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”Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in their halls of stone,
Nine for Mortal Men doomed to die,
One for the Dark Lord on his dark throne
In the Land of Mordor where the Shadows lie.
One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them
In the Land of Mordor where the Shadows lie.”

– J.R.R Tolkien, Rings of Power
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Part I

Groups

1 Homomorphisms + Normal Subgroups

1.1 Homomorphisms, Isomorphisms and Automorphisms

Group Axioms
G is a group w.r.t a binary operation ⇐⇒ ∀g, h, i ∈ G

• G1 - gh ∈ G (Closure Axiom)

• G2 - (gh)i = g(hi) (Associativity Axiom)

• G3 - ∃e ∈ G s.t ∀g ∈ G, ge = e = eg (Existence of identity)

• G4 - ∀g ∈ G,∃g−1 s.t gg−1 = e = g−1g (Existence of inverses)

Definition 1.1 A function f : G → H is a Homomorphism if ∀a, b ∈ G we have f(ab) = f(a)f(b).
Note ab operation of G, f(a)f(b) operation of H

corollary: f(eG) = eH =⇒ f(g−1) = f(g)−1

Definition 1.4 A function f : G → H an Isomorphism if f a bijective homomorphism.
We write f : G

∼−→ H or G ∼= H

Definition 1.6 A function f an isomorphism, f : G
∼−→ G is called an Automorphism

Extend this to define Aut(G) as the group of automorphisms of G under composition. Conjugation by an element in G is an
automorphism.

Definition, for a homomorphism f : G → H assosciate:

1. Im(f) = f(G) = {f(x)|x ∈ G}

2. Ker(f) = {x ∈ G|f(x) = eH}

1.2 Normal subgroups, quotient groups and the isomorphism theorem

Definition 1.11 Normal Subgroups,

N ⊂ G normal in G ⇐⇒ gng−1 ∈ N, ∀g ∈ G and n ∈ N

We say that N is stable under the conjugation by any element in G.

Definition 1.12 Simple Groups - group G simple if G has no normal subgroups aside from {e} and G

Define

• gS := {gs|s ∈ S} - Left cosets of S

• Sg := {sg|s ∈ S} -Right cosets of S

Lemma - H ⊂ G a subgroup. If gH = Hg ∀g ∈ G =⇒ H a normal subgroup
Lemma - N ⊂ G a normal subgroup. Then (g1N)(g2N) = (g1g2N)
Quotient Group - N a normal subgroup of G. G/N the quotient group of G modulo N is the set of all left cosets of N in
G. G/N = {aN |a ∈ G}
Lemma - N a normal subgroup of G. The set G/N of left cosets of G modulo N is a group under group law (g1N, g2N) 7→
(g1g2N).

Theorem 1.19 - Isomorphism Theorem - Let f : G → H a homomorphism of groups. Consider the map gKer(f) 7→ f(g),
this map is an isomorphism of groups.

G/Ker(f)
∼−→ f(G)
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1.3 Group-Theoretic Constructions

• Centre of a Group Z(G)= {a ∈ G | ax = xa,∀x ∈ G}. It is the set of elements in G that commute with all elements
in G.
Z(G) = G ⇐⇒ G abelian.

• Inner Automorphisms Inn(G) - The set of automorphisms formed by the conjugations of elements in G, forming a
subgroup of Aut(G)

• Commutator - Write [a, b] = aba−1b−1 this is the commutator of a and b.

• Commutator of a Group - [G,G] is the smallest subgroup in G containing the commutators [a, b]∀a, b ∈ G. It is the
subgroup generated by all the commutators.
G abelian ⇐⇒ [G,G] = {eG}

Sending an element g ∈ G to the conjugation by g is a homomorphism G → Aut(G) with image Inn(G) and kernel Z(G).
Giving isomorphism G/Z(G)

∼−→ Inn(G). using Theorem 1.19

Lemma 1.21 - G a group .Then [G,G] a normal subgroup of G and G/[G,G] is abelian.
Proposition 1.22 - N a normal subgroup of G. Then G/N is abelian if and only if N contains [G,G]
Lemma 1.23 - Any subgroup of G containing [G,G] is normal

Behaviour of products of groups in the abelian case:

Lemma 1.25 - G an abelian group. If orders of a, b ∈ G finite, then order of ab is finite and divides lcm(ord(a), ord(b)).

Torsion subgroups - The set of elements of G that have finite order is a subgroup of G, denoted Gtors. If G = Gtors we
say G is a torsion abelian group.

p-subgroups of G - G an abelian group, p a prime number.
The subgroup G{p} = {g|g ∈ G s.t ord(g) = pn} is the p-primary subgroup of G
If G = G{p} then G is called a p-primary torsion abelian group

Generators.
Lemma 1.29 - I a set s.t ∀i ∈ I, we have subgroups Hi ⊂ G. Then H = ∩i∈IHi a subgroup of G.

1.30 - Generated Groups - G a group, S ⊂ G a set. Intersection of all subgroups of G that contain S is the subgroup of
G generated by S denoted < S >.
If G =< S > then we say S generates G.

1.32 Finitely generated group - G finitely generated if ∃ pos. integer n s.t G generated by n elements.
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2 Groups Acting on Sets

2.1 Actions, Orbits and Stabilisers

Definition 2.1 Action - G a group, X a set. Let S(X) be the group of bijections X → X with composition as the group
law. An action of G on X is a homomorphism G → S(X)
Associates each g ∈ G to a bijective map X → X, thought of as permutation of elements of X.

Equivalent to a function G×X → X, an action ⇐⇒ (g1g2(x) = g1(g2(x))∀g1, g2 ∈ G and x ∈ X

Definition 2.3 Faithful actions - an action of G on X is faithful if G → S(X) is injective
Equivalently, kernel of G → S(x) is trivial. g(x) = g∀x =⇒ g = eG

Definition 2.4.1 Orbit of elements - Let G×X → X an action of G on a set X. The G-orbit of x ∈ X is G(x) = {g(x)|g ∈
G} ⊂ X

Definition 2.4.2 Stabiliser of x - StG(x) = {g ∈ G|g(x) = x} ⊂ G

Theorem 2.6 Orbit-Stabiliser Theorem
G ×X → X an action of G on X. ∀x ∈ X the map g 7→ g(x), gives bijection from set of left cosets G/St(x) → G(x), the
orbit of x.
If G a finite group =⇒ |G(x)| = |G|/|St(x)|∀x ∈ X.
If X a finite set and X = ∪n

i=1G(xi) is a disjoint union of G-orbits, then

|X| =
n∑

i=1

|G(xi)| =
n∑

i=1

[G : St(xi)],

where [G : St(xi)] is the index of St(xi) in G

2.2 Applications of the orbit-stabiliser theorem

Theorem 2.7 - (Cayley).
Let G a finite group of order n =⇒ Sn has a subgroup isomorphic to G

Theorem 2.8 - (Cauchy)
G a finite group of order n with p a prime factor of n =⇒ G has an element of order p.

Definition 2.9 - p-groups - p a prime, finite group G is a p-group if order of G is a power of p.
Corollary 2.10 - G a p-group ⇐⇒ order of every element of G is a power of p.

Theorem 2.11.
G a p-group, p-prime. Then Z(G) ̸= {eG}

Definition 2.13 - G × X → X an action of G on X. If X = G(x) (X a G-orbit) for some x ∈ X, then we say G acts
transitively on X.
Definition 2.14 - Let G×X → X an action of G on X. If x ∈ X s.t g(x) = x. We say x a fixed point.
Fix(g) ⊂ X - the set of fixed points of g ∈ G

Theorem 2.15 - (Jordan)
Let G×X → X a transitive action of a finite group G on a finite set X. Then:∑

g∈G

|Fix(G)| = |G|

∃g ∈ G s.t Fix(g) = ∅
Corollary 2.16 Let G × X → X an action of a finite group G on a finite set X Then the number of G-orbits in X is
|G|−1

∑
g∈G |Fix(g)|.
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3 Finitely Generated Abelian Groups

3.1 Smith Normal form

Definition 3.1 - Smith Normal Form
A = (aij) ∈ Z a (m× n) matrix in Smith Normal Form if:

• aij = 0 if i ̸= j (only diagonal terms are non-zero)

• ai = aii. For k ≥ 0, ai > 0 for i ≤ k, ai = 0, for i > k

• a1|a2| . . . |ak

Theorem 3.2
Any Matrix of integer coefficients made into Smith Normal form via row/col operations.
Row Operations:

1 → Swap ith and jth row

2 → multiply ith row by −1

3 → replace ith row; ri by ri + arj , i ̸= j, a ∈ Z

Notation

d(A)− gcd of (aij)

t(A)− smallest non-zero |aij |

Corollary ; d(A)|t(A) =⇒ d(A) ≤ t(A)
Lemma; Any matrix A of integer coefficients transformed via row/col operations to B s.t t(B) = d(B) = d(A)

3.2 Classification of finitely generated abelian groups

Definition 3.4 - Free abelian group of rank n

Zn := {(a1, . . . , an)|ai ∈ Z}

Lemma; Zm ∼= Zm =⇒ n = m, shows rank is well defined
Lemma; Any subgroup of Zn isomorphic to Zm for m ≤ n

Corollary 3.7
G a finitely generated abelian group.
=⇒ ∃ surjective homomorphism f : Zn → some n
Ker(f) ∼= Zm

Theorem 3.8
Every finitely generated abelian group is isomorphic to a product of finitely many cyclic groups
Corollary - 3.10 ; Any finite abelian group isomorphic to a product of its p-primary torsion subgroups.

Theorem 3.11
Every finitely generated abelian group isomorphic to a product of finitely many infinite cyclic groups and finitely many cyclic
groups of prime power order
The number of infinite cyclic factors and the number of cyclic factos of order pr, for p ∈ P, r ∈ N+, depends only on the
group.
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Part II

Rings

4 Basic Theory of Rings

4.1 Motivation

Definition 4.1 - Ring
A ring a set R with 2 binary operations, + and ×, satisfying:

1. (R,+) an abelian group
↪→ written additively; 0 an identity element, with −x the inverse of x

2. Multiplication is assosciative
↪→ ∀a, b, c ∈ R =⇒ (a · b) · c = a · (b · c)

3. ∃! unit element for multiplication ; 1
Satisfying: 1x = x1 = x ∀x ∈ R

4. Distributivity
↪→ ∀a, b, c ∈ R; a(b+ c) = ab+ ac , (a+ b)c = ac+ bc

R is closed under both + and ×
Say R commutatitive if xy = yx, ∀x, y ∈ R Lemma 4.2 - Properties of rings

• ∀x ∈ R, x0 = 0x = 0

• ∀x, y ∈ R =⇒ (−x)y = x(−y) = −xy

• R ̸= {0} =⇒ 1 ̸= {0}

Definition 4.3 - Subring
Subset of a ring which is a ring under the same +, times and same 1 is a subring
Lemma 4.4
S a non-empty subset of ring R Then;
S a subring of R ⇐⇒ 1 ∈ S and ∀a, b ∈ S; a+ b ∈ S, ab ∈ S, −a ∈ S

Definition 4.6 - Invertible Elements
x ∈ R invertible if y, z ∈ R s.t xy = 1 and zx = 1
if y = z denote x−1 = y = z
Definition 4.6.2 - Multiplicative group of R

R× = {x ∈ R | x invertible}

Definition 4.8 - Division Ring A ring where all non-zero elements a division ring
Definition 4.8.2 - Field
A commutative division ring a Field.

4.2 Homomorphisms, ideals and quotient rings

Definition 4.12 - Homomorphism of Rings
R,S rings. f : R → S a homomorphism of rings if

(i) f : (R,+) → (S,+) a homomorphism of abelian groups

(ii) f(xy) = f(x)f(y)

(iii) f(1R) = 1S

A subset R′ of R a subring ⇐⇒ tautological map R′ → R a homomorphism of rings
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Definition 4.16 - Ideal rings
R a ring, I ⊂ R ideal if:

1. I a subgroup of (R,+) w.r.t +

2. ∀x ∈ I, ∀r ∈ R =⇒

• I left ideal if only rx ∈ I

• I right ideal if only xr ∈ I

• I 2-sided ideal if rx ∈ I and xr ∈ I

Mostly consider commutative rings so one condition is often enough.

An ideal ring not equal to the whole ring a proper ideal

Defintion 4.17 - Quotient Ring
R a ring, I ⊂ R a proper ideal
Quotient abelian group, R/I with multiplication as in R called a quotient ring of R by ideal I

Definition 4.18 - Principal ideal
R a commutative ring.
Take a ∈ R, consider aR = {ax|x ∈ R}, this is an ideal in R, called the principal ideal with generator a

Definition 4.19 - Types of homomorphisms

1. A bijective homomorphism of rings f : R → S called an isomorphism of rings

2. A homomorphism of rings R → R an endomorphism of rings

3. An isomorphism of rings R → ∼R an automorphism of rings

Theorem 4.20 - (Isomorphism Theorem)
Let f : R → S a homomorphism of rings.
Then subring f(S) of S is isomorphic to quotient ring R/Ker(f)

4.3 Integral domains and fields

Definition 4.21. Zero-divisors

R a ring. non-zero elements a, b ∈ R are called zero divisors if ab = 0

Definition 4.21. Integral Domain

Commutative ring without zero divisors an integral domain

Lemma 4.23.

R an integral domain. ab ∈ R

aR = bR ⇐⇒ a = br, r ∈ R×

Proposition 4.24.

Every field is an integral domain.

Theorem 4.25.

Every finite integral domain a field
Corollary 4.26.
n ∈ N+, ring Z/nZ an integral domain ⇐⇒ n ∈ P

Definition 4.27. Subfield

subset K of field F a subfield of F if K a field with the same addition and multiplication as in F.
Say F a field extension of K
Proposition 4.28
∀ rings R, ∃! homemomorphism of rings Z → R

Lemma 4.29.
R an integral domain. kernel of unique homomorphism Z → R either 0−ideal; {0} ⊂ Z or principal ideal pZ, p ∈ P

7



Definition 4.30. Characteristic of integral domain

Characteristic of integral domain R is the unique non-negative generator of the kernel of a homomorphism Z → R; either 0
or p ∈ P.
denoted Char(R)

Definition 4.31.

k a field, V an abelian group with an action of elements of k (scalars) on elements of V (vectors)
Where for x ∈ k, v ∈ V, xv ∈ V

(i) 1v = v and x(yv) = (xy)v,∀ x, y ∈ k, v ∈ V

(ii) (x+ y)v = xv + yv,∀ x, y ∈ k, v ∈ V

(iii) x(v + w) = xv + xw,∀ x ∈ k, ∀ v, w inV

Lemma 4.32.
field extension F of k is a vector space over k

Theorem 4.33.

k a field.
if char(k) = 0 =⇒ k has unique subfield isomorphic to Q =⇒ k a vector space over Q
if char(k) = p ∈ P =⇒ k contains unique subfield isomorphic to Fp =⇒ k a vector space over Fp

Corollary 4.34.
Every finite field has pn elements, p ∈ P, n ∈ N+

4.4 More on ideals

Proposition 4.35.
A commutative ring a field ⇐⇒ only proper ideal is the zero ideal.

Proposition 4.36.
f : R → S a homomorphism of rings
J ⊂ S an ideal =⇒ f−1(J) an ideal of R

Proposition 4.37.
f : R → S surjective homomorphism of rings.
I ⊂ R an ideal =⇒ f(I) an ideal of S
The maps

I 7→ f(I) J 7→ f−1(J)

give a bijection between ideals of R that contain ker(f) and ideals of S

Definition 4.38.

R a commutative ring. We say a proper ideal I ⊂ R a prime ideal if quotient ring R/I an integral domain.
Proposition 4.39.

R a commutative ring. Proper ideal I ⊂ R a maximal ideal if quotient ring R/I a field.
Every Maximal ideal a Prime ideal.
Proposition 4.41.

I ⊂ R a maximal ideal ⇐⇒ there is no proper ideal J ⊂ R s.t I ⊂ J and I ̸= J
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5 PID and UFD

5.1 Polynomial rings

R an integral domain. R[t] the ring of polynomials in t with coefficients in R.

R[t] = {antn + an−1t
n−1 + · · ·+ a1t+ a0|ai ∈ R} n = deg(p(t))

Proposition 5.1.

R an integral domain =⇒
deg(p(t)q(t)) = deg(p(t)) + deg(q(t))

R[t] an integral domain. R[t]× = R×

Proposition 5.2.

k a field
∀a(t), b(t) ∈ k[t], b(t) ̸= 0
=⇒ ∃!q(t), r(t) ∈ k[t] s.t

a(t) = q(t)b(t) + r(t)

r(t) = 0 or deg(r(t)) < deg(b(t))

Definition 5.3.

Integral domain R with a function ϕ : R\{0} → Z≥0 a Euclidean domain if

(i) ϕ(xy) ≥ ϕ(x) ∀ non-zero x, y ∈ R

(ii) ∀a, b ∈ R, ∃q, r ∈ R s.t a = qb+ r where r = 0 or ϕ(r) < ϕ(b)

Definition 5.4.

Integral domain R a principal ideal domain (PID) if every ideal of R is principal. i.e of form aR, a ∈ R

Theorem 5.5.

Any euclidean domain is a PID.

5.2 Factorisation in Integral Domains

Definition 5.5.

R an integral domain.
non-zero x ∈ R\R× an irreducible element if x not a product of 2 elements of R\R×

Lemma 5.7.
R an integral domain.
if x irreducible, a ∈ R× =⇒ ax also irreducible

Definition 5.8.

An integral domain R a unique factorisation domain (UFD) if every element of R\R× a product of finitely many
irreducibles.
This decomposition is unique up to changing order of factors and multiplication of factors by elements in R×.
Also called factorial rings

Definition 5.9.

R an integral domain. a, b ∈ R
Say a ∈ R divides b ∈ R; a|b if b = ra, r ∈ R
a properly divides b if b = ra and r ̸∈ R×

if b = ra, r ∈ R× =⇒ a and b associates
Proposition 5.10.
R a UFD =⇒ ̸ ∃ infinite sequence of non-zero elements r1, r2, . . . of R s.t rn+1 properly divides rn ∀n ≥ 1
Proposition 5.11.
Let R be a UFD. If p is irreducible and p|ab =⇒ p|a or p|b
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Theorem 5.12.

R an integral domain. R a UFD ⇐⇒

(i) There is no infinite sequence r1, r2, . . . of elements of R such that rn+1 properly divides rn ∀n ≥ 1

(ii) For every irreducible elements p ∈ R if p|ab =⇒ p|a or p|b

Proposition 5.14.
Suppose R a PID and I1 ⊂ I2 ⊂ . . . are ideals in R Then for some n we have In = In + 1 = . . . .
We say that an ascending chain of ideals stabilises
Proposition 5.16.
Suppose R a PID. p ∈ R an irreducible element such that p|ab =⇒ p|a or p|b

Theorem 5.17.

Every PID is a UFD.

6 Fields

6.1 Field extensions

Definition 6.1.

An extension of fiels k ⊂ K is called finite if K a finite-dimensional vector space over k
dimk(K) = degree of the extension. We write [K : k] = dimk(K)

Theorem 6.2.

k ⊂ F and F ⊂ K field extensions. Then K a finite extension of k ⇐⇒ F a finite extension of k and K a finite extension
of F
i.e we have [K : k] = [K : F ][F : k]

6.2 Constructing fields from irreducible polynomials

Proposition 6.3.

Let R a PID and let a ∈ R, a ̸= 0.
aR maximal ⇐⇒ a irreducible.

Corollary 6.4.
R a PID and a ∈ R irreducible then R/ar a field.

Proposition 6.6.
Let k a field. A polynomial f(t) ∈ k[t] of degree 2 or 3 irreducible ⇐⇒ has no roots in k

Proposition 6.8.
p ̸= 2 prime. Field Fp = Z/pZ contains (p− 1)/2 ≥ 1 non-squares.
∀a ∈ Fp non-square we have t2 − a irreducible in Fp[t] with Fp[t]/(t

2 − a)Fp[t] a quadratic extension of Fp

6.3 Existence of finite fields

Lemma 6.10

k a field s.t char(k) = p, p a prime. ∀x, y ∈ k
(x+ y)p

m

= xpm

+ yp
m

∀x, y ∈ k, m ∈ Z
Lemma 6.11
k a field p(t) = (t− α1) . . . (t− αn) for αi ∈ k, i ∈ {1, . . . , n}
Then αi ̸= αj for i ̸= j ⇐⇒ p(t), q(t) have no common root.

Theorem 6.12.

Let p prime, n ∈ Z+

∃ field of pn elements.
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