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This is the first part of the course. The reader should be familiar with the definitions of a
group, of a subgroup, of an abelian group, and with the key examples of finite groups such
as cyclic groups Cn and the symmetric groups Sn.

1. Homomorphisms and normal subgroups

1.1. Homomorphisms, isomorphisms and automorphisms. A map from a set X to a
set Y is a function f : XÑY . This is a rule that associates to each element x P X an element
fpxq P Y .

Let G be a group with unit element e. We write the group law GˆGÑG multiplicatively,
that is, the group operation sends g, h P G to g ¨ h P G. The dot between g and h often will
be dropped. Recall the axioms of a group:

the unit element e P G satisfies e ¨ g “ g ¨ e “ g for any g P G;
every element has an inverse: for any g P G there exists an element denoted by g´1 P G

such that g ¨ g´1 “ g´1 ¨ g “ e;
associativity: for any a, b, c P G we have pa ¨ bq ¨ c “ a ¨ pb ¨ cq.

It is known from the first year that the unit element is unique. (If you don’t remember
this, deduce it from the first axiom.) Given g P G, the inverse g´1 is unique. (If you don’t
remember this, prove it.)

When considering functions f : GÑH, where G and H are groups, it makes sense to
distinguish those respecting the group structure. This means that f should preserve the
group law, send the unit element in G to the unit element in H, and send the inverse of each
element of G to the inverse of its image.
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2 ALEXEI N. SKOROBOGATOV

Definition 1.1. A function f : GÑH is called a homomorphism if for any a, b P G we
have fpabq “ fpaqfpbq.

Note that here ab is computed in G, whereas fpaqfpbq is computed in H. So f transforms
the group law of G into the group law of H. We do not need to specify that f preserves the
unit element and the operation of taking the inverse, as this follows automatically.

Proposition 1.2. Write eG for the unit element of G and eH for the unit element of H. If
f : GÑH is a homomorphism, then fpeGq “ eH . For any g P G the image of the inverse
g´1 is fpg´1q “ fpgq´1.

Proof. Since f is a homomorphism we have fpeGq “ fpeGeGq “ fpeGqfpeGq. Multiplying
(say, on the left) by the inverse fpeGq

´1 we obtain eH “ fpeGq. Next, we have eH “ fpeGq “
fpgg´1q “ fpgqfpg´1q, which implies the second statement. l

Here are some examples of homomorphisms.

Example 1.3. (0) Let Matpn,Rq be the group of n ˆ n-matrices with real entries with
respect to addition of matrices. The trace tr : Matpn,RqÑR is a homomorphism to the
additive group of R.

(1) Let GLpn,Rq be the group of invertible n ˆ n-matrices with real entries with respect
to multiplication of matrices. The determinant det : GLpn,RqÑRˆ is a homomorphism to
the multiplicative group Rˆ “ Rzt0u.

(2) Let Sn be the symmetric group of permutations of t1, 2, . . . , nu. Then the sign of a
permutation sign: SnÑt˘1u is a homomorphism to the cyclic group of order 2.

(3) The self-map GÑG that sends g to g´1 is an automorphism of G if and only if G is
abelian.

(4) Let G1 be a subgroup of G. Then the identity map G1ÑG is cleary a homomorphism.

It is immediate to check that if g : HÑK is a homomorphism, then the composition
h ˝ g : GÑHÑK is a homomorphism.

Definition 1.4. A function f : GÑH is called an isomorphism if it is a homomorphism
and a bijection.

The fact that f is an isomorphism is written as f : G
„
ÝÑ H. If there exists an isomorphism

f : G
„
ÝÑ H, then we say that G and H are isomorphic groups and write G – H.

Let us write idG for the identity map GÑG, i.e., idGpgq “ g for any g P G. It is clear that
idG is an isomorphism G

„
ÝÑ G.

Exercise 1.5. If f : GÑH is an isomorphism of groups, then (since it is a bijection of sets)
we have the inverse map f´1 : HÑG defined by f´1pyq “ x if y “ fpxq. Prove that f´1 is an
isomorphism and f´1 ˝ f “ idG and f ˝ f´1 “ idH . Conclude that G – H is an equivalence
relation on the set of groups.

Isomorphic groups are indistinguishable as groups.
Here is a standard example of an isomorphism. A cyclic group of order n is a finite set

Cn “ ta
0, a, a2, . . . , an´1u

with the unit e “ a0 and the group law written multiplicatively: ai ¨ aj “ ak, where k P
t0, 1, . . . , n ´ 1u is such that i ` j “ k ` rn for some integer r. Now consider the group of
residues modulo n denoted by

Z{n “ t0̄, 1̄, 2̄, . . . , n´ 1u
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with the group law written additively, that is, the sum of ī and j̄ is k̄, where i` j “ k ` rn
for some integer r. The function ī ÞÑ ai is an isomorphism Z{nÑCn, because it transforms
the group law on Z{n into the group law on Cn. Hence Z{n – Cn.

Definition 1.6. Let G be a group. An isomorphism f : G
„
ÝÑ G is called an automorphism

of G.

By Exercise 1.5, f´1 : GÑG is also an automorphism of G. The identity map idG : GÑG
is visibly an automorphism of G.

Exercise 1.7. Prove that the set of all automorphisms of a group G is a group with the unit
element idG and the group law given by the composition of automorphisms. This group is
denoted by AutpGq.

Thus to an arbitrary group G we associated another group AutpGq.

Exercise 1.8. Determine the groups AutpZq and AutpZ{nq. (Hint: AutpGq sends a gener-
ator of a cyclic group to another generator. In the second question you can start with the
case when n is a prime number.)

Example 1.9. Here is an important example of an automorphism. Let G be a group. Take
any g P G. The function GÑG given by x ÞÑ gxg´1 is called the conjugation by g. It sends
x ¨ y to

gpxyqg´1 “ gxpgg´1qyg´1 “ pgxg´1qpgyg´1q,

so this function is a homomorphism GÑG. The conjugation by g is a bijection: the inverse
function is the conjugation by g´1. Thus it is an automorphism of G.

To a homomorphism f : GÑH we associate its image

Impfq “ fpGq “ tfpxq|x P Gu Ă H

and its kernel

Kerpfq “ tx P G|fpxq “ eHu.

It is easy to check that f is an injective function if and only if Kerpfq “ teGu.

Proposition 1.10. Let f : GÑH be a homomorphism of groups. Then Impfq is a subgroup
of H and Kerpfq is a subgroup of G. Moreover, Kerpfq is stable under all conjugations, that
is, if x P G is such that x P Kerpfq, then gxg´1 P Kerpfq for any g P G.

Proof. We use Proposition 1.2. Since fpeGq “ eH , the image Impfq contains the unit
element of H. As fpxqfpyq “ fpxyq, we see that Impfq is closed under the group operation
of H. Finally, the inverse of fpxq P Impfq is fpx´1q which is also in Impfq. This proves that
Impfq is a subgroup of H.

We have eG P Kerpfq and if fpxq “ fpyq “ eH , then fpxyq “ eH . Also, fpxq “ eH implies
fpx´1q “ fpxq´1 “ eH , so Kerpfq is a subgroup of G.

Finally, if fpxq “ eH , then fpgxg´1q “ fpgqfpxqfpg´1q “ fpgqfpxqfpgq´1 “ eH . This
finishes the proof. l



4 ALEXEI N. SKOROBOGATOV

1.2. Normal subgroups, quotient groups and the isomorphism theorem. The prop-
erty of the kernel of a homomorphism to be stable under conjugations is very important.

Definition 1.11. Let G be a group. A subgroup S Ă G is called normal if it is stable under
the conjugation by any element of G.

By Proposition 1.10, if f : GÑH is a homomorphism, then Kerpfq is a normal subgroup
of G. In Example 1.3 (1) the kernel is the special linear group SLnpRq. In Example 1.3 (2)
the kernel is the alternating group An. These are normal subgroups.

Definition 1.12. A group G is called simple if G has no normal subgroups other than teu
and G.

It is easy to see that if p is a prime number, then the cyclic group Cp is simple. This
follows from a stronger statement, namely, that Cp has no subgroups at all (normal or not)
other than teu and the whole group Cp. In fact, if G is abelian, that is, xy “ yx for any
x, y P G, then any subgroup of G is normal.

In general, not all subgroups are normal. For example, consider the symmetric group S3.
Let G Ă S3 be the set te, p12qu. It is clear that G is a subgroup, but it is not a normal
subgroup. Indeed, G is not stable under the conjugation by the element p13q P S3:

p13qp12qp13q´1 “ p13qp12qp13q “ p23q R G.

The smallest simple non-abelian group is the alternating group A5. We cannot prove this
now but may return to this statement later.

It is a fundamental property of normal subgroups that any normal subgroup is the kernel
of some homomorphism. To prove this, for any normal subgroup N Ă G we shall construct
a homomorphism f : GÑH such that N “ Kerpfq.

Recall that if S Ă G is a subgroup, then the subsets gS “ tgs|s P Su are called the left
cosets of S, for all g P G. Similarly, the sets Sg “ tsg|s P Su are called the right cosets of S.
It is known from the first year (and is easy to prove) that for g1, g2 P G only two possibilities
can occur: either g1S “ g2S or g1S X g2S “ H. (There is a similar property for the right
cosets.) In general, left and right cosets are not the same. For example, the left cosets of S3

modulo te, p12qu are
te, p12qu, tp13q, p123qu, tp23q, p132qu,

whereas the right cosets are

te, p12qu, tp13q, p132qu, tp23q, p123qu.

But if we consider a normal subgroup N Ă G, then each left coset gN is equal to the right
coset Ng. Indeed, if x P N , then gx “ pgxg´1qg P Ng; similarly, xg “ gpg´1xgq P gN , hence
we have an equality of sets gN “ Ng, for any g P G.

Exercise 1.13. Let H Ă G be a subgroup. Prove that if gH “ Hg for every g P G, then H
is a normal subgroup.

Now we can define a group structure on the set G{N of left cosets gN , for g P G. Indeed,
define the composition of g1N and g2N as the set of all products of an element from g1N
and an element from g2N ; this set of products is denoted by pg1Nqpg2Nq.

Lemma 1.14. Let N be a normal subgroup of G. For any g1, g2 P G we have

pg1Nqpg2Nq “ g1g2N. (1.1)
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Proof. Here is a short proof. We have NN “ N , because N is a subgroup so is closed
under the group operation. Then pg1Nqpg2Nq “ pg1NqpNg2q “ g1Ng2 “ g1g2N . Here we
used that g2N “ Ng2.

Here is a more explicit proof. Take any x, y P N . Then pg1xqpg2yq “ g1g2pg
´1
2 xg2qy. Since

N is normal, we have g´12 xg2 P N , hence pg´12 xg2qy P N so that pg1xqpg2yq P g1g2N . But it
is clear that every element of g1g2N is obtained in this way, namely, by taking x “ eG, so
we are done. l

Lemma 1.15. Let N be a normal subgroup of G. The set G{N of left cosets of G modulo
N is a group with group law sending g1N and g2N to g1g2N .

Proof. The composition of cosets is associative. Indeed, this follows from the associativity
in G: the coset g1pg2g3qN equals the coset pg1g2qg3N , for all g1, g2, g3 P G. The trivial coset
N “ eGN is the unit element of G{N . Finally, the coset g´1N is the inverse of gN . We have
checked all the axioms of a group. l

Proposition 1.16. Let N be a normal subgroup of G. The function f : GÑG{N given by
g ÞÑ gN is a surjective homomorphism of groups with kernel Kerpfq “ N .

Proof. The property (1.1) implies that f is a homomorphism, and is visibly surjective.
Since gN “ N if and only if g P N , we deduce that N “ Kerpfq. l

Definition 1.17. Let N be a normal subgroup of G. Then G{N is called the quotient
group of G modulo N .

Exercise 1.18. List all subgroups of the following groups and determine which of them are
normal. For each normal subgroup describe the quotient group.

Z, Cn for n ě 2, S3, D8 (the dihedral group of order 8).

Now we go back to the situation when f : GÑH is a homomorphism of groups. The
following relation between Kerpfq and Impfq “ fpGq is fundamental. To state it we note that
f is constant on each coset gKerpfq. This is clear, because fpxq “ eH implies fpgxq “ fpgq.

Theorem 1.19 (The isomorphism theorem). Let f : GÑH be a homomorphism of groups.
The map gKerpfq ÞÑ fpgq is an isomorphism of groups

G{Kerpfq
„
ÝÑ fpGq.

Proof. We know that Kerpfq is a normal subgroup of G, so G{Kerpgq is a group.
The rule gKerpfq ÞÑ fpgq is a function G{KerpfqÑfpGq, because f is constant on each

coset gKerpfq.
Let us check that this function is a homomorphism. We know that the product of g1Kerpfq

and g2Kerpfq equals g1g2Kerpfq. But the image of g1g2Kerpfq is fpg1g2q “ fpg1qfpg2q, which
is the product of the images of g1Kerpfq and g2Kerpfq, so we are fine.

Our function is visibly surjective onto Impfq. It is also injective. To check this it is enough
to prove that its kernel is the unit element of G{Kerpfq, which is the trivial coset Kerpfq. If a
coset gKerpfq goes to eH , we have fpgq “ eH , but then g P Kerpfq, hence gKerpfq “ Kerpfq.

To conclude, G{KerpfqÑfpGq is a bijective homomorphism, hence an isomorphism. l

A homomorphism f : GÑH sends any subgroup A Ă G to a subgroup fpAq Ă H.
(Indeed, the image fpAq is closed under the group law of H, contains eH and is closed
under taking the inverse.) Conversely, if B is a subgroup of H, then the inverse image
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f´1pBq “ tg P G|fpgq P Bu is a subgroup of G. (Indeed, if g1, g2 P G are such that
fpg1q P B and fpg2q P B, then fpg1g2q “ fpg1qfpg2q P B hence g1g2 P f´1pBq. We have
eG P f

´1peHq Ă f´1pBq. If g P f´1pBq, then fpg´1q “ fpgq´1 P B, so g´1 P f´1pBq.)
We note that if B is normal in H, then f´1pBq is normal in G. Indeed, take any x P f´1pBq.

Then gxg´1 P f´1pBq because fpgxg´1q “ fpgqfpxqfpgq´1 P B. In general, the image of a
normal subgroup is not normal (e.g. take any non-normal subgroup A Ă G and consider the
identity homomorphism AÑG), but this is true for surjective homomorphisms. Indeed, let
A Ă G be a normal subgroup. We have fpgqfpAqfpgq´1 “ fpgAg´1q “ fpAq, and if every
element of H can be written as fpgq for some g P G, then this proves that fpAq is a normal
subgroup of H.

Proposition 1.20. Let N be a normal subgroup of G and let f : GÑG{N be the surjective
homomorphism given by g ÞÑ gN . If S Ă G is a subgroup containing N , then N is a normal
subgroup of S and fpSq “ S{N is a subgroup of G{N . Sending S to fpSq a bijection between
the subgroups of G containing N and the subgroups of G{N . Moreover, S is normal in G if
and only if S{N is normal in G{N .

Proof. We have gNg´1 “ N for any g P G, in particular, for g P S, so N is normal in S.
As N “ Kerpfq, we have S{N “ fpSq.

Note that S is the disjoint union of the cosets gN , where g P S. To prove that we have a
bijection we associate to a subgroup H Ă G{N the subgroup f´1pHq of G; this is a subgroup
containing N . The composition

S ÞÑ fpSq “ tgN |g P Su ÞÑ f´1pfpSqq “
ď

gPS

gN “ S

is the identity map of the set of subgroups of G that contain N . The composition

H ÞÑ f´1pHq ÞÑ fpf´1pHqq “ H

is the identity map of the set of subgroups of G{N . This establishes the desired bijection.
The last claim follows from the remarks before the proposition. l

1.3. Some group-theoretic constructions.

1.3.1. The centre of a group. The conjugations by the elements of G form a subgroup of
AutpGq, called the group of inner automorphisms and denoted by InnpGq. Indeed, for
a, b P G the conjugation by ab is the conjugation by b followed by the conjugation by a (in
this order!) because

x ÞÑ bxb´1 ÞÑ apbxb´1qa´1 “ pabqxpabq´1.

The unit element of AutpGq is the conjugation by eG. The inverse of the conjugation by g
is the conjugation by g´1. Hence InnpGq is a subgroup of AutpGq.

Sending an element g P G to the conjugation by g is a homomorphism GÑAutpGq. The
image is InnpGq. The kernel consists of all elements g P G such that gxg´1 “ x for any
x P G. Equivalently, gx “ xg, so the kernel is the subset of G consisting of the elements that
commute with all elements of G. This set is called the centre of G and is denoted by ZpGq.
Obviously, ZpGq is a normal subgroup of G. Now Theorem 1.19 gives an isomorphism

G{ZpGq
„
ÝÑ InnpGq.

It is clear that ZpGq “ G if and only if G is abelian.



GROUPS AND RINGS: GROUPS 7

1.3.2. The commutator of a group. Let G be a group. For a, b P G write ra, bs “ aba´1b´1

and call this the commutator of a and b. Define rG,Gs as the smallest subgroup in G
containing the commutators ra, bs for all a, b P G. This subgroup is called the commutator
(or the derived subgroup) of G. Clearly, G is abelian if and only if rG,Gs “ teGu.

Lemma 1.21. Let G be a group. Then rG,Gs is a normal subgroup of G. The quotient
group G{rG,Gs is abelian.

Proof. We need to check that rG,Gs is stable under conjugations. Indeed,

gaba´1b´1g´1 “ pgag´1qpgbg´1qpga´1g´1qpgb´1g´1q “ pgag´1qpgbg´1qpgag´1q´1pgbg´1q´1,

where we used that pgag´1q´1 “ ga´1g´1 and similarly for b. Thus this element is a com-
mutator, so is contained in rG,Gs. l

Actually, more is true.

Proposition 1.22. Let N be a normal subgroup of G. Then G{N is abelian if and only if
N contains rG,Gs.

Proof. A group is abelian if and only if every commutator is the unit element. By the
definition of the group law on G{N , this group is abelian if and only if ra, bs P N for any
a, b P G, but this is equivalent to rG,Gs Ă N . l

Exercise 1.23. Prove that any subgroup of G that contains rG,Gs is normal.

1.3.3. The product of groups. Let A and B be groups. Consider the product of sets AˆB “
tpa, bq|a P A, b P Bu and turn it into a group by defining the group law as follows:

pa, bq ¨ pa1, b1q : “ paa1, bb1q.

It is clear that peA, eBq is the unit element and pa´1, b´1q is the inverse of pa, bq. The
associativity in AˆA holds because it holds in A and in B. The group AˆB is called the
product of A and B.

We have injective maps iA : AÑAˆB, iApxq “ px, eBq, and iB : BÑAˆB, iBpyq “ peA, yq.
Hence, A is isomorphic to its image iApAq “ tpa, eBq|a P Au in A ˆ B. Similarly, B is
isomorphic to its image iBpBq Ă A ˆ B. This allows us to think of A and B as subgroups
of AˆB. We note that each of these subgroups is normal, and their intersection is the unit
element peA, eBq. Moreover, each element pa, eBq of A Ă AˆB commutes with each element
peA, bq of B Ă AˆB. In fact, there is a converse statement.

Proposition 1.24. Let G be a group. Suppose that A and B are normal subgroups of G
such that AX B “ teGu and G “ AB (which means that every element of G can be written
as ab, where a P A and b P B). Then the map f : A ˆ BÑG that sends a P A and b P B to
their product ab P G is an isomorphism.

Proof. By assumption, f is surjective. So it remains to show that f is a homomorphism
with kernel tpeA, eBqu. I claim that the subgroups A and B of G commute, which means that
for every a P A and b P B we have ab “ ba in G. Indeed, bab´1 P A since A is normal, hence
bab´1a´1 P A. But B is also normal, so ab´1a´1 P B, hence bab´1a´1 P B. By assumption,
A X B “ teGu, thus bab´1a´1 “ eG, which is equivalent to ba “ ab. This proves the claim.
The claim implies that f is a homomorphism:

f
`

pa, bq ¨ pa1, b1q
˘

“ f
`

paa1, bb1q
˘

“ aa1bb1 “ pabqpa1b1q “ f
`

pa, bq
˘

¨ f
`

pa1, b1q
˘

.
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Finally, Kerpfq consists of the pairs pa, bq such that ab “ eG. This implies that a “ b´1 P
AXB “ teGu, so a “ eA and b “ eB. Thus f has trivial kernel, and therefore is injective. l

Suppose that we are given groups G1, . . . , Gn. We define the product G : “ G1ˆ. . .ˆGn as
the set of ordered n-tuples pg1, . . . , gnq, where gi P Gi. Define the group law of G coordinate-
wise:

pg1, . . . , gnq ¨ ph1, . . . , hnq : “ pg1h1, . . . , gnhnq.

The unit element of G is peG1 , . . . , eGnq, and the inverse of pg1, . . . , gnq is pg´11 , . . . , g´1n q.
Clearly, G is group. It is called the product of groups G1, . . . , Gn. It can also be obtained by
doing the product of two groups n´ 1 times.

1.3.4. Abelian groups and p-primary subgroups. Let us see how products of groups work in
the abelian case, which is much simpler than the case of arbitrary groups.

Lemma 1.25. Let G be an abelian group. If the orders of a, b P G are finite, then the order
of ab is also finite and divides the least common multiple of the orders of a and b. The set
of elements of G that have finite order is a subgroup of G.

Proof. Let m be the order of a, let n be the order of b and let k “lcmpa, bq. It is clear
that pabqk “ e, so the order of ab divides k. Thus the set of elements of G of finite order is
closed under the group law, but it is obviously closed under taking the inverse and contains
eG, so it is a subgroup. l

Definition 1.26. Let G be an abelian group. The set of elements of G of finite order is
called the torsion subgroup of G and is denoted by Gtors. If G “ Gtors, then G is called
a torsion abelian group.

For example, Q{Z and Cn are torsion abelian groups, whereas Q and Z are not. It is
an easy exercise to prove that the quotient of an abelain group G by Gtors has no non-zero
torsion elements.

By Lemma 1.25 the set of elements in G whose order is a power of a given prime is also a
subgroup.

Definition 1.27. Let G be an abelian group and let p be a prime number. The set of elements
g P G such that the order of g is a power of p is called the p-primary subgroup of G and
is denoted by Gtpu. If G “ Gtpu, then G is called a p-primary torsion abelian group.

Corollary 1.28. Let n “ pa11 . . . pamm , where p1, . . . , pm are prime numbers and ai ě 1, for
i “ 1, . . . ,m. There is an isomorphism of groups

Cn – Cp
a1
1
ˆ . . .ˆ Cpamm .

Proof. We proceed by induction on m. If m “ 1, there is nothing to prove.
Write G “ Cn and consider Gtpmu. Any subgroup of a cyclic group is also cyclic, in

particular, Gtpmu – Cpamm . Let G1 be the set of all elements of G of order coprime to pm.
By Lemma 1.25, G1 is a subgroup of G. It is clear that Gtpmu XG1 “ teu. If we show that
G “ GtpuG1, then we will be able to use Proposition 1.24 to conclude that G – Gtpu ˆG1.
Then |G| “ pamm |G

1|, so the order of G1 has m ´ 1 prime factors and we finish the proof by
applying the induction assumption to G1.

Take any g P G. The order of g can be written as prs, where r, s P Z, r ě 0, s ě 1, and p
does not divide s. There are integers k and l such that 1 “ kpr ` ls. Then g “ akbl, where
a “ gp

r
P G1 and b “ gs P Gtpu, so we are done. l
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1.3.5. Generators. Let G be a group. It is easy to see that the intersection of two subgroups
of G is also a subgroup. More generally, we have the following lemma.

Lemma 1.29. Let I be a set. Suppose that for each i P I we are given a subgroup Hi Ă G.
Then H “ XiPIHi is a subgroup of G.

Proof. We need to check that eG P H (true, because eG P Hi for each i P I), that g P H
implies g´1 P H (true, because g´1 P Hi for each i P I), and that H is closed under the
group law of G (true, because each Hi is closed under the group law of G). l

Definition 1.30. Let G be a group and let S Ă G be a set. The intersection of all subgroups
of G that contain S is called the subgroup of G generated by S. If G is the only subgroup
of G that contains S, we say that the elements of S generate G.

The subgroup of G generated by S is clearly the smallest subgroup of G that contains S.
Explicitly, the subgroup of G generated by S is the set H consisting of eG and all finite

products x1x2x3 . . . xn, where each factor xi is either an element of S or an inverse of an
element of S, and all cancellations have been done, that is, there is no i such that xi`1 “ x´1i .
The set H is closed under taking products and inverses, so is a subgroup of G (the inverse
of x1x2x3 . . . xn is x´1n x´1n´1 . . . x

´1
1 ). Any subgroup of G that contains S must also contain

H, so H is the subgroup of G generated by S.
Some examples. The definition of a (finite or infinite) cyclic group is that it is a group

generated by one element. It can be proved that for any n ě 3 the symmetric group Sn is
generated by two elements. The commutator subgroup rG,Gs Ă G is the smallest subgroup
generated by the elements of the form ra, bs “ aba´1b´1, for a, b P G.

Example 1.31. Suppose that G1 is generated by n1 elements, and G2 is generated by n2

elements. Prove that G1 ˆG2 is generated by n1 ` n2 elements.

Definition 1.32. A group G is called finitely generated if there is a positive integer n
such that G is generated by n elements.

An important question which we’ll look into later is to describe all finitely generated
abelian groups. This includes all cyclic groups and their products. The main classification
theorem asserts that every finitely generated abelian group is isomorphic to a product of
finitely many cyclic groups (which can be finite or infinite).

2. Groups acting on sets

2.1. Actions, orbits and stabilisers. In the previous section the notion of a group was
introduced abstractly, as a set with a binary operation satisfying certain axioms. This is
not how groups were introduced historically. In fact, they were first conceived as symmetry
groups, for example the dihedral group D2n is the symmetry group of a regular n-gon in
the plane. Interesting examples of groups are the symmetry group of a cube or another
Platonic solid. Galois arrived at the notion of a group by considering a polynomial of degree
n without multiple roots and attaching to it a certain subgroup of Sn, acting on the roots by
permutations, called the Galois group of the polynomial. Infinite groups naturally appear as
the symmetry groups of 2- or 3-dimensional crystals. If we know that a group G is the group
of all permutations of a (finite or infinite) set X that preserve a certain structure on X (for
example, X can be a lattice or a vector space with a scalar product), then this provides us
with more tools to study G. This is often insightful for understanding the structure of G.

Let us formally define what we mean by an action of a group G on a set X.
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Definition 2.1. Let G be a group and let X be a set. Let SpXq be the group of bijec-
tions XÑX with composition as the group law. An action of G on X is a homomorphism
GÑSpXq.

Thus an action of G on X associates to each g P G a bijective map XÑX, which can
be thought of as a permutation of the elements of X. The only condition is that the map
XÑX associated to g1g2 is the composition of the map associated to g2 followed by the map
associated to g1 (in this order!). For g P G and x P X we write the image of x under the
map associated to g as gpxq. Thus we can consider an action of G on X as a function from
the product set GˆX to X and write it as

GˆX ÝÑ X.

Such a function is an action if and only if pg1g2qpxq “ g1pg2pxqq for any g1, g2 P G and
x P X. Since GÑSpXq is a homomorphism, Proposition 1.24 implies that eG acts trivially,
i.e., eGpxq “ x for any x P X, and the map XÑX associated to g´1 is the inverse of the
map associated to g.

Example 2.2. (1) The group GLpn,Rq of invertible matrices acts on the vector space Rn

by linear transformations: if A is a matrix and v is a column vector, then A sends v to Av.
In fact, every linear transformation RnÑRn is given by a matrix, so GLpn,Rq is the group
of all automorphisms (=bijective linear transformations) of the vector space Rn.

(2) The group Opn,Rq of orthogonal matrices acts on Rn preserving the usual scalar
product (the dot product). In fact, every linear transformation RnÑRn which preserves
px.yq is given by an orthogonal matrix, so Opn,Rq is the group of all linear transformations
of the vector space Rn that preserve the dot product.

(3) Sn “ SpXq is the group of all permutations of X “ t1, 2, . . . , nu. Here the set X has
no additional structure.

Definition 2.3. An action of a group G on a set X is faithful if the map GÑSpXq is
injective.

Equivalently, the kernel of GÑSpXq is trivial, which means that if gpxq “ x for every
x P X, then g “ eG. The action in each of the three examples above is faithful.

Definition 2.4. Let GˆXÑX be an action of a group G on a set X. The G-orbit of an
element x P X is the subset

Gpxq “ tgpxq|g P Gu Ă X.

The stabiliser of x is the subgroup

StGpxq “ tg P G|gpxq “ xu Ă G.

Checking group axioms we see that StGpxq is indeed a subgroup of G. If G is fixed, we
write Stpxq for StGpxq. It is clear that X is a disjoint union of G-orbits. The following lemma
says that the stabilisers of points in the same G-orbit are conjugate in G.

Lemma 2.5. Let GˆXÑX be an action of a group G on X. Then Stpgpxqq “ gStpxqg´1.

Proof. If h P G is such that hpxq “ x, then pghg´1qpgpxqq “ pghg´1gqpxq “ pghqpxq “
gphpxqq “ gpxq. We obtain that gStpxqg´1 Ă Stpgpxqq. This holds for any g P G and
any x P X. Thus the inclusion will remain true if we replace x by gpxq and g by g´1.
Then we obtain g´1Stpgpxqqg Ă Stpg´1pgpxqqq. Since we have an action, this simplifies as
g´1Stpgpxqqg Ă Stpxq, hence Stpgpxqq Ă gStpxqg´1, and we are done. l
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Theorem 2.6 (Orbit–stabiliser theorem). Let G ˆ XÑX be an action of a group G on a
set X. For any x P X the map g ÞÑ gpxq gives a bijection of the set of left cosets G{Stpxq
with the orbit Gpxq. In particular, if G is a finite group, then |Gpxq| “ |G|{|Stpxq| for any
x P X. If X is a finite set and X “ Yn

i“1Gpxiq is a disjoint union of G-orbits, then

|X| “
n
ÿ

i“1

|Gpxiq| “

n
ÿ

i“1

rG : Stpxiqs, (2.1)

where rG : Stpxiqs is the index of Stpxiq in G.

Proof. The function GÑGpxq given by g ÞÑ gpxq is obviously surjective. The inverse
image of gpxq is the set of elements h P G such that hpxq “ gpxq, which is equivalent to
g´1h P Stpxq and hence also to h P gStpxq. Thus our function induces a bijection between
the set of left cosets G{Stpxq and the orbit Gpxq. This proves the first statement. The second
statement follows from the fact that X is a disjoint union of G-orbits. l

Since the stabilisers of points in a given G-orbit are conjugate in G, they have the same
index in G.

2.2. Applications of the orbit–stabiliser theorem.

Theorem 2.7 (Cayley). Let G be a finite group of order n. Then Sn contains a subgroup
isomorphic to G.

Proof. Consider the action of G on itself by left multiplication:

GˆG ÝÑ G, pa, bq ÞÑ ab.

This action is faithful, because ge “ e implies g “ e. Hence we have an injective homomor-
phism GÑSpGq “ Sn. Its image is isomorphic to G. l

Lagrange’s theorem says that the order of any element of a finite group of order n divides
n. In general the converse does not hold, that is, if a positive integer m divides n, then not
every group of order n contains an element of order m, but this is actually true if m is a
prime!

Theorem 2.8 (Cauchy). Let G be a finite group of order n and let p be a prime factor of n.
Then G contains an element of order p.

Proof. Consider the set

Gp
“ tpg1, . . . , gpq|gi P G, i “ 1, . . . , pu

of ordered p-tuples of elements of our group G. The cyclic group Cp of order p acts on Gp by
cyclic shifts. Let X Ă Gp be the subset of p-tuples pg1, . . . , gpq such that g1 ¨ g2 ¨ . . . ¨ gp “ eG.
Such a p-tuple is uniquely determined by the first p ´ 1 elements, hence |X| “ np´1. We
claim that X is stable under the action of Cp. For this we need to show that in any group
G we have

g1 ¨ g2 ¨ . . . ¨ gp “ eG ùñ gp ¨ g1 ¨ g2 ¨ . . . ¨ gp´1 “ eG.

Indeed, conjugation by gp turns the first equality into the second equality.
Let us look at the Cp-orbits of X. There can be two kinds of orbits: those of cardinality p

and those of cardinality 1, an example of which is the orbit consisting of peG, . . . , eGq. Now
(2.1) says that |X| “ np´1 “ m ` kp, where m is the number of 1-element orbits and k is
the number of p-element orbits. Since p divides n, and m ě 1, we see that m ě p ě 2, so
there is an orbit pg, g, . . . , gq, where gp “ eG and g ‰ eG. The order of g in G is p. l



12 ALEXEI N. SKOROBOGATOV

Definition 2.9. Let p be a prime. A finite group G is called a p-group if the order of G is
a power of p.

Corollary 2.10. A finite group G is a p-group if and only if the order of every element of
G is a power of p.

Proof. In one direction this follows from Lagrange’s theorem and in the other direction
from Cauchy’s theorem. l

Arbitrary p-groups have very special properties.

Theorem 2.11. Let G be a p-group, where p is a prime. Then the centre of G is non-trivial,
that is, ZpGq ‰ teGu.

Proof. Consider the action of G on itself by conjugations:

GˆG ÝÑ G, pa, bq ÞÑ aba´1.

We note that the orbit of g is tgu if and only if g P ZpGq. Then (2.1) takes the form

pn “ 1` . . .` 1`
m
ÿ

i“1

rG : Stpxiqs,

where the terms 1 are the cardinalities of the orbits of the elements of ZpGq, which all
consist of one element only, and the remaining terms are the cardinalities of orbits which
have more than one element. But |G| “ pn, hence each index rG : Stpxiqs, for i “ 1, . . . ,m,
is a positive power of p. Considering the above equality modulo p we obtain that p divides
|ZpGq|. However, the unit element eG is in ZpGq, so ZpGq contains at least p elements, hence
|ZpGq| ě 2. l

Example 2.12. The dihedral group D8 has 8 elements, so it’s a 2-group. By Theorem 2.11
there is an element g ‰ e in the centre of D8. Indeed, think of D8 as the group of symmetries
of a square in R2 with centre at 0, so that D8 consists of 4 rotations and 4 symmetries. The
map gpx, yq “ p´x,´yq (=rotation by 180 degrees) is in the centre of D8.

Some other properties of p-groups will be discussed in problem sheets.

Definition 2.13. Let GˆXÑX be an action of a group G on a set X. If X is a G-orbit,
i.e., X “ Gpxq for some x P X, then we say that G acts transitively on X.

For example, the action of G on itself by left multiplication is transitive, whereas the
action of G on itself by conjugations is not. Another example of a transitive action is the
action of G on G{H, where H is a subgroup of G; here g P G sends the coset xH to gxH.

Definition 2.14. Let GˆXÑX be an action of a group G on a set X. An element x P X
is called a fixed point of g P G if gpxq “ x. We denote by Fixpgq Ă X the set of fixed
points of g P G.

A fixed point of g P G is the same as a 1-point orbit of the cyclic group generated by g.

Theorem 2.15 (Jordan). Let G ˆ XÑX be a transitive action of a finite group G on a
finite set X. Then we have

ÿ

gPG

|Fixpgq| “ |G|. (2.2)

In particular, there is an element g P G such that Fixpgq “ H.
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Proof. To prove the formula we consider the set Y of pairs pg, xq, where g P G and x P X
are such that gpxq “ x. We count |Y | in two different ways, using the maps

GÐÝ Y ÝÑ X

that forget one of the coordinates of pg, xq. Projecting to G, we write |Y | as the sum over
all g P G of |Fixpgq|. Projecting to X, we write |Y | as the sum over all x P X of |StGpxq|.
Since G acts transitively on X, by Lemma 2.5 we know that |StGpxq| does not depend on
x, so that |StGpxq| “ |StGpx0q| for any chosen point x0 P X. We have X “ Gpx0q. By the
orbit–stabiliser theorem we have |G| “ |Gpx0q| ¨ |StGpx0q|. This proves (2.2).

The second statement is clear if |X| “ 1. Assume |X| ě 2. If |Fixpgq| ě 1 for every
g P G, then the left hand side has at least |G| elements, and in fact it has more because
FixpeGq “ X has more than one element. Thus we get a contradiction with (2.2). Hence
Fixpgq “ H for at least one element g P G. l

Corollary 2.16. Let G ˆXÑX be an action of a finite group G on a finite set X. Then
the number of G-orbits in X is |G|´1

ř

gPG |Fixpgq|.

Proof. Write X as a disjoint union of G-orbits, X “ Yn
i“1Xi. The number of fixed points

of g P G in X is the sum of the numbers of fixed points of g in Xi, for i “ 1, . . . , n. For each
orbit, the formula in the statement of the corollary gives 1, by Theorem 2.15. Thus for X
the value of the formula is n. l

Example 2.17. Check the formula of Corollary 2.16 for the cyclic subgroup G Ă S5 gener-
ated by p12qp345q acting on X “ t1, 2, 3, 4, 5u.

3. Finitely generated abelian groups

3.1. Smith normal form. This section is a preparation for the main result proved in the
next section.

Definition 3.1. An pm ˆ nq-matrix A “ paijq with entries aij P Z is in Smith normal
form if the following conditions are satisfied.

(a) aij “ 0 if i ‰ j (only diagonal entries can be non-zero).
(b) Write ai “ aii. For some integer k ě 0 we have ai ą 0 for i ď k and ai “ 0 for i ą k.
(c) a1|a2|a3| . . . |ak.

Condition (c) says that a1 divides a2 which divides a3, and so on. The following result is
essentially a linear algebra statement with the added flavour that the entries are integers so
we have to be a bit more careful to take care of this.

Theorem 3.2. Any matrix with integer coefficients can be brought into Smith normal form
using row and column operations.

Recall that the three row operations are (1) switching the i-th and j-th rows, (2) multi-
plying the i-th row by ´1 (and not just by any non-zero number!), (3) replacing the i-th row
ri by ri ` arj, where i ‰ j and a P Z. There are similar column operations.

We need some lemmas. Let dpAq be the greatest common divisor of the entries aij. Let
tpAq be the smallest non-zero |aij|. Then dpAq divides tpAq, so dpAq ď tpAq. It is clear that
the row and column operations do not change dpAq, because gcdpr, sq “gcdpr ` as, sq for
a P Z. The following lemma is the key observation in the proof of the theorem.
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Lemma 3.3. Any matrix A with integer entries can be transformed using row and column
operations into a matrix B such that tpBq “ dpBq “ dpAq.

Before proving the lemma let us explain the idea on an easier example of a finite set of
non-negative integers S “ ts1, . . . , snu. We can replace any si by the remainder r, where
si “ asj ` r, 0 ď r ă sj and a P Z. This operation does not change gcdpSq. By taking sj
to be the smallest element of S, we can ensure, after finitely many steps, that gcdpSq is the
smallest non-zero element of S. The lemma does the same for matrices.

Proof of Lemma 3.3. We use induction on t “ tpAq. If tpAq “ 1, then tpAq “ dpAq. Assume
that the lemma is proved for all matrices M of size mˆn with dpMq “ dpAq and tpMq ă tpAq.
Let us prove this for A.

Suppose that tpAq “ |aij|. By switching rows and columns, and multiplication of the first
row by ´1 if necessary, we can assume that t “ tpAq “ a11. If t divides all entries of A, we
are done. Otherwise, we can find aij not divisible by t. If i “ 1 or j “ 1, the induction step
is easy. If ai1 is not divisible by t, we write ai1 “ `t ` c, where ` P Z and 0 ă c ă t, and
replace the i-th row by ri ´ `r1. The resulting matrix has an entry equal to c ă t, so we
have lowered t and can apply the induction assumption. If a1i is not divisible by t, we do a
similar column operation.

It remains to deal with the case when t divides all the ai1 and a1j. By doing row and
column operations we ensure that ai1 “ a1j “ 0 for all i and j. Let B be the resulting
matrix. If tpBq ă t, we can apply the induction assumption to B. Suppose that tpBq “ t ą
dpBq “ dpAq, so there is an entry x “ bij not divisible by t. Let C be the matrix obtained
from B by replacing the first row of B by r1 ` ri. This does not change the p1, 1q-entry
(because every entry in the first column is zero, except the p1, 1q-entry), hence tpCq ď t.
The p1, jq-entry of C is x. The matrix C falls into the easy case treated above, so we do as
before and replace the j-column of C by cj ´ `c1, where x “ `t` r with ` P Z and 0 ă r ă t.
The resulting matrix D has the p1, jq-entry equal to r ă t, hence tpDq ă t and we can apply
the induction assumption to D. This proves the lemma. l

Proof of Theorem 3.2. By Lemma 3.3 we transform A by row and column operations into a
matrix B with an entry which divides every other entry of B. Switching rows and columns,
and multiplying the first row by ´1, if necessary, we can assume that the said entry is
b11 “ d ą 0. Since b11 divides every entry, we can perform row and column operations to
ensure that every entry in the first row and the first column, except the p1, 1q-entry, is zero.
The matrix now has the form

ˆ

d 0
0 M

˙

,

where M is a pm´ 1q ˆ pn´ 1q-matrix with entries in Z, all divisible by d. (The two zeros
denote the row and column of zeros of the relevant sizes.) We now apply the same arguments
to M and finish the proof by induction. l

3.2. Classification of finitely generated abelian groups. For abelian groups it custom-
ary to write the group law additively, as x ` y rather than xy as we did before. We shall
follow this convention. For example, an infinite cyclic group is isomorphic to the additive
group Z, so we’ll write it as Z and use ` for the group law. If g P G, where G is an abelian
group, then ng is the shorthand for g ` g ` . . .` g (n times).
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Definition 3.4. The free abelian group of rank n is the product of n copies of Z. It is
denoted by Zn.

In other words, Zn “ tpa1, . . . , anq|ai P Zu is the set of ordered n-tuples of integers, with
coordinate-wise addition as the group law. The unit element p0, . . . , 0q is written as 0. The
inverse of a “ pa1, . . . , anq is ´a “ p´a1, . . . ,´anq. By convention, the group of one element
is the free abelian group of rank 0.

Proposition 3.5. If Zm – Zn, then n “ m. Hence the rank of a free abelian group of finite
rank is a well defined integer.

Proof. Let f : Zm „
ÝÑ Zn be an isomorphism. Let g1, . . . , gm be the standard generators

of Zm (the coordinates of gi are equal to 0 except the i-th coordinate which equals 1) and
let h1, . . . , hn be the standard generators of Zn. Then each fpgjq is written as a linear
combination of h1, . . . , hn with integer coefficients, i.e., fpgjq “ a1jh1 ` . . .` anjhn for some
aij P Z. Consider the n ˆm-matrix A whose j-th column is the transpose of pa1j, . . . , anjq.
Then f sends x “ px1, . . . , xmq P Zm to A applied to the transpose of px1, . . . , xmq. The linear
map RmÑRn sending v to Av is surjective because its image contains a basis h1, . . . , hn of
Rn, as follows from the surjectivity of f . Hence

n “ dimRpRn
q “ dimRpApRm

qq ď dimRpRm
q “ m,

where we used the following fact from linear algebra: the dimension of the image of a vector
space under a linear map is not greater than the dimension of the source.

The situation is symmetric in n and m, hence m ď n so that m “ n. l

See Problem Sheet 3 for a counting proof of this fact that does not use linear algebra.

Proposition 3.6. Any subgroup of Zn is isomorphic to Zm for some m ď n.

Proof. We use induction on n. For n “ 1 the statement is clear, because every subgroup
of Z is the set of multiples of a given integer a P Z, hence is isomorphic either to Z (if a ‰ 0)
or to the 1-element group (if a “ 0).

Assume that the statement is true for the subgroups of Zn´1. The function f : ZnÑZ which
sends pa1, . . . , anq to an is clearly a surjective homomorphism with kernel Kerpfq – Zn´1.

Let G be a subgroup of Zn. The image fpGq is a subgroup of Z, hence fpGq “ Za for
some a P Z. If a “ 0, we have G Ă Kerpfq – Zn´1, so we can conclude by appealing
to the induction assumption. Assume a ‰ 0. Choose g P G such that fpgq “ a, that is,
g “ pa1, . . . , anq P G with some a1, . . . , an´1 P Z.

Write G0 “ GXKerpfq. As an intersection of two subgroups of Zn, this is a subgroup of
Zn. We have G0 Ă Kerpfq – Zn´1. Since G0 is isomorphic to a subgroup of Zn´1, by the
induction assumption, G0 – Zk for some k ď n ´ 1. I claim that G is isomorphic to the
product of G0 and the infinite cyclic group Zg generated by g. It is enough to prove this
claim, because then G – Zk ˆ Z – Zk`1 and we are done.

The claim is a consequence of Proposition 1.24. Indeed, we work with abelian groups, so
all subgroups are normal. We have G0XZg “ t0u. Finally, take any h P G. Then fphq “ ra
for some r P Z, so h “ ph´ rgq` rg, where h´ rg P G0 and rg P Zg. This proves that every
element of G is the sum of an element of G0 and an element of Zg. This proves the claim. l

Corollary 3.7. Let G be a finitely generated abelian group. Then there is a surjective
homomorphism f : ZnÑG for some n. We have Kerpfq – Zm for some m ď n.
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Proof. Let g1, . . . , gn be a set of elements of G that generates G. This means that G
is the only subgroup of G that contains g1, . . . , gn. Define f : ZnÑG as the map sending
pa1, . . . , anq to a1g1 ` . . . ` angn P G. This is clearly a homomorphism. The image fpZnq

is a subgroup of G containing g1, . . . , gn, so fpZnq “ G. The second claim follows from
Proposition 3.6. l

Theorem 3.8. Every finitely generated abelian group is isomorphic to a product of finitely
many cyclic groups.

Proof. By Corollary 3.7 we need to prove that if H – Zm is a subgroup of Zn, then Zn{H
is isomorphic to a product of finitely many cyclic groups. Since H Ă Zn is isomorphic to
Zm, it can be generated by m elements of Zn. Let us write them as

pa11, . . . , a1nq, pa21, . . . , a2nq, . . . , pam1, . . . , amnq.

Consider the pm ˆ nq-matrix A “ paijq. Since H is the subgroup of Zn generated by the
rows of A, the row operations do not change H. (This is obvious in the case of switching
rows and multiplication of a row by ´1. As H is generated by r1, . . . , rm, we see that H
is also generated by the same elements with ri replaced by ri ` arj for any a P Z.) Each
column operation is an automorphism ϕ : Zn „

ÝÑ Zn. An automorphism sends a subgroup
to an isomorphic subgroup, ϕ : H

„
ÝÑ ϕpHq. Thus ϕ induces a map gH ÞÑ ϕpgqϕpHq on left

cosets Zn{H
„
ÝÑ Zn{ϕpHq, which is an isomorphism. We conclude that performing row and

column operations on A does not change the quotient group Zn{H, up to isomorphism.
By Theorem 1.19 we can assume that A is in Smith normal form with non-zero diagonal

entries d1|d2| . . . |dk. The group generated by the rows of A is

H “ Zd1 ˆ Zd2 ˆ . . .ˆ Zdk ˆ t0u ˆ . . .ˆ t0u Ă Zn.

The quotient of Z by the subgroup Zd, where d ‰ 0, is isomorphic to the cyclic group Cd of
order d. By Question 6 (b) from Problem Sheet 1 we obtain an isomorphism

Zn
{H – Cd1 ˆ . . .ˆ Cdk ˆ Zn´k.

This finishes the proof. l

Remark 3.9. Let G be a finitely generated abelian group. By Theorem 3.8 we have an
isomorphism G – F ˆ H, where F is a finite subgroup of G and H Ă G is a free abelian
group of some rank m. We note that F “ Gtors so is uniquely defined by G, see Definition
1.26. In contrast, H is not unique (unless G is a free abelian group), because if x P F , x ‰ 0,
and y P H is infinite, then the order of x ` y is also infinite but x ` y R H. However, the
rank m of H is well defined, because it equals the rank of the free abelian group G{F » H
which is well defined by Proposition 3.5. This non-negative integer is called the rank of G.

Corollary 3.10. Any finite abelian group is isomorphic to the product of its p-primary
torsion subgroups.

Proof. By Theorem 3.8, a finite abelian group is isomorphic to a product of cyclic sub-
groups. Now use Corollary 1.28. (This can be proved directly using the argument in the
proof of Corollary 1.28, so Theorem 3.8 is not needed. I am grateful to Xiang Li for pointing
this out.) l

Theorem 3.11. Every finitely generated abelian group is isomorphic to a product of finitely
many infinite cyclic groups and finitely many cyclic groups of prime power order. The number
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of infinite cyclic factors and the number of cyclic factors of order pr, where p is a prime and
r is a positive integer, depend only on the group.

Proof. Let G be a finitely generated abelian group. Theorem 3.8 gives an isomorphism
G – Gtors ˆ Zm, for some integer m ě 0, where Gtors is a finite group. By Corollary 3.10
we have Gtors –

ś

pGtpu where p ranges over the prime factors of |Gtors|. Each p-primary

torsion subgroup Gtpu is the set of elements of G whose order is a power of p, so Gtpu is a
well defined subgroup of G. By Theorem 3.8, Gtpu is isomorphic to a product of cyclic p-
groups. It remains to show that the collection of prime powers which are orders of these cyclic
p-groups is well defined. This boils down to the following claim: if we have an isomorphism

Cpa1 ˆ . . .ˆ Cpam – Cpb1 ˆ . . .ˆ Cpbk , (3.1)

where a1 ě a2 ě . . . ě am ě 1 and b1 ě b2 ě . . . ě bk ě 1, then m “ k and ai “ bi
for all i. Call this group H and let Hrps “ tx P H|px “ 0u. We have Cparps – Cp, thus
|Hrps| “ pm “ pk so m “ k. Now let pH “ tpx P H|x P Hu. We have pCpa – Cpa´1 , hence
pH is isomorphic to

Cpa1´1 ˆ . . .ˆ Cpam´1 – Cpb1´1 ˆ . . .ˆ Cpbk´1 .

Here we can ignore the factors which are 1-element groups, that is, the factors with ai “ 1
and bj “ 1. Using the previous argument we see that the number of ai’s such that ai ě 2
is equal to the number of bj’s such that bj ě 2. Thus the number of cyclic groups of order
p is the same on both sides of (3.1). We apply the same argument to pH and obtain that
the number of cyclic groups of order p2 is the same on both sides of (3.1). Continuing this
process, after finitely many steps we prove the claim. l
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Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in their halls of stone,
Nine for Mortal Men, doomed to die,
One for the Dark Lord on his dark throne
In the Land of Mordor where the Shadows lie.
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This is the second part of the course.

4. Basic theory of rings

4.1. Motivation, definitions, examples. The world of numbers has two operations: ad-
dition and multiplication. Groups are objects endowed with one operation, which in concrete
situations can be addition, multiplication or any other, provided it satisfies the axioms of a
group. But in most mathematical problems we need to deal with two operations at the same
time. A ring is a formal algebraic structure, like a group, but with two operations.

Traditionally, these operations are called addition and multiplication, and are denoted by
` and ˆ, respectively. There is no symmetry between ` and ˆ: we require addition to
satisfy group axioms and to be commutative, whereas multiplication does not have to be
commutative and the multiplicative inverses do not usually exist.

The crucial examples of rings, as we shall see soon, are as follows.

‚ The set of integers Z.
‚ The sets of rational, real or complex numbers Q, R, C.
‚ The set of polynomials with rational coefficients Qrts.

Date: September 14, 2021.
1
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‚ The set MnpRq of pnˆ nq-matrices with entries in R, where n ě 2.
‚ The binary field F2 “ t0, 1u with binary addition and multiplication.

With the exception of the last one, each of these sets has usual addition and multiplication.

Definition 4.1. A ring is a set R together with two binary operations, ` and ˆ, satisfying
the following axioms:

(1) pR,`q is an abelian group. It is written additively, so the unit element of pR,`q is
denoted by 0 and the inverse of x is denoted by ´x.

(2) Multiplication is associative: for any a, b, c P R we have pa ¨ bq ¨ c “ a ¨ pb ¨ cq.
(3) There is a unique unit element for multiplication, denoted by 1, which satisfies

1 ¨ x “ x ¨ 1 “ x for any x P R.
(4) Distributivity: for any a, b, c P R we have apb` cq “ ab` ac and pa` bqc “ ac` bc.

The ring R is closed under ` as well as under ˆ. You won’t fail to notice that we do not
require the existence of multiplicative inverses. This is OK because we want to be able to
work with objects like Z where there are many non-invertible elements (only 1 and ´1 have
multiplicative inverses).

Let us show how addition and multiplication interact.

Lemma 4.2. Let R be a ring.
(i) For any x P R we have x0 “ 0x “ 0.
(ii) For any x, y P R we have p´xqy “ xp´yq “ ´xy.
(iii) If R ‰ t0u, then 1 ‰ 0.

Proof. We have 0`0 “ 0, hence by axiom (4) we have x ¨0 “ xp0`0q “ x ¨0`x ¨0. Adding
to both sides the additive inverse of x ¨ 0 we obtain x ¨ 0 “ 0. Using the other distributivity
law we prove 0 ¨ x “ 0, hence complete the proof of (i).

We have y` p´yq “ 0, so by axiom (4) we get x ¨ 0 “ xpy` p´yqq “ xy` xp´yq. By part
(i) we have x ¨ 0 “ 0. Adding to both sides the additive inverse of xy we get ´xy “ x ¨ p´yq.
A similar proof gives p´xqy “ ´xy.

Assume that 1 “ 0. Now (i) and axiom (3) imply that 0 is the only element of R. l

Henceforth we shall only consider non-zero rings, i.e., rings such that 1 ‰ 0.

Definition 4.3. A subset of a ring which is a ring under the same operations and the same
1 is called a subring.

Lemma 4.4. Let S be a non-empty subset of a ring R. Then S is a subring of R if and
only if 1 P S and for any a, b P S we have a` b P S, ab P S and ´a P S.

Proof. A subring has these properties. Conversely, if S is closed under addition and taking
the additive inverse, then pS,`q is a subgroup of pR,`q (by group theory). Associativity
and distributivity hold in S because they hold in R. l

Definition 4.5. A ring R is called commutative if xy “ yx for any x, y P R

Definition 4.6. An element x P R is called invertible if there are elements y, z P R such
that xy “ 1 and zx “ 1.

Remark 4.7. We have y “ z. Indeed, z “ z ¨ 1 “ zpxyq “ pzxqy “ 1 ¨ y “ y. One denotes
y “ z by x´1. The set of all invertible elements of R is denoted by Rˆ. This set satisfies the
group axioms and is called the multiplicative group of the ring R.
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Definition 4.8. A ring in which every non-zero element is invertible is called a division
ring. A commutative division ring is called a field.

Thus a field has all the desirable properties: in a field one can add, subtract, multiply and
divide (by arbitrary non-zero elements). Q, R, C, F2 are fields, whereas Z and Qrts are not.
All these rings are commutative. For n ě 2 the ring of matrices MnpRq is not commutative
and is not a division ring.

Let us consider more examples of rings.

Example 4.9. Let X be a set and let R be a ring. The set of functions XÑR is a ring with
respect to addition and multiplication of functions defined as follows:

pf ` gqpxq : “ fpxq ` gpxq, pfgqpxq : “ fpxqgpxq.

The unit element for addition is the function which is identically 0, and the unit element for
multiplication is the function which is identically 1.

Example 4.10. For a ring R let MnpRq be the set of pn ˆ nq-matrices with entries in R.
Usual addition and multiplication of matrices make MnpRq a ring.

Example 4.11. Let A be an abelian group (written additively, as is our convention). Let
EndpAq be the set of endomorphisms AÑA (i.e., homomorphisms from A to itself). Define
the addition of endomorphisms as the addition of functions, that is, pf`gqpxq : “ fpxq`gpxq.
Define the multiplication of endomorphisms as composition. Note that this multiplication is
not in general commutative.

4.2. Homomorphisms, ideals, quotient rings. In analogy with the theory of groups,
where homomorphisms of groups are maps between groups that preserve the group law, we
can define homomorphisms of rings.

Definition 4.12. Let R and S be rings. A function f : RÑS is a homomorphism of rings
if

(1) f : pR,`qÑpS,`q is a homomorphism of abelian groups;
(2) fpxyq “ fpxqfpyq for all x, y P R;
(3) fp1Rq “ 1S.

Here 1R and 1S are the unit elements for multiplications, in R and S, respectively. Since
in all of our rings we have 1 ‰ 0, any homomorphism is a non-zero map. In other words, a
homomorphism of rings is a homomorphism of their additive groups which preserves multi-
plication and sends 1R to 1S.

A subset R1 of a ring R is a subring if and only if the tautological map R1ÑR is a
homomorphism of rings.

Lemma 4.13. Let f : RÑS be a homomorphism of rings. The kernel Kerpfq is a subgroup
of pR,`q which satisfies the following property: for any x P Kerpfq and any r P R we have
xr P Kerpfq and rx P Kerpfq.

Proof. This follows from group theory and Lemma 4.2 (i). l

Here are some examples of homomorphisms.

Example 4.14. Let m be a positive integer. We have a subgroup mZ of Z. Consider the
homomorphism of abelian groups f : ZÑZ{mZ sending n P Z to the coset n ` mZ of the
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subgroup mZ. We can choose a coset representative n̄ as the unique integer such that n´ n̄
is a multiple of m and 0 ď n̄ ă m. Then fpnq is the coset of n̄.

But Z is not just a group under addition, it is a ring. Then Z{mZ inherits multiplication
from Z: this is the operation defined by the rule pn`mZq ¨ pk `mZq “ nk `mZ. (This is
the same as defining n̄ ¨ k̄ as nk.) This operation is well defined, because if n1 is any element
of n `mZ and k1 is any element of k `mZ, then n1k1 differs from nk by a multiple of m,
so nk `mZ “ n1k1 `mZ which means that the product of cosets does not depend on the
choice of representatives and thus is well defined.

This multiplication makes Z{mZ a ring with 1̄ “ 1`mZ as the unit element for multipli-
cation. (Associativity of multiplication and distributivity hold in Z{mZ because they hold
in Z.) Now it is clear that f : ZÑZ{mZ is a surjective homomorphism of rings.

Example 4.15. Let us consider a similar situation where Z is replaced by the polyno-
mial ring Qrts and m is replaced by a polynomial pptq of degree at least 1. We follow the
same procedure and consider Qrts as an abelian group with subgroup pptqQrts consisting
of polynomials divisible by pptq. The quotient group Qrts{pptqQrts inherits multiplication
from Qrts, which turns it into a ring. The coset 1 ` pptqQrts of the polynomial 1 is the
unit element of Qrts{pptqQrts. The canonical surjective homomorphism of abelian groups
QrtsÑQrts{pptqQrts sending a polynomial qptq to its coset qptq` pptqQrts is then a surjective
homomorphism of rings. (Note that degppptqq ě 1 implies that pptqQrts ‰ Qrts, so the ring
Qrts{pptqQrts is non-zero.)

These examples are particular cases of a general construction.

Definition 4.16. Let R be a ring. A subset I Ă R is called an ideal if it is a subgroup of
pR,`q (with respect to addition) and such that for any x P I and any r P R we have rx P I
and xr P I.

We shall mostly consider commutative rings, and in this case rx “ xr, so one condition
rx P I is enough. In the non-commutative case what we defined above is called a two-sided
ideal, whereas if we only require rx P I, then I is called a left ideal, and if only require xr P I,
then I is called a right ideal.

In our definition R is an ideal of R. An ideal not equal to the whole ring is called a proper
ideal. Another standard example is the zero ideal t0u.

In the theory of rings, ideals play a role similar to that of normal subgroups in group
theory. One common feature is that kernels of homomorphisms of rings are ideals (in the
same way as kernels of homomorphisms of groups are normal subgroups). This follows from
Lemma 4.13. Note, however, that a proper ideal I Ĺ R is not a subring of R because it does
not contain 1. Indeed, if 1 P I then r ¨ 1 “ r P I for any r P R, so I “ R.

Another common feature is that for a proper ideal I of a ring R we can define the quotient
ring R{I and a canonical surjective homomorphism f : RÑR{I. Indeed, we take the quotient
group R{I of the additive group of R by the subgroup I. Then we turn R{I into a ring like
we did in the examples above, namely, the product of cosets x ` I and y ` I is defined as
the coset xy ` I. A standard verification shows that this operation is well defined. The
unit element for multiplication in R{I is 1 ` I P R{I. Associativity of multiplication and
distributivity hold in R{I because they hold in R. The surjective homomorphism of additive
groups f : RÑR{I is thus a homomorphism of rings.
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Definition 4.17. Let R be a ring and let I Ă R be a proper ideal. The quotient abelian group
R{I with multiplication inherited from the multiplication on R is a ring called the quotient
ring of R by the ideal I.

This generalises two examples above. In the case when R “ Z we take the ideal I “ mZ,
and the quotient ring is R{I “ Z{mZ. In the case R “ Qrts we take the ideal I “ pptqQrts.
Such ideals have a special name.

Definition 4.18. Let R be a commutative ring. Take any a P R and consider the set of all
multiples of a, that is, the set aR “ tax|x P Ru. This is an ideal in R. An ideal of this form
is called a principal ideal with generator a.

It is indeed clear that aR is an ideal: this is a subgroup of pR,`q which is closed under
multiplication by arbitrary elements of R. A generator is usually not unique.

As in group theory, we have the following definitions.

Definition 4.19. A bijective homomorphism of rings f : RÑS is called an isomorphism.
A homomorphism of rings RÑR is called an endomorphism.
An isomorphism of rings R

„
ÝÑ R is called an automorphism.

Continuing the analogy with groups we note that the image of a homomorphism of rings
f : RÑS is a subring of S. Indeed, fpRq is a subgroup of the additive group of S, contains
1S and is closed under multiplication. (It is not an ideal unless fpRq “ S.)

Theorem 4.20 (Isomorphism theorem). Let f : RÑS be a homomorphism of rings. Then
the subring fpRq of S is isomorphic to the quotient ring R{Kerpfq.

Proof. The isomorphism theorem from group theory (Theorem 1.19) says that the map
sending x`Kerpfq to fpxq is an isomorphism of groups under addition R{Kerpfq

„
ÝÑ fpRq.

This map respects multiplication and sends 1 to 1, so it is an isomorphism of rings. l

4.3. Integral domains and fields.

Definition 4.21. Let R be a ring. Non-zero elements a, b P R are called zero-divisors if
ab “ 0. A commutative ring without zero-divisors is called an integral domain.

Lemma 4.22. Let R be an integral domain and let a, b, c P R be such that a ‰ 0. Then
ab “ ac if and only if b “ c.

Proof. One direction is obvious. So we assume ab “ ac. Then by distributivity we have
apb´ cq “ 0. Since R has no zero-divisors, we must have b´ c “ 0. l

Lemma 4.23. Let R be an integral domain and let a, b P R. Then aR “ bR if and only if
a “ br, where r P Rˆ.

Proof. Assume aR “ bR. If a “ 0, then b “ b ¨ 1 “ 0, so the conclusion is true in this case.
Now let a ‰ 0. We have a “ a ¨ 1 P aR “ bR. Thus a “ bc for some c P R. Similarly, b “ ad
for some d P R. Thus a “ acd. By Lemma 4.22 we obtain cd “ 1, hence c P Rˆ.

Conversely, if a “ br, where r P Rˆ, then aR Ă bR, but we can also write b “ ar´1 and
this implies bR Ă aR, so we are done. l

Proposition 4.24. Every field is an integral domain.

Proof. Exercise. l
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Theorem 4.25. Every finite integral domain is a field.

Proof. The only thing to check is that every non-zero element is invertible. Let R “

tr1, ..., rnu (distinct elements) be our integral domain. Take any non-zero r P R. Consider
tr1r, ..., rnru. If for some i and j we have rir “ rjr then ri “ rj by the cancellation property
(Lemma 4.22). Therefore tr1r, ..., rnru is a set of n distinct elements of R. Since R has n
elements, tr1r, ..., rnru “ R “ tr1, ..., rnu. Thus any ri can be written as rjr for some j. In
particular, 1 “ rjr for some j, hence rj “ r´1. l

Corollary 4.26. Let n be a positive integer. The ring Z{nZ is an integral domain if and
only if it is a field, which happens exactly when n is a prime.

Proof. By Theorem 4.25 it is enough to prove that Z{nZ is not an integral domain if and
only if n is not a prime.

If n “ 1, then Z{nZ is the zero ring, hence not an integral domain (by definition).
Now assume n ě 2. If n “ ab, where a, b P Z, a ą 1, b ą 1, then āb̄ “ ab “ n̄ “ 0, so ā

and b̄ are zero-divisors in Z{nZ, so this is not an integral domain. Conversely, if r̄ and s̄ are
zero-divisors in Z{nZ, then n divides neither r nor s, but divides rs. But we know that if
a prime divides a product of two natural numbers, then it divides one of them. Hence n is
not a prime. l

Thus for any prime p we have a finite field with p element. We denote Z{pZ by Fp.

Definition 4.27. A subset K of a field F is called a subfield of F if K is a field with the
same addition and multiplication. In this case, F is called a field extension of K.

To check that K Ă F is a subfield of a field F , it is enough to check that for any a, b P K
the elements a` b,´a, ab are in K, and for any non-zero a P K we have a´1 P K.

Proposition 4.28. For any ring R there is a unique homomorphism of rings ZÑR.

Proof. A homomorphism of rings f : ZÑR must send 0 to 0 and 1 to 1R. Then, by
definition, fp2q “ 1R ` 1R, fp3q “ 1R ` 1R ` 1R, and so on, and also fp´1q “ ´1R,
fp´2q “ ´p1R ` 1Rq. By induction, if n is a positive integer, then fpnq is obtained by
adding 1R with itself n times; if n is a negative integer, then fpnq “ ´fp´nq. Thus for any
ring there is a unique homomorphism ZÑR, namely, the one defined above. l

Lemma 4.29. Let R be an integral domain. The kernel of the unique homomorphism ZÑR
is either the zero ideal t0u Ă Z or the principal ideal pZ, where p is a prime.

Proof. The kernel is nZ for some n P Z, because there are no other ideals in Z (indeed,
all subgroups of pZ,`q are of this form). We have n “ 0 or n ě 2 (because 1 goes to 1R).
By the isomorphism theorem, the image of Z is a subring of R isomorphic to Z{nZ. By
Corollary 4.26 if n ą 0, then n is a prime. l

Definition 4.30. The characteristic of an integral domain R is the unique non-negative
generator of the kernel of a homomorphism ZÑR, so it is 0 or a prime number.

We denote the characteristic of R by charpRq.
Recall the definition of a vector space over a field from linear algebra. Note that we can

talk about vector spaces over any given field, not only over R as in the first year linear
algebra.
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Definition 4.31. Let k be a field. Let V be an abelian group together with an action of
the elements of k (called ‘scalars’) on the elements of V (called ‘vectors’), that is, a rule
attaching to a scalar x P k and a vector v P V a vector xv P V , satisfying the following
axioms:

(1) 1v “ v and xpyvq “ pxyqv for any x, y P k and any v P V ;
(2) px` yqv “ xv ` yv for any x, y P k and any v P V ;
(3) xpv ` wq “ xv ` xw for any x P k and any v, w P V .

Lemma 4.32. A field extension F of a field k is a vector space over k.

Proof. The axioms of a vector space obviously hold. l

Theorem 4.33. Let k be a field. If charpkq “ 0, then k contains a unique subfield isomorphic
to Q so k is a vector space over Q. If charpkq “ p (a prime), then k contains a unique subfield
isomorphic to Fp, so k is a vector space over Fp.

Proof. If charpkq “ 0, then k contains a subring isomorphic to Z. This is the smallest
subring containing 1. Since k is a field, it contains multiplicative inverses of all non-zero
elements, hence all ratios of non-zero elements of Z, and this set is a field isomorphic to Q.
It remains to use the previous lemma. If charpkq “ p, then the statement is clear. l

Corollary 4.34. Every finite field has pn elements, where p is a prime and n is a positive
integer.

Proof. Such a field k is a vector space over Fp, by Theorem 4.33. Since k is finite, it is
spanned by finitely many vectors. By linear algebra, k has a finite basis v1, . . . , vn for some
n ě 1. Then every element of k is uniquely written as a1v1 ` . . . ` anvn, where ai P Fp for
all i “ 1, . . . , n. Hence |k| “ pn. l

This prompts an interesting question: for a given prime power pn, does there exist a field
with pn elements? If yes, how to construct it explicitly? We shall answer both questions
later in this course.

4.4. More on ideals.

Proposition 4.35. A commutative ring is a field if and only if the only proper ideal is the
zero ideal.

Proof. If an ideal of a field contains a non-zero element, then it equals to the whole field,
because every non-zero element in a field is invertible. Conversely, let R be a commutative
ring and let a P R be a non-zero element. If R has no non-zero proper ideals, then the
principal ideal aR equals R. Then 1 “ ab for some b P R, hence a P Rˆ. Thus R is a field.
l

Proposition 4.36. Let f : RÑS be a homomorphism of rings and let J Ă S be an ideal.
Then f´1pJq is an ideal of R.

Proof. By group theory, the inverse image of a subgroup is a subgroup, hence f´1pJq is
a subgroup of pR,`q. If x P f´1pJq and r P R, then fprxq “ fprqfpxq. Since fpxq P J , we
have fprqfpxq P J , thus rx P f´1pJq. l

Note that the image of an ideal under a homomorphism of rings is not necessarily an ideal.
For example, the map sending n P Z to n P Q is an injective homomorphism ZÑQ. But
2Z is not an ideal of Q. However, this is true for surjective homomorphisms. (Compare the
following with a similar statement for groups, see Proposition 1.20.)
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Proposition 4.37. Let f : RÑS be a surjective homomorphism of rings and let I Ă R be
an ideal. Then fpIq is an ideal of S. The maps I ÞÑ fpIq and J ÞÑ f´1pJq are inverse to
each other, so they give a bijection between the ideals of R that contain Kerpfq and the ideals
of S.

Proof. Let x P I. To prove that fpIq is an ideal, we need to check that for any s P S we
have sfpxq “ fpyq for some y P R. By the surjectivity of f we find an element r P R such
that fprq “ s. Then y “ rx.

By the previous proposition, for any ideal J Ă S the inverse image f´1pJq is an ideal of
R that contains Kerpfq. Since f is surjective, we have fpf´1pJqq “ J . If Kerpfq Ă I, then
f´1pfpIqq “ I. (The inclusion I Ă f´1pfpIqq always holds. For the reverse inclusion note
that if x P f´1pfpIqq, then fpxq “ fpyq for some y P I. Then x ´ y P Kerpfq Ă I, hence
x P I.) l

Let us define two most important classes of ideals.

Definition 4.38. Let R be a commutative ring. A proper ideal I Ă R called a prime ideal
if the quotient ring R{I is an integral domain.

For example, the prime ideals of Z are pZ, where p is a prime number, and the zero ideal
t0u.

Proposition 4.39. A proper ideal I of a commutative ring R is prime if and only if for any
x, y P R such that xy P I we have x P I or y P I.

Proof. The property is equivalent to the property that px` Iqpy` Iq “ xy` I equals I if
and only if x ` I “ I or y ` I “ I. But this is exactly the same as the property that R{I
has no zero-divisors. (Note that I is proper, hence R{I is not the zero ring.) l

Definition 4.40. Let R be a commutative ring. A proper ideal I Ă R called a maximal
ideal if the quotient ring R{I is a field.

It is clear that every maximal ideal is prime.

Proposition 4.41. A proper ideal I of a commutative ring R is maximal if and only if there
is no proper ideal J Ă R such that I Ă J and I ‰ J .

Proof. By Proposition 4.35, the ring R{I is a field if and only if R{I has no non-zero
proper ideals. By Proposition 4.37 this is equivalent to the absence of proper ideals of R
that strictly contain I. l

The maximal ideals of Z are pZ, where p is a prime number (but not the zero ideal). This
proposition suggests that we can construct fields as quotients of commutative rings by their
maximal ideals, much in the same way as the finite fields Fp are quotients of Z by pZ. To
do this need to enlarge our supply of rings.

5. PID and UFD

5.1. Polynomial rings. Let R be an integral domain and let Rrts be the ring of polyno-
mials in one variable t with coefficients in R, with the usual addition and multiplication of
polynomials. Every polynomial can be written as

pptq “ ant
n
` . . .` a1t` a0,

where all ai P R and an ‰ 0. In this case we call n the degree of pptq and write degppptqq “ n.
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Proposition 5.1. If R is an integral domain, then

degppptqqptqq “ degppptqq ` degpqptqq, (5.1)

Rrts is an integral domain, and Rrtsˆ “ Rˆ.

Proof. Formula (5.1) is due to the absence of zero-divisors in R, so the product of two
leading coefficients is non-zero. It implies that Rrts has no zero-divisors and that the in-
vertible elements of Rrts are the constant polynomials which are invertible elements of R.
l

We shall mostly consider polynomial rings with coefficients in a field k. A key feature of
the ring krts is the possibility to divide with remainder, exactly like in Z.

Proposition 5.2. Let k be a field. For any polynomials aptq, bptq P krts, where bptq is
non-zero, there exist polynomials qptq, rptq P krts such that

aptq “ qptqbptq ` rptq

where either rptq “ 0 or degprptqq ă degpbptqq. These qptq and rptq are uniquely determined
by aptq and bptq.

Proof. Let m “ degpaptqq and n “ degpbptqq. If m ă n we let qptq be the zero polynomial
and rptq “ aptq. So assume m ě n and use induction in m. Assume that this is proved
for degrees less than m. Write am (respectively, bn) for the leading coefficient of aptq (re-
spectively, of bptq). The degree of aptq ´ amb

´1
n tm´nbptq is less than m, so we can apply the

induction assumption and finish the proof of the existence part.
If aptq “ q̃ptqbptq ` r̃ptq, where r̃ptq “ 0 or degpr̃ptqq ă n, then rptq ´ r̃ptq has degree less

n but is a multiple of a polynomial of degree n, hence rptq “ r̃ptq. Then qptqbptq “ q̃ptqbptq,
and this implies qptq “ q̃ptq by the cancellation property of integral domains. l

An obvious consequence of this is that if a polynomial pptq P krts has a root α P k, then
pptq “ qptqpt ´ αq for some qptq P krts. Iterating this we see that a polynomial of degree d
can have at most d roots in k.

Definition 5.3. An integral domain R with a function φ : Rzt0uÑZě0 is called a Euclidean
domain if

(1) φpxyq ě φpxq for any non-zero x, y P R;
(2) for any a, b P R there exist q, r P R such that a “ qb` r where r “ 0 or φprq ă φpbq.

Examples of Euclidean domains:

‚ the ring Z together with φpnq “ |n|;
‚ the ring krts, where k is a field, together with the degree function;
‚ the ring of Gaussian integers Zris “ tm ` ni|m,n P Zu, where i “

?
´1, with

φpm` niq “ m2 ` n2;

‚ the ring of Eisenstein integers Zrζs “ tm ` nζ|m,n P Zu, where ζ “ ´1`
?
´3

2
, with

φpm` nζq “ m2 ´mn` n2.

For the last two examples, see Problem Sheet 6.

Definition 5.4. An integral domain R is called a principal ideal domain or a PID if
every ideal of R is principal, that is, is of the form aR for some a P R.

Theorem 5.5. Any Euclidean domain is a PID.
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Proof. Let I Ă R be a non-zero ideal. Let b P I be a non-zero element such that φpbq is
the minimum of φpxq, x P I, x ‰ 0. Any a P I can be written as a “ qb ` r, where r “ 0
or φprq ă φpbq. But r “ a ´ qb P I (since I is an ideal) so φprq ă φpbq is impossible. Thus
every element of I is a multiple of b, so I “ bR. l

5.2. Factorisation in integral domains.

Definition 5.6. Let R be an integral domain. A non-zero element x P RzRˆ is called an
irreducible element if x is not a product of two elements of RzRˆ.

For example, the irreducible elements in Z are ˘p, where p is a prime number. The
irreducible elements of krts are called irreducible polynomials.

Lemma 5.7. Let R be an integral domain. If x is an irreducible element and a P Rˆ, then
ax is also an irreducible element.

Proof. Indeed, ax ‰ 0 cannot be in Rˆ because then x P Rˆ. Next, if ax “ yz, where
y, z P RzRˆ, then x “ pa´1yqz. This cannot happen since a´1y P RzRˆ. l

Definition 5.8. An integral domain R is called a unique factorisation domain or a UFD
if every element of RzRˆ is a product of finitely many irreducibles, and this decomposition
is unique up to changing the order of factors and multiplying the factors by elements of Rˆ.

The main theorem of arithmetic says that Z is a UFD. The polynomial ring Crts with
coefficients in the field of complex numbers C is a UFD because every polynomial is uniquely
written as c

śn
i“1pt ´ ziq, where c P Cˆ and zi P C for i “ 1, . . . , n, up to permutation of

factors.
Unique factorisation domains are also sometimes called factorial rings.
Our goal is to show that any PID is a UFD.

Definition 5.9. Let R be an integral domain and let a, b P R. We say that a P R divides
b P R and write a|b if b “ ra for some r P R. An element a P R properly divides b P R if
b “ ra and r R Rˆ. If b “ ra for some r P Rˆ, then we say that a and b are associates.

Proposition 5.10. Let R be a UFD. Then there is no infinite sequence of non-zero elements
r1, r2, . . . of R such that rn`1 properly divides rn for each n ě 1.

Proof. Every element dividing an invertible element is invertible. Thus no element prop-
erly divides an invertible element, so r1 R R

ˆ. Write r1 “ a1 . . . am, where a1, . . . , am are
irreducibles (possible since R is a UFD). The number of factors m does not depend on the
factorisation (m only depends on r1). Write m “ lpr1q. If r2 properly divides r1, then
lpr2q ă lpr1q. Hence lpr1q ą lpr2q ą ¨ ¨ ¨ Any decreasing sequence of natural numbers is
finite, so no infinite sequence r1, r2, . . . exists. l

Proposition 5.11. Let R be a UFD. If p is irreducible and p|ab then p|a or p|b.

Proof. If a P Rˆ, then p|b (since p|ab implies ab “ pc and then b “ pca´1, for some
c P R). So assume that a, b R Rˆ. Then a “ a1 . . . am, b “ b1, . . . bn for some irreducible
elements ai and bj with m ě 1 and n ě 1. Write a1 . . . amb1 . . . bn “ pc for some c P R. If
c P Rˆ, we have pc´1a1qa2 . . . amb1 ¨ ¨ ¨ bn “ p, which is a contradiction because the number of
irreducible factors on both sides is not the same. Otherwise c “ c1 . . . cs for some irreducibles
c1, . . . , cs P R. Then we have two ways of writing ab as a product of irreducibles

a1 . . . amb1 . . . bn “ pc1 . . . cs.
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Thus p is associated with some ai or bj, hence p|a or p|b. l

Theorem 5.12. Let R be an integral domain. Then R is a UFD if and only if the following
conditions hold:

(1) There is no infinite sequence r1, r2, . . . of elements of R such that rn`1 properly divides
rn for all n ě 1.

(2) For every irreducible element p P R, if p|ab, then p|a or p|b.

Proof. By Propositions 5.10 and 5.11, conditions (1) and (2) are satisfied for any UFD.
Conversely, assume R satisfies (1) and (2). For contradiction, suppose that there is a

non-zero element r1 in RzRˆ, which cannot be written as a product of irreducibles. Note
that r1 is not irreducible, hence r1 “ r2s2, for some r2, s2 P RzR

ˆ. At least one of the factors
cannot be written as a product of irreducibles, say r2. For the same reason as before, we can
write r2 “ r3s3, with r3, s3 P RzR

ˆ. Continuing in this way, we obtain an infinite sequence
r1, r2, r3, . . .. Moreover, in this sequence, rn`1 properly divides rn because sn`1 is never in
Rˆ. This contradicts condition (1). Hence every non-zero element of RzRˆ can be written
as a product of irreducibles.

Now assume that a1 . . . am “ b1 . . . bn, where the ai and bj are irreducibles. We can assume
that m ď n. Since a1|b1b2 ¨ ¨ ¨ bn, by (2) we see that a1 divides bj for some j. Reorder the bj’s
so that a1|b1. Thus b1 “ a1u for some u P R, u ‰ 0. If u R Rˆ, then b1 cannot be irreducible.
Therefore u P Rˆ and hence a1 and b1 are associates. If m “ 1 and n “ 1, we are done, but
if m “ 1 and n ě 2 the cancellation property gives 1 “ pub2q . . . bn, which is impossible. If
m ě 2 we have a2 . . . am “ pub2q . . . bn by the cancellation property. Continue in this way
until we get 1 in the left hand side. Since a product of n ´m irreducibles cannot equal 1,
we must have m “ n and, possibly after reordering, ai and bi are associates, for i ě 1. l

Example 5.13 (Example of a non-UFD). Let

R “ ta0 ` a1x` ¨ ¨ ¨ ` anx
n
| a0 P Z, ai P Q for i ě 1u .

Clearly R Ă Qrxs and R is a subring of Qrxs and also an integral domain. Consider r1 “
x, r2 “

1
2
x, r3 “

1
4
x, ¨ ¨ ¨ P R and so rn “ 2rn`1 but 1

2
R R and hence 2 R R˚ and x R R˚ since

1
x
R Qrxs. Thus rn`1 properly divides rn. By Proposition 5.10, R is not a UFD.

Proposition 5.14. Suppose R is a PID and I1 Ă I2 Ă ¨ ¨ ¨ are ideals in R. Then for some
n we have In “ In`1 “ ¨ ¨ ¨ (One says that any ascending chain of ideals stabilises.)

Proof. Define

I “
ď

ně1

In.

This is a subset of R. We claim that I is an ideal. Given x, y P I we must show that x` y,
´x, xy are in I. Any x P I belongs to some In. Similarly, any y P I is in some Im. Suppose
n ě m. Then Im Ă In. So x, y P In and thus x` y,´x, xy P In. Therefore x` y,´x, xy P I.
Let r P R and x P In. Then rx P In and therefore rx P I. Thus I is an ideal in R.

By assumption, I “ aR for some a P R. Clearly, a P I. Hence, for some l ě 1, we
have a P Il. But then I “ aR Ă Il. On the other hand, Il`m Ă I for any m ě 0, so
I “ Il “ Il`1 “ . . . l

Example 5.15. Assume R “ Z. Then 60Z Ă 30Z Ă 15Z Ă 5Z Ă Z.

Proposition 5.16. Suppose that R is a PID. Let p P R be an irreducible element such that
p|ab. Then p|a or p|b.
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Proof. We claim that I “ aR ` pR “ tar1 ` pr2 | r1, r2 P Ru is an ideal: if r P R, then
rpar1 ` pr2q “ aprr1q ` pprr2q P I. Since R is a PID, we have I “ dR for some d P R.

We have p “ a ¨0`p ¨1 P I and so can write p “ dr for some r P R. Since p is irreducible, r
or d is in Rˆ. If r P Rˆ, then p and d are associates. Since d dividies a, we see that p divides
a. If d P Rˆ, then I “ dR contains 1 “ dd´1. Therefore 1 “ at` pu for some t, u P R. This
implies that b “ abt` bpu. By assumption, p|ab, thus p|abt` bpu, so p|b. l

Theorem 5.17. Every PID is a UFD.

Proof. We will apply Theorem 5.12 whose second condition follows from Proposition 5.16.
It remains to prove that there does not exist an infinite sequence r1, r2, . . . such that rn`1
properly divides rn for n “ 1, 2, . . . Indeed, let r1, r2, . . . be such a sequence. This implies
that rnR Ă rn`1R for n “ 1, 2, . . . . By Proposition 5.14 there exists l ě 1 such that
rlR “ rl`1R ¨ ¨ ¨ . But then rl`1 and rl are associates, a contradiction. l

6. Fields

6.1. Field extensions. The only proper ideal of any field k is the zero ideal (Proposition
4.35). Thus any homomorphism kÑR, where k is a field and R is a ring, is injective. So the
only maps between fields are field extensions.

Definition 6.1. An extension of fields k Ă K is called finite if K is a finite-dimensional
vector space over k. In this case we call dimkpKq the degree of the extension and write
rK : ks “ dimkpKq.

Extensions of degree 2 are called quadratic, extensions of degree 3 are called cubic, etc.

Theorem 6.2. Let k Ă F and F Ă K be field extensions. Then K is a finite extension of k
if and only if F is a finite extension of k and K is a finite extension of F . In this case we
have rK : ks “ rK : F srF : ks.

Proof. If K is a finite-dimensional vector space over k, then any subspace of K is too, so
dimkpF q ă 8. Any finite set of vectors that spans K as a k-vector space, spans K as an
F -vector space, hence dimF pKq ă 8.

Conversely, suppose that v1, . . . , vn is a basis of F as a k-vector space and that w1, . . . , wm

is a basis of K as an F -vector space. We claim that tviwju, where 1 ď i ď n and 1 ď j ď m,
is a basis of K as a k-vector space.

We first show that this set spans K over k. Any element u P K is written as

u “ x1w1 ` . . .` xmwm, xj P F.

But the xj, like all elements of F , are linear combinations of v1, . . . , vn with coefficients in k:

xj “ y1jv1 ` . . .` ynjvn, yij P k.

Hence u “
ř

i,j yijviwj, so tviwju spans K over k.

It remains to show linear independence of the vectors in tviwju. Indeed, if
ř

i,j yijviwj “ 0
for some yij P k, then since w1, . . . , wm is a basis of K as an F -vector space, we must have
řn

i“1 yijvi “ 0 for each j “ 1, . . . ,m. But v1, . . . , vn is a basis of F as a k-vector space, so
yij “ 0 for all i and j. This proves that K is a finite-dimensional k-vector space of dimension
rK : ks “ mn “ rK : F srF : ks. l
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6.2. Constructing fields from irreducible polynomials.

Proposition 6.3. Let R be a PID and let a P R, a ‰ 0. Then aR is maximal if and only if
a is irreducible.

Proof.

ñ Assume that aR Ă R is a maximal ideal. Since aR ‰ R, we have a R Rˆ. Thus if a is
not irreducible we have a “ bc for b, c R Rˆ. Then aR Ă bR Ł R since b R Rˆ. Since
aR is maximal we have aR “ bR and so for some m P R we have b “ am “ bcm and
so 1 “ cm, hence c P Rˆ; a contradiction. Therefore a is irreducible.

ð Now assume that a is irreducible. In particular, a R Rˆ, so aR ‰ R. Assume that
there exists an ideal J such that aR Ł J Ł R. Since R is a PID, J “ bR for some
b P R. Note that b R Rˆ because bR ‰ R. Since aR Ă bR, we can write a “ bc
for some c P R. Also c R Rˆ because otherwise aR “ bR (if c P Rˆ then c´1 P R
and so b “ c´1a P aR, hence bR Ă aR). Thus a is not irreducible; a contradiction.
Therefore aR is maximal. l

Corollary 6.4. If R is a PID and a P R is irreducible, then R{aR is a field.

This suggests a method to construct fields which we now explore.

Remark 6.5. Let k be a field, let R “ krts and let pptq P krts be an irreducible polynomial
of degree d. By Corollary 6.4, K “ krts{pptqkrts is a field. Using Proposition 5.2 we can
choose coset representatives to be polynomials of degree at most d´ 1, then

K “ tx0 ` x1t` . . .` xd´1t
d´1

` pptqkrts|xi P ku.

By the uniqueness part of Proposition 5.2, each coset has exactly one representative of degree
ď d ´ 1, so dimkpKq “ d. Consider the map kÑK sending x P k to the coset x ` pptqkrts.
This maps sends sums to sums and products to products, so it is a homomorphism of fields.
Every non-zero homomorphism of fields is injective, so the image of this map is a subfield
of K isomorphic to k. Thus K is a field extension of k of degree rK : ks “ dimkpKq “ d.
Let τ P K be the coset t ` pptqkrts. Since k is a subfield of K we can think of pptq as a
polynomial with coefficients in K. Then ppτq is the trivial coset pptq ` pptqkrts “ pptqkrts;
in other words, we have ppτq “ 0 in K. We conclude that for any irreducible polynomial
pptq P krts there exists a finite field extension k Ă K such that pptq has a root in K.

For example, let R “ Qrts and let pptq “ t2 ´ a, where a is an integer not divisible by p2,
for any prime p. It is clear that pptq is irreducible in Qrts. Then it is immediate to check
that sending x` yt` pptqQrts to x` y

?
a defines an isomorphism Qrts{pptqQrts – Qp

?
aq.

We saw that pptq “ t2´ a is irreducible by observing that it has no roots. This also works
for polynomials of degree 3, but not in higher degrees. (For instance, pt2 ` 1qpt2 ` 2q has no
real roots but is not irreducible in Rrts.)

Proposition 6.6. Let k be a field. A polynomial fptq P krts of degree 2 or 3 is irreducible if
and only if it has no root in k.

Proof.

ð If fptq is not irreducible, then fptq “ aptqbptq with deg fptq “ deg aptq ` deg bptq and
deg aptq, deg bptq ě 1 (since polynomials in krtsˆ have degree 0). Hence deg aptq “ 1
or deg bptq “ 1. Thus a linear polynomial, say t ´ α divides fptq, so that fpαq “ 0
for some α P k.
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ñ If fptq has a root α P k then we can write fptq “ qptqpt ´ αq ` rptq, where rptq “ 0
or deg rptq “ 0, so that rptq is an element of k. But fpαq “ 0, so r “ 0. Neither qptq
of degree 2, nor t´α of degree 1, is an element of krtsˆ, so fptq is not irreducible. l

Example 6.7. Let k “ F2 “ Z{2Z. Then t2 ` t ` 1 has no root in F2, so is irreducible in
F2rts. Then K “ F2rts{pt

2 ` t` 1qF2rts is a quadratic extension of F2, so |K| “ 22 “ 4. The
elements of K are t0, 1, τ, 1` τu, where τ is the image of t P F2rts, so we have τ 2` τ `1 “ 0.
Thus the multiplication in K is uniquely determined by the rule τ 2 “ 1 ` τ . For example,
we have τ´1 “ 1` τ .

We can now prove the existence of fields of order p2 for any odd prime p. An element a of
a field k is called a non-square if there is no element b P k such that a “ b2.

Proposition 6.8. Let p be an odd prime. The field Fp “ Z{pZ contains pp ´ 1q{2 ě 1
non-squares. For any non-square a P Fp, the polynomial t2´a is irreducible in Fprts and the
field Fprts{pt

2 ´ aqFprts is a quadratic extension of Fp.

Proof. By Proposition 6.6 we only need to prove the first statement. The map x ÞÑ x2

is a homomorphism f : FˆpÑFˆp . The element ´1 P Fp is contained in Kerpfq, but ´1 ‰ 1
because 2 ‰ 0 in Fp since the characteristic of Fp is p ‰ 2. Thus Kerpfq has exactly two
elements 1 and ´1, because if there were more, the polynomial x2´ 1 would have more that
two roots in Fp, which is absurd. By the isomorphism theorem for groups we conclude that
|Impfq| “ pp ´ 1q{2. The set of non-squares in Fp is the complement to Impfq in Fˆp , hene
the result. l

If there was a simple way to construct irreducible polynomials of arbitrary degree over Fp,
or at least prove that they exist, then we would immediately deduce the existence of finite
fields of arbitrary prime power order. This is not obvious, however, so we need to do some
more work to achieve this.

Proposition 6.9. Let k be a field and let pptq P krts. There exists a finite field extension
k Ă K such that pptq “ c

śn
i“1pt´ αiq, where c P k˚ and αi P K for i “ 1, . . . , n.

Proof. If degppptqq “ 1, then K “ k does the job. Assume the statement is proved for all
polynomials of degree ď n´1 and let’s prove it for a polynomial pptq of degree n. Since krts is
a UFD, we can write pptq “ cp1ptq . . . pmptq, where c P k˚ and p1ptq, . . . , pmptq are irreducible
monic polynomials in krts. By Remark 6.5 there is a field extension k Ă k1 such that p1ptq
has a root in k1rts. Then we have pptq “ pt ´ αqqptq for some α P k1 and qptq P k1rts. By
induction assumption there is a field extension k1 Ă K such that qptq is a product of linear
factors in Krts. By Theorem 6.2, the field K is a finite extension of k, so we are done. l

It is possible to prove that there is a “smallest” extension in which a given polynomial
decomposes as a product of linear factors and that such an extension is unique up to iso-
morphism. The proof can be found in most algebra textbooks. We do not need this in this
course so we do not give a proof.

6.3. Existence of finite fields.

Lemma 6.10. Let k be a field of characteristic p, where p is a prime. Then for any x, y P k
we have

px` yqp
m

“ xp
m

` yp
m

(6.1)

for any x, y P k and any positive integer m.
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Proof. See Problem Sheet 5, Question 8. l

Let k be a field and let pptq “ ant
n ` . . .` a0 P krts. Define the derivative of pptq as

p1ptq “ nant
n´1

` pn´ 1qan´1t
n´2

` . . .` 2a2t` a1 P krts.

Let us stress that this is a formal definition. Although this is exactly the same formula as
in analysis, defining the derivative of a polynomial can be made over any field and does not
reply on any limiting process. The Leibniz formula still holds: for pptq, qptq P krts we have

ppptqqptqq1 “ p1ptqqptq ` pptqq1ptq.

Indeed, it is enough to prove this when pptq “ ta and qptq “ tb, and this is straightforward.

Lemma 6.11. Let k be a field and let pptq “ pt´α1q . . . pt´αnq, where αi P k for i “ 1, . . . , n.
Then αi ‰ αj for i ‰ j if and only if pptq and p1ptq have no common root.

Proof. By the Leibniz formula we have

p1ptq “
n

ÿ

i“1

n
ź

j“1
j‰i

pt´ αjq.

Hence p1pαiq “
śn

j“1,j‰ipαi ´ αjq ‰ 0 precisely when αi is a simple root of pptq. l

Theorem 6.12. Let p be a prime number and let n be a positive integer. There exists a field
with pn elements.

Proof. Consider the polynomial tp
n
´ t in Fprts. By Proposition 6.9 there is a finite

extension Fp Ă K such that

tp
n

´ t “ pt´ α1q . . . pt´ αpnq,

where αi P K for i “ 1, . . . , pn. Define

F “ tα1, . . . , αpnu Ă K.

We claim that F is a subfield of K. For this we need to show that F is closed under ` and
ˆ, and under taking the additive and multiplicative inverses. (Clearly, F contains 0 and
1.) That F is closed under multiplication and taking the multiplicative inverse is clear; that
F is closed under addition follows immediately from (6.1). If p is odd, then α is a root of
tp

n
´ t “ 0 if and only if ´α is a root. If p “ 2, then there is no difference between plus and

minus, so the additive inverse of x is x. Thus F is closed under taking the additive inverse.
We proved that F is a subfield of K.

By Theorem 4.33, F contains the prime subfield Fp. To complete the proof it remains
to show that αi ‰ αj if i ‰ j. We do this using Lemma 6.11: the derivative of tp

n
´ t is

pntp
n´1´ 1 “ ´1, because charpkq “ p. This is a non-zero constant, hence all roots of tp

n
´ t

are simple. Thus |F | “ pn. l

It can be proved that all finite fields with pn elements are isomorphic.


