy  e-⇡R2

⇠ e⇡⇠2 ! 0,

as R ! 1.

Similarly, the integral over the vertical segment on the left also goes

to 0 as R ! 1 for the same reasons.
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Finally, the integral over the horizontal segment on top is

Z-R

R

e-⇡(x+i⇠)2 dx = -

ZR

-R

e-⇡(x+i⇠)2 dx

= - e⇡⇠
2

ZR

-R

e-⇡x2e-2⇡ix⇠ dx.

Therefore, in the limit as R ! 1 we obtain that (⇤) gives

0 = 1- e⇡⇠
2

Z1

-1
e-⇡x2e-2⇡ix⇠ dx.

Section: Cauchy’s integral formulae.

Theorem. Let f be holomorphic inside and on a simple, closed,

piecewise-smooth curve �. Then for any point z0 interior to � we

have

f(z0) =
1

2⇡ i
 
Z

�

f(z)

z- z0
dz.

Proof. If z0 is interior to � then for any r > 0 such that �r = {z :
|z- z0| = r} lying wholly inside �, using the deformation theorem

we obtain

 
Z

�

f(z)

z- z0
dz =  

Z

�r

f(z)

z- z0
dz.

Then

1

2⇡ i
 
Z

�r

f(z)

z- z0
dz

=
1

2⇡ i
f(z0)  

Z

�r

1

z- z0
dz+

1

2⇡ i
 
Z

�r

f(z)- f(z0)

z- z0
dz

= f(z0) +
1

2⇡ i
 
Z

�r

f(z)- f(z0)

z- z0
dz.
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Since f is holomorphic it is continuous at z0. Therefore for a given

" > 0 there is � > r > 0 such that as soon |z- z0| < � we have

|f(z)- f(z0)| < ".

Then, by using the ML-inequality we have

���
1

2⇡ i
 
Z

�r

f(z)- f(z0)

z- z0
dz

��� 
1

2⇡

"

r
2⇡ r = ".

So we have proved that for any " > 0
��� 
Z

�

f(z)

z- z0
dz- f(z0)

��� < "

and hence
1

2⇡ i
 
Z

�

f(z)

z- z0
dz = f(z0).

The proof is complete.
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Section: Cauchy’s integral formulae.

Theorem. Let f be holomorphic inside and on a simple, closed,
piecewise-smooth curve �. Then for any point z0 interior to � we
have

f(z0) =
1

2⇡ i
 
Z

�

f(z)

z- z0
dz.

Example.

1

2⇡ i
 
Z

|z|=2

ez

(z- i)(z+ i)
dz

=
1

2⇡ i

1

2i
 
Z

|z|=2

⇣ ez

z- i
-

ez

z+ i

⌘
dz

=
1

2i

⇣
ei - e-i

⌘
= sin 1.

Theorem. (Generalised Cauchy’s integral formula)

Let f be holomorphic in an open set ⌦, then f has infinitely many
complex derivatives in ⌦. Moreover, for simple, closed, piecewise-
smooth curve � ⇢ ⌦ and any z lying inside � we have

dnf(z)

dzn
=

n!

2⇡ i
 
Z

�

f(⌘)

(⌘- z)n+1
d⌘.

1



2

Proof. The proof is by induction on n. The case n = 0 is simply the
Cauchy integral formula. Suppose that f has up to n - 1 complex
derivatives and that

f(n-1)(z) =
(n- 1)!

2⇡ i
 
Z

�

f(⌘)

(⌘- z)n
d⌘.

Let h 2 C be small enough, so that z+ h is lying inside �. Then

f(n-1)(z+ h)- f(n-1)(z)

h

=
(n- 1)!

2⇡ i
 
Z

�

f(⌘)
1

h

⇣ 1

(⌘- z- h)n
-

1

(⌘- z)n

⌘
d⌘.

Recall

An - Bn = (A- B)(An-1 +An-2B+ · · ·+ABn-2 + Bn-1)

and apply it with A = 1/(⌘- z- h) and B = 1/(⌘- z). Then we
obtain as h ! 0

1

h

⇣ 1

(⌘- z- h)n
-

1

(⌘- z)n

⌘

=
1

h

h

(⌘- z- h)(⌘- z)
(An-1 +An-2B+ · · ·+ABn-2 +Bn-1)

! 1

(⌘- z)2
n

(⌘- z)n-1
.

This implies

f(n-1)(z+ h)- f(n-1)(z)

h

! (n- 1)!

2⇡ i
 
Z

�

f(⌘)
1

(⌘- z)2
n

(⌘- z)n-1
d⌘

=
n!

2⇡ i
 
Z

�

f(⌘)

(⌘- z)n+1
d⌘.

The proof is complete.
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Corollary. If f is holomorphic in ⌦, then all its defivatives
f 0, f 00, . . . , are holomorphic.

Exercise:

Let f be continuous on a piecewise-smooth curve �. At each point
z 62 � define the value of a function F by

F(z) =

Z

�

f(⌘)

⌘- z
d⌘.

Show that F is holomorphic at z 62 � and

F 0(z) =

Z

�

f(⌘)

(⌘- z)2
d⌘.

Section: Applications of Cauchy’s integral formulae.

Corollary. (Liouville’s theorem)
If an entire function is bounded, then it is constant.

Proof. Suppose that f is entire and bounded. Then there is a con-
stant M such that

|f(z)|  M, 8 z 2 C.
Let z0 2 C and let �r = {z : |z- z0| = r}. Then

|f 0(zo)| =
���
1!

2⇡ i
 
Z

�r

f(z)

(z- z0)2
dz

��� 
M

r
! 0 as r ! 1.

Therefore for any z0 2 C we have f 0(z0) = 0 and thus f is constant.

Theorem. (Fundamental theorem of Algebra) Every polynomial of
degree greater than zero with complex coefficients has at least one
zero.

Proof. Assume that

p(z) = an z
n + an-1 z

n-1 · · ·+ a0 = 0.
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has no zeros. Then 1/p(z) is entire. Clearly |1/p(z)| ! 0 as
|z| ! 1. Indeed, given " > 0 there is R such that

���
1

p(z)

��� < ", 8z : |z| > R.

Since 1/p(z) is entire it is also continuous and therefore there is a
constant M > 0 such that

���
1

p(z)

���  M, z : |z|  R

and thus |1/p(z)| is bounded in C. This implies 1/p is constant and
this contradicts the fact that p(z) is a polynomial of degree greater
than zero.

Corollary.
Every polynomial

P(z) = anz
n + · · ·+ a0

of degree n � 1 has precisely n roots in C. If these roots are
denoted by w1, . . . wn, then P can be factored as

P(z) = an(z-w1)(z-w2) . . . (z-wn).

Proof. We now know that P has at least one root, say w1. Then
writing z = (z-w1)+w1. Substituting this in P(z) = anz

n+. . . a0

and using the binomial formula we get

P(z) = bn(z-w1)
n + · · ·+ b1(z-w1) + b0,

where bn = an. Since P(w1) = 0 we have b0 = 0 and thus

P(z) = (z-w1)Q(z).

Repeating this we find

P(z) = an(z-w1)(z-w2) . . . (z-wn).

Theorem. (Moreras theorem)
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Suppose f is a continuous function in the open disc D such that for
any triangle T contained in D

Z

T

f(z)dz = 0,

then f is holomorphic.

Proof. We have proved before that f has a primitive F in D that
satisfies F 0 = f. Then F is indefinitely complex differentiable, and
therefore f is holomorphic.

Section: Sequences of holomorphic functions.

Theorem. If {fn}1n=1 is a sequence of holomorphic functions that
converges uniformly to a function f in every compact subset of ⌦,
then f is holomorphic in ⌦.



MATH50001 COMPLEX ANALYSIS 2021
LECTURES

MATH50001 Complex Analysis 2021

Lecture 9

Section: Taylor and Maclaurin series.

Theorem. (Taylor Expansion theorem)

Let f be holomorphic in an open set ⌦ and let z0 2 ⌦. Then

f(z) = f(z0) + f 0(z0)(z- z0) +
f 00(z0)

2!
(z- z0)

2 . . . .,

valid in all circles {z : |z- z0| < r} ⇢ ⌦.

Proof. Let � = {⌘ : |⌘- z0| = r} ⇢ ⌦ and let z : |z- z0| < r.

f(z) =
1

2i⇡
 
Z

�

f(⌘)

⌘- z
d⌘ =

1

2i⇡
 
Z

�

f(⌘)

(⌘- z0)- (z- z0)
d⌘

=
1

2i⇡
 
Z

�

f(⌘)

⌘- z0
· 1

1- z-z0
⌘-z0

d⌘

=
1

2i⇡
 
Z

�

f(⌘)

⌘- z0
·
⌦
1+

z- z0
⌘- z0

+
⇣ z- z0
⌘- z0

⌘2

+ . . .

+
⇣ z- z0
⌘- z0

⌘n-1

+

⇣
z-z0
⌘-z0

⌘n

1- z-z0
⌘-z0

↵
d⌘

Using Cauchy’s generalised integral formula applied to the first n terms we ob-

tain

f(z) = f(z0) + f 0(z0)(z- z0) + · · ·+ f(n-1)(z0)

(n- 1)!
(z- z0)

n-1 + Rn,

where

Rn =
(z- z0)n

2⇡ i
 
Z

�

f(⌘)

(⌘- z)(⌘- z0)n
d⌘.

1



2

Let M = max⌘2� |f(⌘)| and let |z - z0| = ⇢. Then by using the ML-inequality

we obtain

|Rn| 
⇢n

2⇡

M

(r- ⇢) rn
(2⇡ r) =

rM

r- ⇢

⇣⇢
r

⌘n

.

Since ⇢ < r we conclude that Rn ! 0 as n ! 1.

Definition. The expansion

f(z) = f(z0) + f 0(z0)(z- z0) +
f 00(z0)

2!
(z- z0)

2 . . . .,

is called the Taylor series of f about z0. The special case in which z0 = 0

f(z) =
1X

n=0

f(n)(0)

n!
zn,

is called the Maclaurin series for f.

Example.

f(z) = ez, f(n)
���
z=0

= 1. Therefore

ez =
1X

n=0

1

n!
zn, R = lim

n!1

(n+ 1)!

n!
= 1.

Example.

f(z) = 1
1-z

=
P1

n=0 z
n
, |z| < 1 (R = 1).

Example.

Log (1- z). Note that

(Log (1- z)) 0 = -
1

1- z
= -

1X

n=0

zn.

Integrating both sides we arrive at

Log (1- z) = -
1X

n=0

1

n+ 1
zn+1 + C = -

1X

n=1

1

n
zn + C,

where C = Log (1- 0) = 0.

Example.
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f(z) = 1
1+z

about z0 = i.

1

1+ z
=

1

1+ i+ z- i
=

1

1+ i
· 1

1-
⇣
- z-i

1+i

⌘

=
1

1+ i

1X

n=0

(-1)n
(z- i)n

(1+ i)n
=

1X

n=0

(-1)n
1

(1+ i)n+1
(z- i)n.

where R is defined by the inequality

|z- i|

|1+ i|
< 1 or |z- i| <

p
2.

Section: Sequences of holomorphic functions.

Theorem. If {fn}
1
n=1 is a sequence of holomorphic functions that converges uni-

formly to a function f in every compact subset of ⌦, then f is holomorphic in

⌦.

Proof. Let D be any disc whose closure is contained in ⌦ and T any triangle in

that disc. Then, since each fn is holomorphic, Goursats theorem implies

 
Z

T

fn(z)dz = 0, for alln.

By assumptionfn ! f uniformly in the closure of D, so f is continuous and

 
Z

T

fn(z)dz =  
Z

T

f(z)dz.

Therefore

 
Z

T

f(z)dz = 0.

Using Morera’s theorem we find that f is holomorphic in D. Since this con-

clusion is true for every D whose closure is contained in ⌦, we find that f is

holomorphic in all of ⌦.

Remark. This is not true in the case of real variables: the uniform limit of con-

tinuously differentiable functions need not be differentiable. WHY??

Remark. Consider

F(z) =
1X

n=1

fn(z)
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where fn are holomorphic in ⌦ ⇢ C. Assume that the series converges uni-

formly in compact subsets of ⌦, then the theorem guarantees that F is also holo-

morphic in ⌦.

Theorem. Let {fn}
1
n=1 be a sequence of holomorphic functions that converges

uniformly to a function f in every compact subset of ⌦. Then the sequence of

derivatives {f 0n}
1
n=1 converges uniformly to f 0 on every compact subset of ⌦.

Proof. For any e⌦ ⇢ ⌦ such that e⌦ ⇢ ⌦ and given � > 0 we define e⌦� ⇢ e⌦ by

e⌦� = {z 2 e⌦ : D�(z) ⇢ e⌦}.

By the previous theorem it is enough to show that {f 0n}
1
n=1 converges uniformly

to f 0 on e⌦�. For any holomorphic function F in ⌦� we have

|F 0(z)| =

����
1

2⇡ i
 
Z

|⌘-z|=�

F(z)

(⌘- z)2
d⌘

����

 1

2⇡
max

⌘2e⌦
|F(⌘)|

1

�2
2⇡�  1

�
max

⌘2e⌦
|F(⌘)|.

Applying this inequality to F(z) = fn - f we conclude the proof.

Corollary.

Let each fn be holomorphic in a given open set ⌦ ⇢ C and the series

F(z) :=
1X

n=1

fn(z)

converges uniformly in compact subsets of ⌦. Then F is holomorphic in ⌦.
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Last time:

Section: Sequences of holomorphic functions.

Theorem. If {fn}
1
n=1 is a sequence of holomorphic functions that

converges uniformly to a function f in every compact subset of ⌦,

then f is holomorphic in ⌦.

Corollary.

Let each fn be holomorphic in a given open set ⌦ ⇢ C and the

series

F(z) :=
1X

n=1

fn(z)

converges uniformly in compact subsets of ⌦. Then F is holomor-

phic in ⌦.

Section: Holomorphic functions defined in terms of integrals.

Theorem. Let F(z, s) be defined for (z, s) 2 ⌦ ⇥ [0, 1] where

⌦ ⇢ C is an open set. Suppose F satisfies the following properties:

• F(z, s) is holomorphic in ⌦ for each s.

• F is continuous on ⌦⇥ [0, 1].

1
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Then the function f defined on ⌦ by

f(z) =

Z 1

0

F(z, s)ds

is holomorphic.

Proof. To prove this result, it suffices to prove that f is holomorphic

in any disc D contained in ⌦. By Moreras theorem this could be

achieved by showing that for any triangle T contained in D we have

 
Z

T

Z 1

0

F(z, s)dsdz = 0.

The proof would be trivial if we could change the order of integra-

tion that is not clear. In order to go around this problem we consider

for each n � 1 the Riemann sum

fn(z) =
1

n

nX

k=1

F(z, k/n).

Then by the first assumption fn is holomorphic in ⌦.

We can now show that on any disc D such that D ⇢ ⌦, the se-

quence {fn}
1
n=1 converges uniformly to f .

Indeed, since F is continuous on ⌦⇥ [0, 1] for a given " > 0 there

exists � > 0 such that as soon |s1 - s2| < � we have

sup

z2D
|F(z, s1)- F(z, s2)| < ".

Then if n > 1/� and z 2 D we find

|fn(z)- f(z)| =

�����

nX

k=1

Zk/n

(k-1)/n
(F(z, k/n)- F(z, s)) ds

�����


nX

k=1

Zk/n

(k-1)/n
|F(z, k/n)- F(z, s)|ds <

nX

k=1

"

n
= ".
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By the previous theorem we conclude that f is holomorphic in D
and thus in ⌦.

Section: Schwarz reflection principle.

In this section we deal with a simple extension problem for holo-

morphic functions that is very useful in applications. It is the

Schwarz reflection principle that allows one to extend a holomor-

phic function to a larger domain.

Let ⌦ ⇢ C be open and symmetric with respect to the real line,

that is

z 2 ⌦ iff z̄ 2 ⌦.

Let

⌦+ = {z 2 ⌦ : Im z > 0}, ⌦- = {z 2 ⌦ : Im z < 0}

and I = {z 2 ⌦ : Im z = 0}.

The only interesting case of the next theorem occurs when I is non-

empty.

Theorem. (Symmetry principle)

If f+ and f- are holomorphic functions in ⌦+
and ⌦-

respectively,

that extend continuously to I such that

f+(x) = f-(x) for all x 2 I,
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then the function f defined in ⌦ by

f(z) =

8
><

>:

f+(z), z 2 ⌦+,

f+(z) = f-(z), z 2 I,

f-(z), z 2 ⌦-,

is holomorphic in ⌦.

Proof. We only need to prove that f is holomorphic at points of I.
Suppose D is a disc centred at a point on I and entirely contained

in ⌦. We prove that f is holomorphic in D by Moreras theorem.

Suppose T is a triangle in D. If T does not intersect I, then

 
Z

T

f(z)dz = 0.

Suppose now that one side or vertex of T is contained in I, and the

rest of T is in, for ex., the upper half-disc.

If T" is the triangle obtained from T by slightly raising the edge or

vertex which lies on I

then we have

 
Z

T"

f(z)dz = 0.
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since T" is entirely contained in the upper half-disc. Letting " ! 0,

by continuity we conclude that

 
Z

T

f(z)dz = 0.

If the interior of T intersects I, we can reduce the situation to the

previous one by splitting T as the union of triangles each of which

has an edge or vertex on I

By Moreras theorem we conclude that f is holomorphic in D.

Using the notation introduced before we prove the Schwarz reflec-

tion principle.

Theorem. (Schwarz reflection principle)

Suppose that f is a holomorphic function in ⌦+
that extends con-

tinuously to I and such that f is real-valued on I. Then there exists

a function F holomorphic in ⌦ such that F|⌦+ = f.
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Last time:

Theorem. (Schwarz reflection principle)

Suppose that f is a holomorphic function in ⌦+ that extends con-
tinuously to I and such that f is real-valued on I. Then there exists
a function F holomorphic in ⌦ such that F|⌦+ = f.

Proof. Let us define F(z) for z 2 ⌦- by

F(z) = f(z̄).

To prove that F is holomorphic in ⌦- we note that if z, z0 2 ⌦-

then z̄, z̄0 2 ⌦+ and since f is holomorphic in ⌦+ we have

f(z̄) =
1X

n=0

an(z̄- z̄0)
n.

Therefore

F(z) =
1X

n=0

an(z- z0)
n

and thus F is holomorphic in ⌦-.
Since f is real valued on I we have f(x) = f(x) whenever x 2 I
and hence F extends continuously up to I.

1



2

Section: The complex logarithm.

We have seen that to make sense of the logarithm as a single-valued
function, we must restrict the set on which we define it. This is the
so-called choice of a branch or sheet of the logarithm.

Theorem. Suppose that ⌦ is simply connected with 1 2 ⌦, and 0 62
⌦. Then in ⌦ there is a branch of the logarithm F(z) = log⌦(z) so
that:

(i) F is holomorphic in ⌦,

(ii) eF(z) = z, 8z 2 ⌦,

(iii) F(r) = log r whenever r is a real number and near 1.

In other words, each branch log⌦(z) is an extension of the standard
logarithm defined for positive numbers.

Proof.
We shall construct F as a primitive of the function 1/z. Since 0 62
⌦, the function f(z) = 1/z is holomorphic in ⌦. We define

log⌦(z) = F(z) =

Z

�

f(z)dz,

where � is any curve in ⌦ connecting 1 to z. Since ⌦ is simply
connected, this definition does not depend on the path chosen. Then
F is holomorphic and F 0(z) = 1/z for all z 2 ⌦. This proves (i).

To prove (ii), it suffices to show that ze-F(z) = 1. Indeed,
d

dz

⇣
ze-F(z)

⌘
= e-F(z) - zF 0(z)e-F(z) = (1- zF 0(z))e-F(z) = 0.

Thus ze-F(z) is a constant. Using F(1) = 0 we find that this constant
must be 1.
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Section: Zeros of holomorphic functions.

Definition. We say that f has a zero of order m at z0 2 C if

f(k)(z0) = 0, k = 0, 1, . . .m- 1,

and f(m)(z0) 6= 0.

Theorem. A holomorphic function f has a zero of order m at z0 if
and only if it can be written in the form

f(z) = (z- z0)
m g(z),

where g is holomorphic at z0 and g(z0) 6= 0.

Proof.

f(z) =
f(m)(z0)

m!
(z- z0)

m +
f(m+1)(z0)

(m+ 1)!
(z- z0)

m+1 + . . .

= (z- z0)
m
⇣f(m)(z0)

m!
+

f(m+1)(z0)

(m+ 1)!
(z- z0) + . . .

⌘
.

Then f(z) = (z- z0)m g(z) where g is defined by

g(z) =
f(m)(z0)

m!
+

f(m+1)(z0)

(m+ 1)!
(z- z0) + . . . .

The above series converges and thus g is holomorphic at z0.

Conversely, if f(z) = (z - z0)m g(z), where g(z0) 6= 0, then
f(k)(z0) = 0, k = 0, 1 . . . ,m- 1 and f(m)(z0) = m!g(z0) 6= 0.

Corollary. The zeros of a non-constant holomorphic function are
isolated; that is every zero has a neighbourhood inside of which it
is the only zero.

Proof.

If z0 is a zero of f of order m, then f(z) = (z-z0)m g(z), where g is
holomorphic at z0 and g(z0) 6= 0. This means that g is continuous
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and therefore there is a neighbourhood of z0 in which g(z) 6= 0.
Thus f(z) 6= 0 except for z = z0.

Section: Laurent Series.

Definition. The series

f(z) =
1X

-1
an(z- z0)

n = · · ·+ a-2(z- z0)
-2 + a-1(z- z0)

-1

+ a0 + a1(z- z0) + a2(z- z0)
2 + . . .

is called Laurent series for f at z0 where the series converges.

Example.

e1/z =
1X

n=0

1

n! zn
=

0X

n=-1

1

(-n)!
zn, z 6= 0.

Theorem. (Laurent Expansion Theorem) Let f be holomorphic in
the annulus D = {z : r < |z- z0| < R}.
Then f(z) can be expressed in the form

f(z) =
1X

n=-1
an(z- z0)

n,

where
an =

1

2⇡ i
 
Z

�

f(⌘)

(⌘- z0)n+1
d⌘,

and where � is any simple, closed, piecewise-smooth
curve in D that contains z0 in its interior.
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Section: Laurent Series.

Definition. The series

f(z) =
1X

-1

an(z- z0)
n = · · ·+ a-2(z- z0)

-2 + a-1(z- z0)
-1

+ a0 + a1(z- z0) + a2(z- z0)
2 + . . .

is called Laurent series for f at z0 where the series converges.

Theorem. (Laurent Expansion Theorem) Let f be holomorphic in the annulus
D = {z : r < |z- z0| < R}.
Then f(z) can be expressed in the form

f(z) =
1X

n=-1

an(z- z0)
n,

where

an =
1

2⇡ i
 
Z

�

f(⌘)

(⌘- z0)n+1
d⌘,

and where � is any simple, closed, piecewise-smooth
curve in D that contains z0 in its interior.

Proof. Let us for simplicity assume that z0 = 0 and consider

�1 = {z : |z| = R 0 < R} and �2 = {z : |z| = r 0 > r}

and such that z 2 D 0 = {z : r 0 < |z| < R 0}. Then

f(z) =
1

2⇡ i
 
Z

�1

f(⌘)

⌘- z
d⌘-

1

2⇡ i
 
Z

�2

f(⌘)

⌘- z
d⌘ := I1 - I2.

1



2

If ⌘ 2 �1 then |⌘| > |z| and we have

I1 =
1

2⇡ i
 
Z

�1

f(⌘)

⌘- z
d⌘ =

1

2⇡ i
 
Z

�1

f(⌘)

⌘(1- z/⌘)
d⌘

=
1

2⇡ i

1X

n=0

 
Z

�1

f(⌘)

⌘n+1
d⌘ zn.

f(z) =
1

2⇡ i
 
Z

�1

f(⌘)

⌘- z
d⌘-

1

2⇡ i
 
Z

�2

f(⌘)

⌘- z
d⌘ := I1 - I2.

If ⌘ 2 �2 then |⌘| < |z| and thus

- I2 = -
1

2⇡ i
 
Z

�2

f(⌘)

⌘- z
d⌘ =

1

2⇡ i
 
Z

�2

f(⌘)

z(1- ⌘/z)
d⌘

=
1

2⇡ i

1X

n=0

1

zn+1
 
Z

�2

f(⌘)⌘n d⌘ = [n+ 1 = -k]

=
1

2⇡ i

-1X

k=-1

 
Z

�2

f(⌘)

⌘k+1
d⌘ zk.

Finally we obtain

f(z) =
1X

n=-1

anz
n,

where

an =
1

2⇡ i
 
Z

�2

f(⌘)

⌘n+1
d⌘, n = -1,-2, . . . ,

and

an =
1

2⇡ i
 
Z

�1

f(⌘)

⌘n+1
d⌘, n = 0, 1, 2, . . . .

It remains to show that

an =
1

2⇡ i
 
Z

�

f(⌘)

⌘n+1
d⌘, n = 0,±1,±2, . . . .

Indeed,
1

2⇡ i
 
Z

�

f(⌘)

⌘n+1
d⌘ =

1

2⇡ i

1X

k=-1

ak
 
Z

�

⌘k

⌘n+1
d⌘ = an.

Example.
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Find Laurent series at z0 = 0 for f(z) = 1/(z- 1) for z : |z| > 1.

1

z- 1
=

1

z(1- 1/z)
=

1

z

1X

n=0

1

zn
=

1X

k=1

1

zk
.

This series converges for |z| > 1.

Example.

Find Laurent series at z0 = 0 for f(z) = 1
z(z+2) for 0 < |z| < 2.

1

z(z+ 2)
=

1

2

⇣1
z
-

1

z+ 2

⌘
=

1

2
· 1
z
-

1

4(1+ z/2)

=
1

2
· 1
z
-

1

4

1X

n=0

⇣
-

z

2

⌘n

=
1X

n=0

(-1)n+1 zn

2n+2
+

1

2
· 1
z
.

Section: Poles of holomorphic functions.

Definition. A point z0 is called a singularity of a complex function f if f is not
holomorphic at z0, but every neighbourhood of z0 contains at least one point at
which f is holomorphic.

Definition. A singularity z0 of a complex function is said to be isolated if there
exists a neighbourhood of z0 in which z0 is the only singularity of f.

Example. f(z) = 1
1-z

, z0 = 1, f(z) = e1/z
2 , z0 = 0; f(z) = 1

(z+2)2 , z0 = -2.

Definition. Suppose a holomorphic function f has an isolated singularity at z0
and

f(z) =
1X

n=-1

an(z- z0)
n

is the Laurent expansion of f valid in some annulus 0 < |z- z0| < R. Then
• If an = 0 for all n < 0, z0 is called a removable singularity
• If an = 0 for n < -m where m a fix positive integer, but a-m 6= 0, z0

is called a pole of order m.
• If an 6= 0 for infinitely many negative n’s, z0 is called an essential sin-

gularity.
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Example.
f(z) = sin z

z
; f(z) = e1/z; f(z) = 1

z3(z+2)2 .

Theorem. A function f has a pole of order m at z0 if and only if it can be written
in the form

f(z) =
g(z)

(z- z0)m
,

where g is holomorphic at z0 and g(z0) 6= 0.
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Section: Poles of holomorphic functions.

Definition. Suppose a holomorphic function f has an isolated singularity at z0
and

f(z) =
1X

n=-1

an(z- z0)
n

is the Laurent expansion of f valid in some annulus 0 < |z- z0| < R. Then
• If an = 0 for all n < 0, z0 is called a removable singularity
• If an = 0 for n < -m where m a fix positive integer, but a-m 6= 0, z0

is called a pole of order m.
• If an 6= 0 for infinitely many negative n’s, z0 is called an essential sin-

gularity.

Example.
f(z) = sin z

z
; f(z) = e1/z; f(z) = 1

z3(z+2)2 .

Theorem. A function f has a pole of order m at z0 if and only if it can be written
in the form

f(z) =
g(z)

(z- z0)m
,

where g is holomorphic at z0 and g(z0) 6= 0.

Proof. If g is holomorphic at z0 and g(z0) 6= 0 then for some R > 0

g(z) = a0 + a1(z- z0) + . . . , |z- z0| < R,

where a0 = g(z0) 6= 0. Then

f(z) =
a0

(z- z0)m
+

a1

(z- z0)m-1
+ . . . , 0 < |z- z0| < R.

This implies that z0 is a pole of order m.

1



2

Conversely, if f has a pole of order m at z0, then the Laurent expansion of f about
z0 equals

f(z) =
a-m

(z- z0)m
+

a-m+1

(z- z0)m-1
+ . . .

+
a-1

z- z0
+ a0 + a1(z- z0) + . . .

=
1

(z- z0)m

⇣
a-m + a-m+1(z- z0) + . . .

⌘
.

Section: Residue Theory.

Definition. Let

f(z) =
1X

-1

an (z- z0)
n, 0 < |z- z0| < R.

be the Laurent series for f at z0. The residue of f at z0 is

Res [f, z0] = a-1.

Theorem. Let � ⇢ {z : 0 < |z- z0| < R} be a simple, closed, piecewise-smooth
curve that contains z0. Then

Res [f, z0] =
1

2⇡i
 
Z

�

f(z)dz.

Proof. Let 0 < r < R. By using the Deformation theorem we obtain

1

2⇡i
 
Z

�

f(z)dz =
1

2⇡i
 
Z

|z-z0|=r

f(z)dz

=
1

2⇡i
 
Z

|z-z0|=r

1X

n=-1

an (z- z0)
n dz

=
1

2⇡i

1X

n=-1

Z 2⇡

0

an r
n ein ✓ i r ei ✓ d✓ = a-1.

Theorem. Let f be holomorphic function inside and on a simple, closed,
piecewise-smooth curve � except at the singularities z1, . . . , zn in its interior.
Then

 
Z

�

f(z)dz = 2⇡ i
nX

j=1

Res [f, zj].
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Proof. Let �j = {z : |z- zj| = rj} ⇢ ⌦. Then by using the Deformation theorem
we find

 
Z

�

f(z)dz =
nX

j=1

 
Z

�j

f(z)dz.

Example. Evaluate
H
|z|=1

e1/z dz.
Clearly

e1/z = 1+
1

z
+

1

2! z2
+

1

3! z3
+ . . .

Therefore
 
Z

|z|=1

e1/z dz = 2⇡ i.

Let
f(z) = a-m(z- z0)

-m + a-m+1(z- z0)
-m+1 + . . .

and let g(z) = (z- z0)mf(z).

m = 1. Then g(z) = a-1 + a0 (z- z0) + . . . and therefore
Res [f, z0] = a-1 = lim

z!z0
g(z) = lim

z!z0
(z- z0) f(z).

m = 2. Then g(z) = a-2 + a-1(z- z0) + a0(z- z0)2 + . . . and

Res [f, z0] = a-1 =
d

dz
g(z)

���
z=z0

= lim
z!z0

d

dz
((z- z0)

2 f(z)).

m.
Res [f, z0] = lim

z!z0

1

(m- 1)!

dm-1

dzm-1
((z- z0)

m f(z)) .
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Section: Residue Theory.

Definition. Let

f(z) =
1X

-1

an (z- z0)
n, 0 < |z- z0| < R.

be the Laurent series for f at z0. The residue of f at z0 is

Res [f, z0] = a-1.

Theorem. Let � ⇢ {z : 0 < |z- z0| < R} be a simple, closed, piecewise-smooth
curve that contains z0. Then

Res [f, z0] =
1

2⇡i
 
Z

�

f(z)dz.

Theorem. Let f be holomorphic function inside and on a simple, closed,
piecewise-smooth curve � except at the singularities z1, . . . , zn in its interior.
Then

 
Z

�

f(z)dz = 2⇡ i
nX

j=1

Res [f, zj].

Let
f(z) = a-m(z- z0)

-m + a-m+1(z- z0)
-m+1 + . . .

and let g(z) = (z- z0)mf(z).

m = 1. Then g(z) = a-1 + a0 (z- z0) + . . . and therefore

Res [f, z0] = a-1 = lim
z!z0

g(z) = lim
z!z0

(z- z0) f(z).

1



2

m = 2. Then g(z) = a-2 + a-1(z- z0) + a0(z- z0)2 + . . . and

Res [f, z0] = a-1 =
d

dz
g(z)

���
z=z0

= lim
z!z0

d

dz
((z- z0)

2 f(z)).

m.
Res [f, z0] = lim

z!z0

1

(m- 1)!

dm-1

dzm-1
((z- z0)

m f(z)) .

Example.
Evaluate

 
Z

�

1

z5 - z3
dz, � = {z : |z| = 1/2}

Clearly
1

z5 - z3
=

1

z3(z- 1)(z+ 1)
.

Since z = ±1 is outside � we obtain

 
Z

�

1

z5 - z3
dz = 2⇡iRes [f, 0] = 2⇡i

1

2!
lim
z!0

(z3 f(z)) 00

= ⇡i lim
z!0

✓
1

z2 - 1

◆ 00

= ⇡i lim
z!0

✓
-2z

(z2 - 1)2

◆ 0

= ⇡i lim
z!0

✓
-2(z2 - 1)2 - (-2z) 2(z2 - 1) 2z

(z2 - 1)4

◆
= -2⇡ i.

Example.

Evaluate
 
Z

�

1

(z+ 5)(z2 - 1)
dz, � = {z : |z| = 2}.

Because the integrand has singularities at z = -5 and z = ±1 only the last two
are interior to �, we have

 
Z

�

1

(z+ 5)(z2 - 1)
dz

= 2⇡i

�
Res


1

(z+ 5)(z2 - 1)
,-1

�
+ Res


1

(z+ 5)(z2 - 1)
, 1

��
.

 
Z

�

1

(z+ 5)(z2 - 1)
dz, � = {z : |z| = 2}.
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Now z = 1 is a pole of order 1 and therefore

Res


1

(z+ 5)(z2 - 1)
, 1

�

= lim
z!1

z- 1

(z+ 5)(z2 - 1)
= lim

z!1

1

(z+ 5)(z+ 1)
=

1

12
.

Similarly, z = -1 is a simple pole and

Res


1

(z+ 5)(z2 - 1)
,-1

�

= lim
z!-1

z+ 1

(z+ 5)(z2 - 1)
= lim

z!-1

1

(z+ 5)(z- 1)
= -

1

8
.

Thus,
 
Z

�

1

(z+ 5)(z2 - 1)
dz = 2⇡i

✓
1

12
-

1

8

◆
= -

⇡i

12
.

Section: The argument principle.

Theorem. (Principle of the Argument)
Let f be holomorphic in an open set ⌦ except for a finite number of poles and let
� be a simple, closed, piecewise-smooth curve in ⌦ that does not pass through
any poles or zeros of f. Then

 
Z

�

f 0(z)

f(z)
dz = 2⇡i(N- P),

where N and P are the sums of the orders of the zeros and poles of f inside �.

Remark. Why Principle of the Argument?
Indeed, let � be a closed curve. Then

1

2⇡ i
 
Z

�

f 0(z)

f(z)
dz =

1

2⇡ i
 
Z

�

d

dz
log f(z)dz =

1

2⇡ i
log f(z)

���
z2

z1

=
1

2⇡ i

⇣
ln |f(z2)|- ln |f(z1)|+ i(arg f(z2)- arg f(z1))

⌘
=

1

2⇡
� arg f(z).

Example. Let f(z) = z3 and let � = {z : z = ei✓, ✓ 2 [0, 2⇡]}, then f(z) = ei3✓

and 1
2⇡

�� arg f = 3.

Example. Let f(z) = 1/z and let � = {z : z = ei✓, ✓ 2 [0, 2⇡]}. Then
1
2⇡

�� arg f = -1.
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Example. Let f(z) = z + 2 and let � = {z : z = ei✓, ✓ 2 [0, 2⇡]}. Then
1
2⇡

�� arg f = 0.
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Section: The argument principle.

Theorem. (Principle of the Argument)

Let f be holomorphic in an open set ⌦ except for a finite number of poles and let
� be a simple, closed, piecewise-smooth curve in ⌦ that does not pass through
any poles or zeros of f. Then

 
Z

�

f 0(z)

f(z)
dz = 2⇡i(N- P),

where N and P are the sums of the orders of the zeros and poles of f inside �.

Remark. Why Principle of the Argument?

Indeed, let � be a closed curve. Then

1

2⇡ i
 
Z

�

f 0(z)

f(z)
dz =

1

2⇡ i
 
Z

�

d

dz
log f(z)dz =

1

2⇡ i
log f(z)

���
z2

z1

=
1

2⇡ i

⇣
ln |f(z2)|- ln |f(z1)|+ i(arg f(z2)- arg f(z1))

⌘
=

1

2⇡
� arg f(z).

Proof of Theorem.

Step 1. If z1 is a zero of order n, then

f(z) = (z- z1)
ng(z),

where g is holomorphic at z1 and g(z1) 6= 0. Consequently

f 0(z) = n (z- z1)
n-1 g(z) + (z- z1)

n g 0(z)

and
f 0(z)

f(z)
=

n

z- z1
+

g 0(z)

g(z)
.

1
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Since g(z1) 6= 0 it follows that g(z) 6= 0 in some neighbourhood of z1. Therefore
there is r > 0 such that g 0(z)/g(z) is holomorphic for z : |z - z1|  r and we
have

 
Z

|z-z1|=r

f 0(z)

f(z)
dz =  

Z

|z-z1|=r

n

z- z1
dz+  

Z

|z-z1|=r

g 0(z)

g(z)
dz = 2⇡ i n.

Step 2. If z2 is a pole of order p at z2, then

f(z) =
g(z)

(z- z2)p
,

where g is holomorphic at z2 and g(z2) 6= 0. Consequently

f 0(z) =
-pg(z)

(z- z2)p+1
+

g 0(z)

(z- z2)p

and
f 0(z)

f(z)
=

-p

z- z2
+

g 0(z)

g(z)
.

Since g(z2) 6= 0 it follows that g(z) 6= 0 in some neighborhood of z2. Therefore
there is r > 0 such that g 0(z)/g(z) is holomorphic for z : |z - z2|  r and we
have

 
Z

|z-z2|=r

f 0(z)

f(z)
dz =  

Z

|z-z2|=r

-p

z- z2
dz+  

Z

|z-z2|=r

g 0(z)

g(z)
dz = -2⇡ i p.

Finally we complete the proof by locating finite number of zeros and poles and
using the Deformation theorem.

Example. Let f(z) = (1 + z)/z = 1 + 1/z, where � = {z : z = 2 ei✓, ✓ 2
[0, 2⇡]}. Then N- P = 0. Indeed,

w = f(z) = 1+
1

2
e-i✓ = 1+

1

2
cos ✓-

i

2
sin ✓

and finally we have 1
2⇡

�� arg f = 0.

Example. The same problem with � = {z : |z| = 1/2} implies w = f(z) =
1+ 2 cos ✓- 2i sin ✓. Thus 1

2⇡
�� arg f = -1.

Theorem. (Rouche’s Theorem)

Let f and g be holomorphic in an open set ⌦ and let � ⇢ ⌦ be a simple, closed,
piecewise-smooth curve that contains in its interior only points of ⌦.

If |g(z)| < |f(z)|, z 2 �, then the sums of the orders of the zeros of f + g and f
inside � are the same.
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Proof.

Let us consider the function
ft(z) = f(z) + t g(z), t 2 [0, 1].

Clearly f0(z) = f(z) and f1(z) = f(z) + g(z). Let n(t) be the number of zeros
of ft inside � counted with multiplicities. The inequality |f(z)| > |g(z)|, z 2 �,
implies that ft has no zeros on � and hence

Ft(z) =
f 0t(z)

ft(z)

has no poles on �. Therefore the argument principle implies

n(t) =
1

2⇡i
 
Z

�

Ft(z)dz =
1

2⇡i
 
Z

�

f 0t(z)

ft(z)
dz.

Since n(t) 2 Z, in order to prove that N(f) = N(f + g) it is enough to show
that n(t) is continuous.
Indeed, from |f(z)| > |g(z)| we obtain that there is � > 0 such that |ft| =
|f+ tg| > �, z 2 �, t 2 [0, 1]. Thus for any t1, t2 2 [0, 1] we have

|n(t2)- n(t1)| =

����
1

2⇡i

Z

�

✓
f 0(z) + t2 g

0(z)

f(z) + t2 g(z)
-

f 0(z) + t1 g
0(z)

f(z) + t1 g(z)

◆
dz

����

 1

2⇡
max
�

����
(t2 - t1)(f(z)g 0(z)- f 0(z)g(z))

(f(z) + t2 g(z))f((z) + t1 g(z))

���� · length�

 C
1

�2
|t2 - t1|.
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Lecture 16
1. THE ARGUMENT PRINCIPLE

Theorem 1.1 (Principle of the Argument). Let f be holomorphic in an open set
⌦ except for a finite number of poles and let � be a simple, closed, piecewise-
smooth curve in ⌦ that does not pass through any poles or zeros of f. Then

 
Z

�

f 0(z)

f(z)
dz = 2⇡i(N- P),

where N and P are the sums of the orders of the zeros and poles of f inside �.

Remark 1.1. Why Principle of the Argument?
Indeed, let � be a closed curve. Then

1

2⇡ i
 
Z

�

f 0(z)

f(z)
dz =

1

2⇡ i
 
Z

�

d

dz
log f(z)dz =

1

2⇡ i
log f(z)

���
z2

z1

=
1

2⇡ i

⇣
ln |f(z2)|- ln |f(z1)|+ i(arg f(z2)- arg f(z1))

⌘
=

1

2⇡
� arg f(z).

Example 1.1. Let f(z) = z3 and let � = {z : z = ei✓, ✓ 2 [0, 2⇡]}, then
f(z) = ei3✓ and 1

2⇡
�� arg f = 3.

Example 1.2. Let f(z) = 1/z and let � = {z : z = ei✓, ✓ 2 [0, 2⇡]}. Then
1
2⇡

�� arg f = -1.

Example 1.3. Let f(z) = z + 2 and let � = {z : z = ei✓, ✓ 2 [0, 2⇡]}. Then
1
2⇡

�� arg f = 0.

Proof. Step 1. If z1 is a zero of order n, then
f(z) = (z- z1)

ng(z),

where g is holomorphic at z1 and g(z1) 6= 0. Consequently

f 0(z) = n (z- z1)
n-1 g(z) + (z- z1)

n g 0(z)

1
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and
f 0(z)

f(z)
=

n

z- z1
+

g 0(z)

g(z)
.

Since g(z1) 6= 0 it follows that g(z) 6= 0 in some neighborhood of z1. Therefore
there is r > 0 such that g 0(z)/g(z) is holomorphic for z : |z - z1|  r and we
have

 
Z

|z-z1|=r

f 0(z)

f(z)
dz =  

Z

|z-z1|=r

n

z- z1
dz+  

Z

|z-z1|=r

g 0(z)

g(z)
dz = 2⇡ i n.

Step 2. If z2 is a pole of order p at z2, then

f(z) =
g(z)

(z- z2)p
,

where g is holomorphic at z2 and g(z2) 6= 0. Consequently

f 0(z) =
-pg(z)

(z- z2)p+1
+

g 0(z)

(z- z2)p

and
f 0(z)

f(z)
=

-p

z- z2
+

g 0(z)

g(z)
.

Since g(z2) 6= 0 it follows that g(z) 6= 0 in some neighborhood of z2. Therefore
there is r > 0 such that g 0(z)/g(z) is holomorphic for z : |z - z2|  r and we
have

 
Z

|z-z2|=r

f 0(z)

f(z)
dz =  

Z

|z-z2|=r

-p

z- z2
dz+  

Z

|z-z2|=r

g 0(z)

g(z)
dz = -2⇡ i p.

Finally we complete the proof by locating finite number of zeros and poles and
using the Deformation theorem. ⇤

Example 1.4. Let f(z) = (1 + z)/z = 1 + 1/z, where � = {z : z = 2 ei✓, ✓ 2
[0, 2⇡]}. Then N- P = 0. Indeed,

w = f(z) = 1+
1

2
e-i✓ = 1+

1

2
cos ✓-

i

2
sin ✓

and finally we have 1
2⇡

�� arg f = 0.

Example 1.5. The same problem with � = {z : |z| = 1/2} implies w = f(z) =
1+ 2 cos ✓- 2i sin ✓. Thus 1

2⇡
�� arg f = -1.
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Theorem 1.2. (Rouche’s Theorem) Let f and g be holomorphic in an open set
⌦ and let � ⇢ ⌦ be a simple, closed, piecewise-smooth curve that contains in
its interior only points of ⌦. If |g(z)| < |f(z)|, z 2 �, then the sums of the orders
of the zeros of f+ g and f inside � are the same.

Proof. Let us consider the function
ft(z) = f(z) + t g(z), t 2 [0, 1].

Clearly f0(z) = f(z) and f1(z) = f(z) + g(z). Let n(t) be the number of zeros
of ft inside � counted with multiplicities. The inequality |f(z)| > |g(z)|, z 2 �,
implies that ft has no zeros on � and hence

Ft(z) =
f 0t(z)

ft(z)

has no poles on �. Therefore the argument principle implies

n(t) =
1

2⇡i
 
Z

�

Ft(z)dz =
1

2⇡i
 
Z

�

f 0t(z)

ft(z)
dz.

Since n(t) 2 Z, in order to prove that N(f) = N(f + g) it is enough to show
that n(t) is continuous.
Indeed, from |f(z)| > |g(z)| we obtain that there is � > 0 such that |ft| =
|f+ tg| > �, z 2 �, t 2 [0, 1]. Thus for any t1, t2 2 [0, 1] we have

|n(t2)- n(t1)| =

����
1

2⇡i

Z

�

✓
f 0(z) + t2 g

0(z)

f(z) + t2 g(z)
-

f 0(z) + t1 g
0(z)

f(z) + t1 g(z)

◆
dz

����

 1

2⇡
max
�

����
(t2 - t1)(f(z)g 0(z)- f 0(z)g(z))

(f(z) + t2 g(z))f((z) + t1 g(z))

���� · length�

 C
1

�2
|t2 - t1|.

⇤

Example 1.6. Show that N(z5 + 3z2 + 6z+ 1) = 1 inside the curve |z| = 1.

Proof. Let f(z) = 6z + 1 and g(z) = z5 + 3z2. If |z| = 1, then |g(z)| < |f(z)|.
Indeed

|g(z)| = |z5 + 3z2|  |z5|+ 3|z2| = 4.

|f(z)| = |6z+ 1| � 6|z|- 1 = 5 > 4 � |g(z)|.

Since 6z+ 1 = 0 has only one zero z = -1/6, then N(f) = N(f+ g) = 1. ⇤
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Example 1.7. Show that all roots of w(z) = z7 - 2z2 + 8 = 0 are inside the
annulus 1 < |z| < 2.

Proof. 1. Consider first � = {z : |z| = 2}. Let f(z) = z7 and g(z) = -2z2 + 8.
If |z| = 2, then |f(z)| = 27 = 128 and

|g(z)| = |- 2z2 + 8|  2|z2|+ 8 = 2 22 + 8 = 16 < 128 = |f(z)|.

Since |f(z)| > |g(z)|, |z| = 2, then the number of roots of w inside the curve
|z| = 2 coincides with the number of roots of f(z) = z7 = 0 and equals 7.

2. Let now � = {z : |z| = 1} and let f(z) = 8 and g(z) = z7 - 2z2. Then

|z7 - 2z2|  |z7|+ 2|z|2  3 < 8.

The equation f(z) = 0 has no solutions. This implies that all zeros of f + g are
outside � = {z : |z| = 1}. ⇤

2. OPEN MAPPING THEOREM AND MAXIMUM MODULUS PRINCIPLE

Definition 2.1. A mapping is said to be open if it maps open sets to open sets.

Theorem 2.1. (Open mapping theorem) If f is holomorphic and non-constant in
an open set ⌦ ⇢ C, then f is open.

Proof. Let w0 belong to the image of f, w0 = f(z0). We must prove that all
points for while near w0 also belong to the image of f.
Define g(z) = f(z)-w. Then

g(z) = (f(z)-w0) + (w0 -w) = F(z) +G(z).

Now choose � > 0 such that the disc {z : |z - z0|  � is contained in ⌦ and
f(z) 6= w0 on the circle |z- z0| = �.

(WHY is it possible??)

We then select " > 0 so that we have |f(z) - w0| � " on the circle C� = {z :
|z- z0| = �}. Now if |w-w0| < " we have |F(z)| > |G(z)| on the circle C�, and
by Rouchés theorem we conclude that g = F + G has a zero inside C� since F
has one. ⇤

Remark 2.1. Note that if f is open, then |f| is also open.
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Theorem 2.2. (Maximum modulus principle)
If f is a non-constant holomorphic function is an open set ⌦ ⇢ C, then f cannot
attain a maximum in ⌦.

Proof. Suppose that f did attain a maximum at z0 ⇢ ⌦. Since f is holomorphic
it is an open mapping, and therefore, if D ⇢ ⌦ is a small open disc centred at
z0, its image f(D) is open and contains f(z0). This proves that there are points
z 2 D such that |f(z)| > |f(z0)|, a contradiction. ⇤

Corollary 2.1. Suppose that is an open set ⌦ ⇢ C with compact closure ⌦. If f
is holomorphic on ⌦ and continuous on ⌦ then

sup
z2⌦

|f(z)|  sup
z2⌦\⌦

|f(z)|.

Remark 2.2. The hypothesis that ⌦ is compact (that is, bounded) is essential
for the conclusion.

WHY ??? Give an example.
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Lecture 17

Section: Evaluation of Definite integrals.

Example. Evaluate Z1

-1

1

1+ x2
dx.

Solution. Consider
 
Z

�

1

1+ z2
dz,

where � = �1 [ �2.

�1 = {z : z = x+ i0, -R < x < R},

and �2 = {z : z = R ei✓, 0  ✓  ⇡}, R > 1.

The integrant (1 + z2)-1 has simple poles at ±i and only the pole at i is interior
to �. Therefore

 
Z

�

1

1+ z2
dz = 2⇡ iRes

h 1

1+ z2
, i
i
= 2⇡ i lim

z!i

z- i

1+ z2
= 2⇡ i

1

2i
= ⇡.

Then

⇡ =

ZR

-R

1

1+ x2
dx+

Z

�2

1

1+ z2
dz.

Note that by using the ML-inequality we have
���
Z

�2

1

1+ z2
dz

��� 
1

R2 - 1
R⇡ ! 0, R ! 1.

Finally we have

⇡ = lim
R!1

⇣ ZR

-R

1

1+ x2
dx+

Z

�2

1

1+ z2
dz

⌘
=

Z1

-1

1

1+ x2
dx.

1
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Example. Evaluate Z1

0

1

1+ x3
dx.

Solution. Consider

 
Z

�

1

1+ z3
dz, � = �1 [ �2 [ �3,

where

�1 = {z : z = x+ iy, x 2 [0, R], y = 0}, R > 1,

�2 = {z : z = R ei✓, 0  ✓  2⇡/3},

�3 = {z : z = r ei2⇡/3, r 2 [R, 0]}

The function 1+ z3 has three zeros

z1 = ei⇡/3, z2 = ei⇡ and z3 = e5i⇡/3,

of which only z1 is internal for �. Therefore

 
Z

�

1

1+ z3
dz = 2⇡ iRes

h 1

1+ z3
, ei⇡/3

i

= 2⇡ i lim
z!ei⇡/3

z- ei⇡/3

1+ z3

= 2⇡ i lim
z!ei⇡/3

1

3z2
= 2⇡ i

1

3
e-2i⇡/3 =

2

3
⇡ i

⇣
-

1

2
- i

p
3

2

⌘

=
⇡
p
3

3
- i

⇡

3
.

Note that

lim
R!1

Z

�1

1

1+ z3
dz = lim

R!1

ZR

0

1

1+ x3
dx =

Z1

0

1

1+ x3
dx.

Moreover by using that |1+ R3ei3✓| > |R3 - 1| and the ML-inequality we have

���
Z

�2

1

1+ z3
dz

��� =
���
Z 2⇡/3

0

1

1+ R3 ei3✓
iR ei✓ d✓

���

 R

R3 - 1
· 2⇡
3

! 0, as R ! 1.
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The integral over �3 equals
Z

�3

1

1+ z3
dz =

Z 0

R

1

1+ r3 ei2⇡3/3
ei2⇡/3 dr

= -
⇣
-

1

2
+ i

p
3

2

⌘ ZR

0

1

1+ r3
dr !

⇣1
2
- i

p
3

2

⌘ Z1

0

1

1+ r3
dr,

as R ! 1.

Finally we obtain

⇡
p
3

3
- i

⇡

3
=

⇡

3
(
p
3- i)

=

Z1

0

1

1+ x3
dx+

⇣1
2
- i

p
3

2

⌘ Z1

0

1

1+ r3
dr

=
⇣3
2
- i

p
3

2

⌘ Z1

0

1

1+ x3
dx =

p
3

2
(
p
3- i)

Z1

0

1

1+ x3
dx.

This implies Z1

0

1

1+ x3
dx =

2⇡

3
p
3
.

Example. Evaluate Z1

-1

cos x
ex + e-x

dx.

Solution. Let introduce the contour

� = �1 [ �2 [ �3 [ �4

= [-R, R] [ [R, R+ i⇡] [ [R+ i⇡,-R+ i⇡] [ [-R+ i⇡,-R]

Let f(z) = eiz/(ez + e-z). The singularities of f are solutions of the equation
ez + e-z = 0, or

e2xe2iy = -1.

Solutions of this equation are x = 0, y = ⇡/2 + k⇡, k = 0,±1,±2, . . . . The
only singularity of f in the interior of the counter � is at z0 = i⇡/2 and

Res
h eiz

ez + e-z
, i⇡/2

i
= lim

z!i⇡/2

(z- i⇡/2)e-⇡/2

ez + e-z
=

ei(i⇡/2)

2i
.
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Therefore I

�

eiz

ez + e-z
dz = 2⇡ i · e

i(i⇡/2)

2i
= ⇡ e-⇡/2.

The integral over �2 can be estimated as follows

���
Z

�2

eiz

ez + e-z
dz

���  ⇡max0y⇡

���
eiR e-y

eR eiy + e-R e-iy

���

 ⇡max0y⇡
e-y

eR|eiy + e-2Re-iy|
 1

eR(1- e-2R)
! 0,

as R ! 1.
A similar argument proves the same result for the integral of f over �4.

Z

�3

eiz

ez + e-z
dz =

Z-R

R

eix-⇡

ex+i⇡ + e-x-i⇡
dx

= e-⇡

Z-R

R

eix

-ex - e-x
dx = e-⇡

ZR

-R

eix

ex + e-x
dx

= e-⇡

ZR

-R

cos x
ex + e-x

dx.

Therefore

(1+ e-⇡)

Z1

-1

cos x
ex + e-x

dx = ⇡ e-⇡/2

and finally Z1

-1

cos x
ex + e-x

dx =
⇡

e⇡/2 + e-⇡/2
.

Example. Evaluate
Z1

0

(log x)2

1+ x2
dx.

Solution. Introduce the following function

f(z) =
(log z- i⇡/2)2

1+ z2

and take the branch of the logarithm given by the cut -⇡/2 < ✓  3⇡/2.
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Consider � = �R [ �1 [ �r [ �2, where

�R = R ei✓, R >> 1, ✓ 2 [0,⇡],

�1 = {z : z = x+ i0, x 2 [-R,-r]}, r << 1,

�r = r ei✓, ✓ 2 [⇡, 0],

�2 = {z : z = x+ i0, x 2 [r, R]}.

The only singularity of f which is internal for � is z0 = i and

Res
h(log z- i⇡/2)2

1+ z2
, i
i
=

2(log i- i⇡/2)

2i i
= 0.

This explains why we have the strange constant i⇡/2 in the definition of f. So
I

�

(log z- i⇡/2)2

1+ z2
dz = 0.

Note that log z- i⇡/2 = ln |z|+ i(✓- ⇡/2), where ✓ 2 (-⇡/2, 3⇡/2].
By using the ML-inequality we obtain

���
Z

�R

(log z- i⇡/2)2

1+ z2
dz

��� 
(lnR)2 + ⇡2

R2 - 1
· ⇡R ! 0,

as R ! 1.
The integral over �r equals

���
Z

�r

(log z- i⇡/2)2

1+ z2
dz

��� 
(ln r)2 + ⇡2

1- r2
· ⇡ r ! 0,

as r ! 0.

Z

�1

(log z- i⇡/2)2

1+ z2
dz =

Z-r

-R

(ln |x|+ i⇡/2)2

1+ x2
dx =

ZR

r

(ln |x|+ i⇡/2)2

1+ x2
dx

and Z

�2

(log z- i⇡/2)2

1+ z2
dz =

ZR

r

(ln |x|- i⇡/2)2

1+ x2
dx.

Letting R ! 1 and r ! 0 we get

2

Z1

0

(ln |x|)2

1+ x2
dx- 2

⇡2

4

Z1

0

dx

x2 + 1
= 0.

Therefore Z1

0

(log x)2

1+ x2
dx =

⇡2

4

Z1

0

dx

x2 + 1
=

⇡2

4
arctan x

���
1

0
=

⇡3

8
.
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Section: Harmonic functions.

Definition. Let ' = '(x, y), x, y 2 R2
be a real function of two variables. It

said to be harmonic in an open set ⌦ ⇢ R2
if

�'(x, y) :=
@2'

@x2
(x, y) +

@2'

@y2
(x, y) = ' 00

xx(x, y) +' 00
yy(x, y) = 0.

Usually � is called the Laplace operator.

Theorem. Let f(z) = u(x, y) + iv(x, y) be holomorphic in an open set ⌦ ⇢ C.

Then u and v are harmonic.

Proof.
Since f = u + iv is holomorphic it is infinitely differentiable. In particular, the

functions u and v have continuous second derivatives that allows us to change

the order of the second derivatives and using the Cauchy-Riemann equations to

obtain

u 00
xx = (u 0

x)
0
x = (v 0

y)
0
x = (v 0

x)
0
y = (-u 0

y)
0
y = -u 00

yy.

Therefore

u 00
xx + u 00

yy = 0.

Similarly we find that �v = 0.

Theorem. (Harmonic conjugate)

Let u be harmonic in an open disc D ⇢ C. Then there exists a harmonic function

v such that f = u + iv is holomorphic in D. In this case v is called harmonic

conjugate to u.

Proof.

We can assume that D = DR = {(x, y) 2 R2 : |z| < R}, R > 0. Let (x, y) 2 DR

and let � = �1 [ �2, where

�1 = {(t, s) 2 R2 : t 2 (0, x), s = 0},

�2 = {(t, s) : t = x, s 2 (0, y)},

1
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We now define

v(x, y) =

Z

�

✓
-
@u

@y
dt+

@u

@x
ds

◆
= -

Z x

0

@u(t, 0)

@y
dt+

Zy

0

@u(x, s)

@x
ds.

Using u 00
xx = -u 00

yy we obtain

v 0
x(x, y) = -u 0

y(x, 0) +

Zy

0

@2u(x, s)

@x2
ds = -u 0

y(x, 0)-

Zy

0

@2u(x, s)

@s2
ds

= -u 0
y(x, 0) + u 0

y(x, 0)- u 0
y(x, y) = -u 0

y(x, y).

Differentiating v with respect to y we have

v 0
y(x, y) =

@

@y

✓
-

Z x

0

@u(t, 0)

@y
dt+

Zy

0

@u(x, s)

@x
ds

◆
= 0+ u 0

x(x, y).

Thus the C-R equations are satisfied and we conclude that f(z) = u(x, y) +
iv(x, y) is holomorphic inside D.

Remark.

In a simply connected domain ⌦ ⇢ R2
every harmonic function u has a har-

monic conjugate v defined by the line integral

v(x, y) =

Z

�

✓
-
@u

@y
dx+

@u

@x
dy

◆
,

where the path of integration � is a curve starting at a fixed base-point (x0, y0) 2
⌦ with the end point at (x, y) 2 ⌦. The integral in independent of path by

Green’s theorem because u is harmonic and ⌦ is simply connected.

We leave this statement without the proof because it requires Green’s theorem
that we did not have in our course.

Example. Let u(x, y) = ln(x2 + y2) defined in R2 \ {0} and let

⌦ = C \ {z = x+ iy : x 2 (-1, 0], y = 0}.
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Find in ⌦ a harmonic conjugate v to u and thus a holomorphic function f =
u+ iv.

Step 1. We first check that ln(x2 + y2) is harmonic in R \ {0}. Indeed,

u 0
x =

2x

x2 + y2
, u 00

xx =
2

x2 + y2
-

4x2

(x2 + y2)2

and

u 0
y =

2y

x2 + y2
, u 00

yy =
2

x2 + y2
-

4y2

(x2 + y2)2
.

Thus �u = 0.

Step 2. In order to find u’s harmonic conjugate we use the Cauchy-Riemann

equations.

a) v 0
y = u 0

x = 2x/(x2 + y2) implies

v(x, y) =

Z
2x

x2 + y2
dy = 2 arctan

y

x
+ C(x).

b) u 0
y = -v 0

x implies

2y

x2 + y2
= -

2

1+ y2/x2
· -y

x2
+ C 0(x) =) C 0(x) = 0

and thus C(x) = C 2 R.

Solution: v = 2 arctan
y
x
+ C and hence

f(z) = ln(x2 + y2) + 2i arctan
y

x
+ iC = 2(ln |z|+ iArg z) + iC.

Example. Let u(x, y) = x3 - 3xy2 + y.

i. Verify that the function u is harmonic.

ii. Find all harmonic conjugates v of u.

iii. Find the holomorphic function f, Re f = u, as a function of z, s.t.

f(1) = 1+ i.

Step 1. For u = x3 - 3xy2 + y we have u 0
x = 3x2 - 3y2

, u 00
xx = 6x and

u 0
y = -6xy+ 1, u 00

yy = -6x. Thus we have

�u(x, y) = u 00
xx + u 00

yy = 6x- 6x = 0.

Step 2. Cauchy-Riemann equations imply

v 0
y = u 0

x = 3x2 - 3y2.
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Integrating the latter w.r.t. y we find

v = 3x2y- y3 + F(x),

and differentiating it w.r.t. x we have

v 0
x = 6xy+ F 0(x) = -u 0

y = 6xy- 1.

So F 0(x) = -1 and F(x) = -x+ c, c 2 R. This implies

v = 3x2y- y3 - x+ c,

f = u+ iv = x3 - 3xy2 + y+ 3ix2y- iy3 - ix+ ic

= (x+ iy)3 - i(x+ iy) + ic.

Step 3.

We find f(z) = z3 - iz+ ic. Solving the equation

f(1) = 1+ i =
�
z3 - iz+ ic

�
z=1

= 1- i+ ic

we find c = 2.

Section: Properties of real and imaginary parts

of holomorphic functions.

Theorem.

Assume that f = u+ iv is a holomorphic function defined on an open connected

set ⌦ ⇢ C. Consider two equations

a) u(x, y) = C and b) v(x, y) = K,

where C,K are two real constants.

Assume that the equations a) and b) have the same solution (x0, y0) and that

f 0(z0) 6= 0 at z0 = x0 + iy0. Then the curve defined by the equation a) is

orthogonal to the curve defined by the equation b) at (x0, y0).
Proof. It is enough to show that the gradient ru and rv are orthogonal at z0.
We use C-R equations and obtain

ru ·rv = u 0
xv

0
x + u 0

yv
0
y = v 0

yv
0
x - v 0

xv
0
y = 0.

Example. Let f(z) = ln(x2 + y2) + 2i arctan
y
x
. Consider

ln(x2 + y2) = C =) x2 + y2 = eC.

This is a circle whose radius is eC/2.
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The second equation

2 arctan
y

x
= K =) y

x
= tan(K/2) =) y = tan(K/2) · x

and this equation describes a straight line going through the origin.

Example. Let f(z) = z2 = x2 - y2 + 2ixy. Then we have
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Conformal mappings.

Section: Preservation of angles.

Let us considers a smooth curve � ⇢ C parametrised by z(t) = x(t) + iy(t),
t 2 [a, b]. For each t0 2 [a, b] there is the direction vector

Lt0
= {(z(t0) + tz

0(t0) : t 2 R}
= {(x(t0) + tx

0((t0) + i (y(t0) + ty
0(t0)) : t 2 R} .

Consider now two curves �1 and �2 parametrised by the functions z1(t) and
z2(t), t 2 [0, 1], respectively intersecting in the point t = 0, namely, z1(0) =
z2(0).

We then define the angle between the curves �1 and �2 to be the angle between
the tangents, namely

arg z 0
2
(0)- arg z 0

1
(0).

We have the following result:

Theorem. (Angle preservation theorem)
Let f be holomorphic in an open subset set ⌦ ⇢ C. Suppose that two curves �1

and �2 lying inside ⌦ are parametrised by z1(t) and z2(t), t 2 [0, 1]. Assume
that z0 = z1(0) = z2(0) is their intersecting point and z

0
1
(0), z 0

2
(0) and also

f
0(z0) are all non-zero.

Then the angles between the curves (z1(t), z2(t)) and (f(z1(t)), f(z2(t)) at t = 0

satisfy

arg z 0
2
(t)- arg z 0

1
(t)

���
t=0

= arg (f(z2(t))) 0 - arg (f(z1(t)) 0)
���
t=0

mod (2⇡).

Proof. Indeed,

(f(z1(t))) 0

(f(z2(t))) 0

���
t=0

=
f
0(z1(0))z 0

1
(0)

f 0(z2(0))z 0
2
(0)

=
f
0(z0)z 0

1
(0)

f 0(z0)z 0
2
(0)

=
z
0
1
(0)

z 0
2
(0)

.

1
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This implies

arg (f � z2)) 0(0)- arg (f � z1) 0(0)) = arg z 0
2
(0)- arg z 0

1
(0) mod (2⇡).

Remark.

The condition f
0(z0) 6= 0 in the Theorem is essential. For example, consider the

holomorphic function f(z) = z
2 at z0 = 0. The positive x-axis maps to itself,

and the line ✓ = ⇡/4 maps to the positive y-axis. The angle between the lines
doubles.

Remark.

The theorem states that it is not only the value of the angle is preserved by f but
also its orientation. Consider for example of a (nonholomorphic) f preserving
the value of the angle but not the orientation

f(z) = z

One can think of this mapping geometrically as reflection in the x-axis.

Definition. We say that a complex function f is conformal in an open set ⌦ ⇢ C
if it is holomorphic in ⌦ and if f 0(z) 6= 0, 8z 2 ⌦.

For example, the function f(z) = z
2 is conformal in the open set C \ {0}.

The angle preservation theorem tells us that conformal mappings preserve an-
gles.

Definition. A holomorphic function is a local injection on an open set ⌦ ⇢ C if
for any z0 2 ⌦ there exists D = {z : |z- z0| < r} ⇢ ⌦ such that f : D ! f(D)
is injection.

Theorem.

If f : ⌦ ! C is a local injection and holomorphic, then f
0(z) 6= 0 for all z 2 ⌦.

In particular, the inverse of f defined on its range is holomorphic, and thus the
inverse of a conformal map is also holomorphic.

Proof. We argue by contradiction. Suppose that f 0(z0) = 0 for some z0 2 ⌦.
Then for a sufficiently small r > 0 there is D = {z : |z- z0| < r}, D ⇢ ⌦, such
that

f(z)- f(z0) = a (z- z0)
k + g(z), z 2 D,
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where a 6= 0, k � 2 and g(z) = O(|z-z0|
k+1). For sufficiently small 0 6= w 2 C

denote
f(z)- f(z0)-w = F(z) +G(z),

where
F(z) = a (z- z0)

k -w, G(z) = g(z).

If r > 0 and |w| are small enough then we have

|G(z)| < |F(z)|, z 2 {z : |z- z0| = r},

Rouche’s theorem implies that f(z)- f(z0)-w has at least two zeros in D.
Note that since the zeros of holomorphic function are isolated and f

0(z0) = 0

then for a sufficiently small r it follows f 0(z) 6= 0, z 6= z0. Therefore the roots of
{(z) = f(z) - f(z0) -w are distinct. Indeed, {(z0) = w 6= 0. Hence if {(z)
has a root of degree at least two at some z1 then { 0(z1) = f

0(z1) = 0 which is
impossible.

This finally implies that f is not injective and gives contradiction.

Let g = f
-1 denote the inverse of f on its range, which we can assume is V ⇢ C.

Suppose w0 2 V and w is closed to w0. Assuming w = f(z) and w0 = f(z0)
with w 6= w0 we find

g(w)- g(w0)

w-w0

=
1

w-w0

g(w)-g(w0)

=
1

f(z)-f(z0)
z-z0

.

Since f
0(z0) 6= 0 then letting z ! z0 we conclude that g is holomorphic at w0

and g
0(w0) = 1/f

0(g(w0)).

Section: Möbius Transformations.

Definition.

A Möbius transformation (that is also called a bilinear transformation) is a map

f(z) =
az+ b

cz+ d
, where a, b, c, d 2 C and ad- bc 6= 0.

The condition ad- bc 6= 0 is necessary for the transformation to be non-trivial.
Indeed, ad - bc = 0 gives a/c = b/d = const and the transformation reduces
to f(z) = const.
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It is clear that a Möbius transformation is holomorphic except for a simple pole
at z = -d/c. Its derivative is the function

f
0(z) =

a(cz+ d)- c(az+ b)

(cz+ b)2
=

ad- bc

(cz+ d)2

and therefore the mapping is conformal throughout C \ {-d/c}.

Theorem.
The inverse of a Möbius transformation is a Möbius transformation. The com-
position of two Möbius transformations is a Möbius transformation.
Proof. It is easily to verify, that the Möbius transformation

g(w) =
dw- b

-cw+ a

is the inverse of f(z) = az+b

cz+d
. Indeed,

g(f(z)) =
d

az+b

cz+d
- b

-c
az+b

cz+d
+ a

=
d(az+ b)- b(cz+ d)

-c(az+ b) + a(cz+ d)

=
adz+ db- bcz- db

-caz- cb+ acz+ ad
= z.

Composition of two Möbius transformations.

Given two Möbius transformations

f1(z) =
a1z+ b1

c1z+ d1

and f2(z) =
a2z+ b2

c2z+ d2

an easy calculation gives

f1 � f2(z) = f1(f2(z)) =
Az+ B

Cz+D
,

where
A = a1a2 + b1c2, B = a1b2 + b1d2, C = c1a2 + d1c2, D = c1b2 + d1d2.

Thus f1 � f2 is a Möbius transformation. A simple computation gives
AD- BC = (a1d1 - b1c1)(a2d2 - b2c2) 6= 0.
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Remark.
The composition of Möbius transformations in effect corresponds to matrix mul-
tiplication. Indeed,

✓
A B

C D

◆
=

✓
a1 b1

c1 d1

◆ ✓
a2 b2

c2 d2

◆
.

Besides, ✓
a b

c d

◆-1

=
1

ad- bc

✓
d -b

-c a

◆
.

This is essentially the matrix of the inverse mapping f(z) = az+b

cz+d
, since multi-

plication of all the coefficients by a non-zero complex constant does not change
a Möbius transformation.

Special Möbius transformations.

Let
f(z) =

az+ b

cz+ d

and consider the following cases:
(M1) z 7! az (b = c = 0, d = 1);

if |a| = 1, a = e
i✓, then this is a rotation by ✓. If a > 0 then f corresponds to a

dilation and if a < 0 the map consists of a dilation by |a| followed by a rotation
of ⇡.

(M2) z 7! z+ b (a = d = 1, c = 0- translation byb);

(M3) z 7! 1

z
(a = d = 0, b = c = 1- inversion).

In (M1), if a = re
i✓, the geometrical interpretation is an expansion by the factor

r followed by a rotation anticlockwise by the angle ✓.

Theorem.
Every Möbius transformation

f(z) =
az+ b

cz+ d

is a composition of transformations of type (M1), (M2) and (M3).
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Section: Möbius Transformations.

Definition.

A Möbius transformation (that is also called a bilinear transformation) is a map

f(z) =
az+ b

cz+ d
, where a, b, c, d 2 C and ad- bc 6= 0.

Special Möbius transformations.

Let

f(z) =
az+ b

cz+ d
and consider the following cases:

(M1) z 7! az (b = c = 0, d = 1);

if |a| = 1, a = ei✓, then this is a rotation by ✓. If a > 0 then f corresponds to a

dilation and if a < 0 the map consists of a dilation by |a| followed by a rotation

of ⇡.

(M2) z 7! z+ b (a = d = 1, c = 0- translation byb);

(M3) z 7! 1
z

(a = d = 0, b = c = 1- inversion).

In (M1), if a = rei✓, the geometrical interpretation is an expansion by the factor

r followed by a rotation anticlockwise by the angle ✓.

Theorem.

Every Möbius transformation

f(z) =
az+ b

cz+ d

is a composition of transformations of type (M1), (M2) and (M3).

Proof.

1. If c = 0 and d 6= 0, then

f(z) =
az+ b

d
= g2 � g1(z),

1
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where

g1(z) =
a

d
z, g2(z) = z+

b

d
.

2. If c 6= 0, then f(z) = g5 � g4 � g3 � g2 � g1(z), where

g1(z) = cz, g2(z) = z+ d, g3 =
1

z
,

g4(z) =
1

c
(bc- ad)z g5(z) = z+

a

c
.

Indeed,

g1(z) = c z, g2 � g1(z) = c z+ d, g3 � g2 � g1(z) =
1

cz+ d
,

g4 � g3 � g2 � g1(z) =
bc- ad

c(cz+ d)
,

g5 � g4 � g3 � g2 � g1(z) =
a

c
+

bc- ad

c(cz+ d)
=

az+ b

cz+ d
= f(z).

Corollary.

A Möbius transformation transforms circles into circles, and interior points into

interior points. (Here we mean that straight lines are also circles whose radius

equal infinity).

Proof. Each of the transformations (M1), (M2) and (M3) transform circles into

circles.

Section: Cross-Ratios Möbius Transformation.

Theorem.

If w = f(z) is a Möbius transformation that maps the distinct points (z1, z2, z3)
into the distinct points (w1,w2,w3) respectively, then

✓
z- z1
z- z3

◆ ✓
z2 - z3
z2 - z1

◆
=

✓
w-w1

w-w3

◆ ✓
w2 -w3

w2 -w1

◆
, for all z.

Proof.

The Möbius transformation

g(z) =

✓
z- z1
z- z3

◆ ✓
z2 - z3
z2 - z1

◆
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maps z1, z2, z3 to 0, 1,1 respectively. Similarly the Möbius transformation

h(w) =

✓
w-w1

w-w3

◆ ✓
w2 -w3

w2 -w1

◆

maps w1,w2,w3 to 0, 1,1 respectively. Therefore h-1 �g maps (z1, z2, z3) into

(w1,w2,w3).

Example. Find a Möbius transformation w = f(z) that maps the points 1, i, and

-1 on the unit circle |z| = 1 onto the points -1, 0, 1 on the real axis. Determine

the image of the interior |z| < 1 under this transformation.

Proof. Let z1 = 1, z2 = i, z3 = -1 and w1 = -1, w2 = 0, w3 = 1. The the

mapping w = f(z) must satisfy the Cross-Ratios Möbius Transformation

z- 1

z- (-1)
· i- (-1)

i- 1
=

w- (-1)

w- 1
· 0- 1

0- (-1)

=) z- 1

z+ 1
· i+ 1

i- 1
= -

w+ 1

w- 1
=) z- 1

z+ 1
(-i) = -

w+ 1

w- 1
=) (w- 1)(z- 1) i = (w+ 1)(z+ 1)

=) w ((z- 1)i- (z+ 1)) = (z- 1)i+ (z+ 1)

=) w =
iz- i+ z+ 1

zi- i- z- i- 1
=

z(1+ i) + (1- i)

iz(1+ i)- (1+ i)
=

z- i

iz- 1
.

Note that if z = 0 then f(0) = i.

Example. Find a linear fractional transformation w = f(z) that maps the points

z1 = -i, z2 = 1, and z3 = 1 on the line y = x - 1 onto the points w1 = 1,

w2 = i, and w3 = -1 on the unit circle |w| = 1.

Proof. Note that

lim
z3!1

z+ i

z- z3
· 1- z3
1+ i

= lim
t!0

z+ i

z- 1/t
· 1- 1/t

1+ i

= lim
t!0

z+ i

tz- 1
· t1- 1

1+ i
=

z+ i

1+ i
.

Therefore in this case the cross-ratio could be written

z+ i

1+ i
=

w- 1

w+ 1
· i+ 1

i- 1
=) z+ i

1+ i
= -i

w- 1

w+ 1

=) w =
-z- 1

z+ 2i- 1
.
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Section: Conformal mapping of a half-plane to the unit disc.

The upper half-plane can be mapped by a holomorphic bijection to the disc, and

this is given by a Möbius transformation.

Let

H = {z = x+ iy 2 C : Im z = y > 0}.

A remarkable surprising fact is that the unbounded set H is conformally equiva-

lent to the unit disc. Moreover, an explicit formula giving this equivalence exists.

Indeed, let

w = f(z) =
i- z

i+ z
, g(w) = i

1-w

1+w
.

Theorem. Let D = {z : |z| < 1}. Then the map f : H 7! D is a conformal map

with inverse g : D 7! H.

Proof. Clearly both functions are holomorphic in their respective domains. If

z = x+ iy, y > 0, then

���
i- z

i+ z

���
2

=
���
x2 + (y- 1)2

x2 + (y+ 1)2

��� < 1.

Let w = u+ iv, |w| < 1. Then

Img(w) = Re

✓
1- u- iv

1+ u+ iv

◆
= Re

✓
(1- u- iv)(1+ u- iv)

(1+ u)2 + v2)

◆

=
1- u2 - v2

(1+ u)2 + v2
> 0.

Finally

f � g(w) =
i- i 1-w

1+w

i+ i 1-w
1+w

=
1+w- 1+w

1+w+ 1-w
= w.

Similarly we also have g � f(z) = z.

Note that f is holomorphic in C \ {-i} and, in particular, it is continuous on the

boundary of @(H) = {z = x+ i0 2 C}. Clearly

|f(z)|z=x+i0 =
���
i- x

i+ x

��� = 1.

Thus f maps R onto the boundary of the unit disc @D. Moreover,

f(z) =
i- x

i+ x
=

1- x2

1+ x2
+ i

2x

1+ x2
.
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f(z) =
i- x

i+ x
=

1- x2

1+ x2
+ i

2x

1+ x2
.

Let x = tan ✓ with ✓ 2 (-⇡/2,⇡/2). Since

cos 2✓ =
1- tan

2 ✓

1+ tan2 ✓
and sin 2✓ =

2 tan ✓

1+ tan2 ✓
we obtain

f(z) = cos 2✓+ i sin 2✓ = e2i✓.

f(z) = cos 2✓+ i sin 2✓ = e2i✓, ✓ 2 (-⇡/2,⇡/2).

Therefore the image of the real line is the arc consisting of the circle omitting

the point -1. Moreover, if the value of x changes from -1 to 1, f(x) changes

along that arc starting from -1 and first going through that part of the circle that

lies in the lower half-plane. The point -1 on the circle corresponds to “infinity”

of the upper half-plane.

Section: Riemann mapping theorem.

Definition. We say that ⌦ ⇢ C is proper if it is non-empty and not the whole of

C.

Theorem.

Suppose ⌦ is proper and simply connected. If z0 2 ⌦, then there exists a unique

conformal map f : ⌦ ! D such that

f(z0) = 0 and f 0(z0) > 0.

Corollary

Any two proper simply connected open subsets in C are conformally equivalent.

Thank you and good luck with the exam


