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This is the first part of the course. The reader should be familiar with the definitions of a
group, of a subgroup, of an abelian group, and with the key examples of finite groups such
as cyclic groups C,, and the symmetric groups S,,.

1. HOMOMORPHISMS AND NORMAL SUBGROUPS

1.1. Homomorphisms, isomorphisms and automorphisms. A map from a set X to a
set Y is a function f: X—Y. This is a rule that associates to each element z € X an element
flx)eY.

Let G be a group with unit element e. We write the group law G x G—G multiplicatively,
that is, the group operation sends g,h € G to g - h € GG. The dot between g and h often will
be dropped. Recall the axioms of a group:

the unit element e € G satisfies e- g = g - e = g for any g € G,

every element has an inverse: for any g € G there exists an element denoted by ¢g~' € G
such that g-g ' =g 1 - g=e¢;

associativity: for any a,b,c € G we have (a-b)-c=a-(b-c).

It is known from the first year that the unit element is unique. (If you don’t remember
this, deduce it from the first axiom.) Given g € G, the inverse g~! is unique. (If you don’t
remember this, prove it.)

When considering functions f: G—H, where G and H are groups, it makes sense to
distinguish those respecting the group structure. This means that f should preserve the
group law, send the unit element in G to the unit element in H, and send the inverse of each
element of G to the inverse of its image.
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Definition 1.1. A function f : G—H is called a homomorphism if for any a,b € G we
have f(ab) = f(a)f(b).
Note that here ab is computed in G, whereas f(a)f(b) is computed in H. So f transforms

the group law of GG into the group law of H. We do not need to specify that f preserves the
unit element and the operation of taking the inverse, as this follows automatically.

Proposition 1.2. Write e for the unit element of G and ey for the unit element of H. If
f : G—H is a homomorphism, then f(eg) = ey. For any g € G the image of the inverse

g~tis flg™) = flo)"

Proof. Since f is a homomorphism we have f(eq) = f(ecee) = f(eq)f(eq). Multiplying
(say, on the left) by the inverse f(eq)™! we obtain ey = f(eg). Next, we have ey = f(eq) =
flgg™) = f(9)f(g'), which implies the second statement. []

Here are some examples of homomorphisms.

Example 1.3. (0) Let Mat(n,R) be the group of n x n-matrices with real entries with
respect to addition of matrices. The trace tr: Mat(n, R)—R is a homomorphism to the
additive group of R.

(1) Let GL(n,R) be the group of invertible n x n-matrices with real entries with respect
to multiplication of matrices. The determinant det: GL(n, R)—R* is a homomorphism to
the multiplicative group R* = R\{0}.

(2) Let S,, be the symmetric group of permutations of {1,2,...,n}. Then the sign of a
permutation sign: S, —{+1} is a homomorphism to the cyclic group of order 2.

(3) The self-map G—G that sends g to ¢! is an automorphism of G if and only if G is
abelian.

(4) Let G be a subgroup of G. Then the identity map G;—G is cleary a homomorphism.

It is immediate to check that if g: H—K is a homomorphism, then the composition
hog: G>H—K is a homomorphism.

Definition 1.4. A function f : G—H is called an isomorphism if it is a homomorphism
and a bijection.

The fact that f is an isomorphism is written as f : G — H. If there exists an isomorphism
f: G =5 H, then we say that G and H are isomorphic groups and write G =~ H.

Let us write idg for the identity map G—G, i.e., idg(g) = g for any g € G. It is clear that
idg is an isomorphism G — G.
Exercise 1.5. If f: G—H is an isomorphism of groups, then (since it is a bijection of sets)
we have the inverse map f~1: H—G defined by f~*(y) = x if y = f(x). Prove that f~1 is an
isomorphism and f~1o f =idg and fo f~' =idy. Conclude that G = H is an equivalence
relation on the set of groups.

[somorphic groups are indistinguishable as groups.
Here is a standard example of an isomorphism. A cyclic group of order n is a finite set

C,={d" a,d* ... a""}
with the unit e = a® and the group law written multiplicatively: a’ - @/ = a¥, where k €
{0,1,...,n — 1} is such that i + j = k + rn for some integer r. Now consider the group of

residues modulo n denoted by
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with the group law written additively, that is, the sum of 7 and j is k, where i +j = k +rn
for some integer 7. The function ¢ — a' is an isomorphism Z/n—C,,, because it transforms
the group law on Z/n into the group law on C,,. Hence Z/n = C,,.

Definition 1.6. Let G be a group. An isomorphism f: G — G is called an automorphism

of G.

By Exercise [L.5, f~': G—@ is also an automorphism of G. The identity map idg: G—G
is visibly an automorphism of G.

Exercise 1.7. Prove that the set of all automorphisms of a group G is a group with the unit

element idg and the group law given by the composition of automorphisms. This group is
denoted by Aut(G).

Thus to an arbitrary group G we associated another group Aut(G).

Exercise 1.8. Determine the groups Aut(Z) and Aut(Z/n). (Hint: Aut(G) sends a gener-
ator of a cyclic group to another generator. In the second question you can start with the
case when n is a prime number.)

Example 1.9. Here is an important example of an automorphism. Let G be a group. Take
any g € G. The function G—G given by x — gxg~! is called the conjugation by g. It sends
T -y to

g(zy)g~ = gz(99 yg " = (9zg~ ) (gyg™"),

so this function is a homomorphism G—G. The conjugation by g is a bijection: the inverse
function is the conjugation by ¢~!. Thus it is an automorphism of G.

To a homomorphism f: G—H we associate its image

Im(f) = f(G) = {f(x)lxe G} =« H
and its kernel
Ker(f) = {z € GIf(x) = en}.
It is easy to check that f is an injective function if and only if Ker(f) = {eqg}.

Proposition 1.10. Let f: G—H be a homomorphism of groups. Then Im(f) is a subgroup
of H and Ker(f) is a subgroup of G. Moreover, Ker(f) is stable under all conjugations, that
is, if x € G is such that x € Ker(f), then grg~' € Ker(f) for any g € G.

Proof. We use Proposition [1.2] Since f(eg) = ey, the image Im(f) contains the unit
element of H. As f(z)f(y) = f(xy), we see that Im(f) is closed under the group operation
of H. Finally, the inverse of f(z) € Im(f) is f(z~!) which is also in Im(f). This proves that
Im(f) is a subgroup of H.

We have eg € Ker(f) and if f(z) = f(y) = ey, then f(xy) = ey. Also, f(x) = ey implies
fl™h) = f(z)~! = ep, so Ker(f) is a subgroup of G.

Finally, if f(z) = cn, then f(gzg™) = f(9)f(2)f(a™) = £(9)f(2)f(g)™ = em. This
finishes the proof. []
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1.2. Normal subgroups, quotient groups and the isomorphism theorem. The prop-
erty of the kernel of a homomorphism to be stable under conjugations is very important.

Definition 1.11. Let G be a group. A subgroup S < G is called normal if it is stable under
the conjugation by any element of G.

By Proposition |1.10} if f: G—H is a homomorphism, then Ker(f) is a normal subgroup
of G. In Example [1.3] (1) the kernel is the special linear group SL,(R). In Example [1.3] (2)
the kernel is the alternating group A,. These are normal subgroups.

Definition 1.12. A group G is called simple if G has no normal subgroups other than {e}
and G.

It is easy to see that if p is a prime number, then the cyclic group C, is simple. This
follows from a stronger statement, namely, that C,, has no subgroups at all (normal or not)
other than {e} and the whole group C,. In fact, if G is abelian, that is, xy = yx for any
x,y € GG, then any subgroup of G is normal.

In general, not all subgroups are normal. For example, consider the symmetric group Ss.
Let G < S3 be the set {e, (12)}. It is clear that G is a subgroup, but it is not a normal
subgroup. Indeed, G is not stable under the conjugation by the element (13) € Ss:

(13)(12)(13)~! = (13)(12)(13) = (23) ¢ G.
The smallest simple non-abelian group is the alternating group As. We cannot prove this

now but may return to this statement later.

It is a fundamental property of normal subgroups that any normal subgroup is the kernel
of some homomorphism. To prove this, for any normal subgroup N < G we shall construct
a homomorphism f: G—H such that N = Ker(f).

Recall that if S < G is a subgroup, then the subsets ¢S = {gs|s € S} are called the left
cosets of S, for all g € G. Similarly, the sets Sg = {sg|s € S} are called the right cosets of S.
It is known from the first year (and is easy to prove) that for g;, g2 € G only two possibilities
can occur: either g15 = ¢35 or 15 N 25 = . (There is a similar property for the right
cosets.) In general, left and right cosets are not the same. For example, the left cosets of S3

modulo {e, (12)} are
{e,(12)},  {(13),(123)}, {(23),(132)},
whereas the right cosets are

{e,(12)}, {(13),(132)},  {(23),(123)}.

But if we consider a normal subgroup N < G, then each left coset g/N is equal to the right
coset Ng. Indeed, if z € N, then gz = (grg~')g € Ng; similarly, zg = g(g~*xg) € gN, hence
we have an equality of sets gV = Ng, for any g € G.

Exercise 1.13. Let H < G be a subgroup. Prove that if gH = Hg for every g € G, then H
15 a normal subgroup.

Now we can define a group structure on the set G/N of left cosets gN, for g € G. Indeed,
define the composition of g1 N and g, N as the set of all products of an element from ¢g; N
and an element from g, V; this set of products is denoted by (g1V)(g2V).

Lemma 1.14. Let N be a normal subgroup of G. For any g1, g2 € G we have
(91V)(92N) = gigaN. (1.1)
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Proof. Here is a short proof. We have NN = N, because N is a subgroup so is closed
under the group operation. Then (g1 N)(g2N) = (¢1N)(Nga) = 1Nga = g192N. Here we
used that goN = Ngs.

Here is a more explicit proof. Take any x,yy € N. Then (¢g12)(g2y) = g192(g5 *7g2)y. Since
N is normal, we have g, '2g, € N, hence (g5 '2g2)y € N so that (¢12)(g2y) € g192N. But it
is clear that every element of g1g2/V is obtained in this way, namely, by taking x = eq, so
we are done. []

Lemma 1.15. Let N be a normal subgroup of G. The set G/N of left cosets of G modulo
N s a group with group law sending g1IN and goIN to g1goN.

Proof. The composition of cosets is associative. Indeed, this follows from the associativity
in G: the coset g;(g2g3)N equals the coset (g192)gsN, for all g1, g2, g5 € G. The trivial coset
N = egN is the unit element of G/N. Finally, the coset g7' N is the inverse of gN. We have
checked all the axioms of a group. []

Proposition 1.16. Let N be a normal subgroup of G. The function f: G—G/N given by
g — gN is a surjective homomorphism of groups with kernel Ker(f) = N.

Proof. The property (1.1)) implies that f is a homomorphism, and is visibly surjective.
Since gN = N if and only if g € N, we deduce that N = Ker(f). []

Definition 1.17. Let N be a normal subgroup of G. Then G/N is called the quotient
group of G modulo N.

Exercise 1.18. List all subgroups of the following groups and determine which of them are
normal. For each normal subgroup describe the quotient group.

Z, C, for n = 2, S3, Dg (the dihedral group of order 8).

Now we go back to the situation when f: G—H is a homomorphism of groups. The
following relation between Ker(f) and Im(f) = f(G) is fundamental. To state it we note that
f is constant on each coset gKer(f). This is clear, because f(z) = ey implies f(gx) = f(g).

Theorem 1.19 (The isomorphism theorem). Let f: G—H be a homomorphism of groups.
The map gKer(f) — f(g) is an isomorphism of groups

G/Ker(f) — f(G).

Proof. We know that Ker(f) is a normal subgroup of G, so G/Ker(g) is a group.

The rule gKer(f) — f(g) is a function G/Ker(f)— f(G), because f is constant on each
coset gKer(f).

Let us check that this function is a homomorphism. We know that the product of g Ker(f)
and goKer(f) equals gigoKer(f). But the image of g1 g2Ker(f) is f(g192) = f(g1)f(g2), which
is the product of the images of g;Ker(f) and g,Ker(f), so we are fine.

Our function is visibly surjective onto Im(f). It is also injective. To check this it is enough
to prove that its kernel is the unit element of G /Ker(f), which is the trivial coset Ker(f). If a
coset gKer(f) goes to ey, we have f(g) = ey, but then g € Ker(f), hence gKer(f) = Ker(f).

To conclude, G/Ker(f)— f(G) is a bijective homomorphism, hence an isomorphism. []

A homomorphism f : G—H sends any subgroup A < G to a subgroup f(A) < H.
(Indeed, the image f(A) is closed under the group law of H, contains ey and is closed
under taking the inverse.) Conversely, if B is a subgroup of H, then the inverse image
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fYB) = {g € G|f(9) € B} is a subgroup of G. (Indeed, if g;,g2 € G are such that
f(g1) € B and f(g2) € B, then f(g192) = f(91)f(g2) € B hence gig» € f~'(B). We have
cae f(en) < f1(B). lge fA(B), then f(g') = f(g) ' € B,so g~ € -'(B).)

We note that if B is normal in H, then f~!(B) is normal in G. Indeed, take any = € f~!(B).
Then gzg~! € f~Y(B) because f(grg™') = f(g9)f(x)f(g)~' € B. In general, the image of a
normal subgroup is not normal (e.g. take any non-normal subgroup A < G and consider the
identity homomorphism A—G), but this is true for surjective homomorphisms. Indeed, let
A < G be a normal subgroup. We have f(g)f(A)f(g)~! = f(gAg™') = f(A), and if every
element of H can be written as f(g) for some g € G, then this proves that f(A) is a normal
subgroup of H.

Proposition 1.20. Let N be a normal subgroup of G and let f: G—G/N be the surjective
homomorphism given by g — gN. If S < G is a subgroup containing N, then N is a normal
subgroup of S and f(S) = S/N is a subgroup of G/N. Sending S to f(S) a bijection between
the subgroups of G containing N and the subgroups of G/N. Moreover, S is normal in G if
and only if S/N is normal in G/N.

Proof. We have gNg—! = N for any g € G, in particular, for g € S, so N is normal in S.
As N = Ker(f), we have S/N = f(95).

Note that S is the disjoint union of the cosets gV, where g € S. To prove that we have a
bijection we associate to a subgroup H < G/N the subgroup f~'(H) of G; this is a subgroup
containing N. The composition

S f(S)={gNlge S} — f(f(S) = JgN =5

gesS

is the identity map of the set of subgroups of GG that contain N. The composition
Hos f73(H) o> (7 (H)) = H

is the identity map of the set of subgroups of G/N. This establishes the desired bijection.
The last claim follows from the remarks before the proposition. []

1.3. Some group-theoretic constructions.

1.3.1. The centre of a group. The conjugations by the elements of G form a subgroup of
Aut(G), called the group of inner automorphisms and denoted by Inn(G). Indeed, for
a,b € G the conjugation by ab is the conjugation by b followed by the conjugation by a (in
this order!) because

x> brbt v a(brb )a ! = (ab)x(ab) .

The unit element of Aut(G) is the conjugation by eg. The inverse of the conjugation by ¢
is the conjugation by g~'. Hence Inn(G) is a subgroup of Aut(G).

Sending an element g € G to the conjugation by ¢ is a homomorphism G—Aut(G). The
image is Inn(G). The kernel consists of all elements g € G such that grg™' = x for any
xr € G. Equivalently, gz = g, so the kernel is the subset of GG consisting of the elements that
commute with all elements of G. This set is called the centre of G and is denoted by Z(G).
Obviously, Z(G) is a normal subgroup of G. Now Theorem gives an isomorphism

G/Z(G) — Inn(G).
It is clear that Z(G) = G if and only if G is abelian.
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1.3.2. The commutator of a group. Let G be a group. For a,b € G write [a,b] = aba~'b~*
and call this the commutator of a and b. Define [G,G] as the smallest subgroup in G
containing the commutators [a, b] for all a,b € G. This subgroup is called the commutator
(or the derived subgroup) of G. Clearly, G is abelian if and only if [G, G] = {eg}.

Lemma 1.21. Let G be a group. Then [G,G] is a normal subgroup of G. The quotient
group G/|G,G] is abelian.

Proof. We need to check that [G, G] is stable under conjugations. Indeed,

gaba'b" g™ = (gag™")(gbg~")(ga g ) (gb g ") = (gag~')(gbg ") (gag ") (gbg~ "),

1

where we used that (gag™')™' = ga~'¢g~! and similarly for b. Thus this element is a com-

mutator, so is contained in |G, G]. [J

Actually, more is true.

Proposition 1.22. Let N be a normal subgroup of G. Then G/N is abelian if and only if
N contains |G, G].

Proof. A group is abelian if and only if every commutator is the unit element. By the
definition of the group law on G/N, this group is abelian if and only if [a,b] € N for any
a,b e G, but this is equivalent to [G,G] < N. [J

Exercise 1.23. Prove that any subgroup of G' that contains |G, G| is normal.

1.3.3. The product of groups. Let A and B be groups. Consider the product of sets A x B =
{(a,b)|la € A,be B} and turn it into a group by defining the group law as follows:

(a,b) - (a',b'): = (ad’,bV).

It is clear that (es,ep) is the unit element and (a™',b7!) is the inverse of (a,b). The
associativity in A x A holds because it holds in A and in B. The group A x B is called the
product of A and B.

We have injective maps i4: A—>Ax B, is(z) = (z,ep), and ig: B>Ax B, ig(y) = (ea,y).
Hence, A is isomorphic to its image ia(A) = {(a,ep)la € A} in A x B. Similarly, B is
isomorphic to its image ig(B) < A x B. This allows us to think of A and B as subgroups
of A x B. We note that each of these subgroups is normal, and their intersection is the unit
element (ea, ep). Moreover, each element (a,ep) of A = A x B commutes with each element
(ea,b) of B < A x B. In fact, there is a converse statement.

Proposition 1.24. Let G be a group. Suppose that A and B are normal subgroups of G
such that A n B = {eg} and G = AB (which means that every element of G can be written
as ab, where a € A and b € B). Then the map f: A x B—G that sends a € A and b e B to

their product ab € G is an isomorphism.

Proof. By assumption, f is surjective. So it remains to show that f is a homomorphism
with kernel {(e4, eg)}. I claim that the subgroups A and B of G commute, which means that
for every a € A and b € B we have ab = ba in G. Indeed, bab~! € A since A is normal, hence
bab~'a=! € A. But B is also normal, so ab~'a~! € B, hence bab~'a~! € B. By assumption,
AN B = {eg}, thus bab~'a™! = eg, which is equivalent to ba = ab. This proves the claim.
The claim implies that f is a homomorphism:

f((a,b)-(a', V) = f((ad', b)) = aa'bb’ = (ab)(a'V') = f((a,b)) - f((d',V)).
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Finally, Ker(f) consists of the pairs (a,b) such that ab = eg. This implies that a = b~! €
An B ={eg},soa=eyand b= ep. Thus f has trivial kernel, and therefore is injective. []

Suppose that we are given groups G, ..., G,. We define the product G: = G x...xG,, as
the set of ordered n-tuples (g1, ..., gn), where g; € G;. Define the group law of G coordinate-
wise:

(91; e 7gn) . (hh .. .,hn)I = (glhb e 7gnhn)
The unit element of G is (eg,,...,eq,), and the inverse of (gi,...,9,) is (g7, ..., g:;%).
Clearly, G is group. It is called the product of groups G, ..., G,. It can also be obtained by
doing the product of two groups n — 1 times.

1.3.4. Abelian groups and p-primary subgroups. Let us see how products of groups work in
the abelian case, which is much simpler than the case of arbitrary groups.

Lemma 1.25. Let G be an abelian group. If the orders of a,b € G are finite, then the order
of ab is also finite and divides the least common multiple of the orders of a and b. The set
of elements of G that have finite order is a subgroup of G.

Proof. Let m be the order of a, let n be the order of b and let k =lem(a,b). It is clear
that (ab)* = e, so the order of ab divides k. Thus the set of elements of G of finite order is
closed under the group law, but it is obviously closed under taking the inverse and contains
eq, so it is a subgroup. []

Definition 1.26. Let G be an abelian group. The set of elements of G of finite order is
called the torsion subgroup of G' and is denoted by Gios. If G = Giors, then G is called
a torsion abelian group.

For example, Q/Z and C,, are torsion abelian groups, whereas Q and Z are not. It is
an easy exercise to prove that the quotient of an abelain group G by Gy has no non-zero
torsion elements.

By Lemma the set of elements in G whose order is a power of a given prime is also a
subgroup.

Definition 1.27. Let G be an abelian group and let p be a prime number. The set of elements
g € G such that the order of g is a power of p is called the p-primary subgroup of G and
is denoted by G{p}. If G = G{p}, then G is called a p-primary torsion abelian group.

Corollary 1.28. Let n = pi*...p%", where pi,...,pm are prime numbers and a; = 1, for
1=1,....,m. There is an isomorphism of groups

C’n;C’pclu X ... x Cpam.

Proof. We proceed by induction on m. If m = 1, there is nothing to prove.

Write G = C,, and consider G{p,,}. Any subgroup of a cyclic group is also cyclic, in
particular, G{p,,} = Cyem. Let G’ be the set of all elements of G of order coprime to py,.
By Lemma [1.25] G’ is a subgroup of G. It is clear that G{p,,} N G’ = {e}. If we show that
G = G{p}G, then we will be able to use Proposition to conclude that G =~ G{p} x G'.
Then |G| = p%|G'|, so the order of G’ has m — 1 prime factors and we finish the proof by
applying the induction assumption to G'.

Take any g € G. The order of g can be written as p”s, where r,s € Z, r >0, s > 1, and p
does not divide s. There are integers k and [ such that 1 = kp” 4 Is. Then g = a*b', where
a=g” € G and b = ¢g° € G{p}, so we are done. [
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1.3.5. Generators. Let G be a group. It is easy to see that the intersection of two subgroups
of GG is also a subgroup. More generally, we have the following lemma.

Lemma 1.29. Let I be a set. Suppose that for each © € I we are given a subgroup H; < G.
Then H = nierH; is a subgroup of G.

Proof. We need to check that eq € H (true, because eg € H; for each i € I), that g € H
implies g~' € H (true, because ¢g~' € H; for each i € I), and that H is closed under the
group law of G (true, because each H; is closed under the group law of G). []

Definition 1.30. Let G be a group and let S < G be a set. The intersection of all subgroups
of G that contain S is called the subgroup of G generated by S. If G is the only subgroup
of G that contains S, we say that the elements of S generate G.

The subgroup of G' generated by S is clearly the smallest subgroup of G that contains S.

Explicitly, the subgroup of G generated by S is the set H consisting of es and all finite
products xxsx3...x,, where each factor z; is either an element of S or an inverse of an
element of S, and all cancellations have been done, that is, there is no i such that z;,; = z; '
The set H is closed under taking products and inverses, so is a subgroup of G (the inverse
of T1Toxs ... 2y is 2t .. 27"). Any subgroup of G that contains S must also contain
H, so H is the subgroup of GG generated by S.

Some examples. The definition of a (finite or infinite) cyclic group is that it is a group
generated by one element. It can be proved that for any n > 3 the symmetric group S, is
generated by two elements. The commutator subgroup [G, G| < G is the smallest subgroup

generated by the elements of the form [a,b] = aba='b~!, for a,b € G.

Example 1.31. Suppose that G is generated by n, elements, and Go is generated by no
elements. Prove that G1 x Gy is generated by ny + ny elements.

Definition 1.32. A group G is called finitely generated if there is a positive integer n
such that G is generated by n elements.

An important question which we’ll look into later is to describe all finitely generated
abelian groups. This includes all cyclic groups and their products. The main classification
theorem asserts that every finitely generated abelian group is isomorphic to a product of
finitely many cyclic groups (which can be finite or infinite).

2. GROUPS ACTING ON SETS

2.1. Actions, orbits and stabilisers. In the previous section the notion of a group was
introduced abstractly, as a set with a binary operation satisfying certain axioms. This is
not how groups were introduced historically. In fact, they were first conceived as symmetry
groups, for example the dihedral group D,, is the symmetry group of a regular n-gon in
the plane. Interesting examples of groups are the symmetry group of a cube or another
Platonic solid. Galois arrived at the notion of a group by considering a polynomial of degree
n without multiple roots and attaching to it a certain subgroup of S,,, acting on the roots by
permutations, called the Galois group of the polynomial. Infinite groups naturally appear as
the symmetry groups of 2- or 3-dimensional crystals. If we know that a group G is the group
of all permutations of a (finite or infinite) set X that preserve a certain structure on X (for
example, X can be a lattice or a vector space with a scalar product), then this provides us
with more tools to study G. This is often insightful for understanding the structure of G.
Let us formally define what we mean by an action of a group GG on a set X.
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Definition 2.1. Let G be a group and let X be a set. Let S(X) be the group of bijec-
tions X—X with composition as the group law. An action of G on X is a homomorphism

G—S(X).

Thus an action of G on X associates to each g € G a bijective map X— X, which can
be thought of as a permutation of the elements of X. The only condition is that the map
X — X associated to g;g- is the composition of the map associated to g, followed by the map
associated to ¢g; (in this order!). For g € G and = € X we write the image of  under the
map associated to g as g(x). Thus we can consider an action of G on X as a function from
the product set G x X to X and write it as

Gx X —X.

Such a function is an action if and only if (¢192)(z) = ¢1(g92(z)) for any ¢1,¢92 € G and
x € X. Since G—S(X) is a homomorphism, Proposition implies that eq acts trivially,
i.e., eq(xr) = x for any z € X, and the map X—X associated to g~! is the inverse of the
map associated to g.

Example 2.2. (1) The group GL(n,R) of invertible matrices acts on the vector space R"
by linear transformations: if A is a matrix and v is a column vector, then A sends v to Av.
In fact, every linear transformation R"—R™ is given by a matrix, so GL(n,R) is the group
of all automorphisms (=bijective linear transformations) of the vector space R™.

(2) The group O(n,R) of orthogonal matrices acts on R" preserving the usual scalar
product (the dot product). In fact, every linear transformation R"—R"™ which preserves
(x.y) is given by an orthogonal matrix, so O(n,R) is the group of all linear transformations
of the vector space R™ that preserve the dot product.

(3) S, = S(X) is the group of all permutations of X = {1,2,...,n}. Here the set X has
no additional structure.

Definition 2.3. An action of a group G on a set X is faithful if the map G—S(X) is
mjective.

Equivalently, the kernel of G—S(X) is trivial, which means that if g(x) = x for every
x € X, then g = eg. The action in each of the three examples above is faithful.

Definition 2.4. Let G x X—X be an action of a group G on a set X. The G-orbit of an
element x € X 1is the subset
G(z) = {g(z)lge G} = X.
The stabiliser of x is the subgroup
Stg(z) = {g € Glg(x) =z} = G.

Checking group axioms we see that Stg(x) is indeed a subgroup of G. If G is fixed, we
write St(x) for Stg(z). It is clear that X is a disjoint union of G-orbits. The following lemma
says that the stabilisers of points in the same G-orbit are conjugate in G.

Lemma 2.5. Let G x X—X be an action of a group G on X. Then St(g(z)) = ¢gSt(x)g~'.

Proof. If h € G is such that h(x) = x, then (ghg™)(g(x)) = (ghg 'g)(z) = (gh)(x) =
g(h(z)) = g(x). We obtain that gSt(z)g~* < St(g(z)). This holds for any g € G and
any z € X. Thus the inclusion will remain true if we replace z by g(z) and g by g~
Then we obtain ¢g~'St(g(z))g = St(g*(g(z))). Since we have an action, this simplifies as

g 'St(g(x))g = St(x), hence St(g(x)) = ¢gSt(x)g~*, and we are done. []
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Theorem 2.6 (Orbit—stabiliser theorem). Let G x X—X be an action of a group G on a
set X. For any x € X the map g — g(x) gives a bijection of the set of left cosets G/St(x)
with the orbit G(z). In particular, if G is a finite group, then |G(x)| = |G|/|St(x)| for any
re X. If X is a finite set and X = U ,G(x;) is a disjoint union of G-orbits, then

| X| = i |G ()| i G: St(z;)] (2.1)
-1 i—1

where |G St(x;)] is the index of St(x;) in G.

Proof. The function G—G(z) given by g — g(x) is obviously surjective. The inverse
image of g(x) is the set of elements h € G such that h(z) = g(x), which is equivalent to
g~ 'h € St(x) and hence also to h € gSt(x). Thus our function induces a bijection between
the set of left cosets G/St(x) and the orbit G(z). This proves the first statement. The second
statement follows from the fact that X is a disjoint union of G-orbits. []

Since the stabilisers of points in a given G-orbit are conjugate in G, they have the same
index in G.

2.2. Applications of the orbit—stabiliser theorem.

Theorem 2.7 (Cayley). Let G be a finite group of order n. Then S, contains a subgroup
isomorphic to G.

Proof. Consider the action of GG on itself by left multiplication:
GxG— G, (a,b) — ab.

This action is faithful, because ge = e implies g = e. Hence we have an injective homomor-
phism G—S(G) = S,,. Its image is isomorphic to G. []

Lagrange’s theorem says that the order of any element of a finite group of order n divides
n. In general the converse does not hold, that is, if a positive integer m divides n, then not
every group of order n contains an element of order m, but this is actually true if m is a
prime!

Theorem 2.8 (Cauchy). Let G be a finite group of order n and let p be a prime factor of n.
Then G contains an element of order p.

Proof. Consider the set

={(g1,-- . 9)lgi € G, i=1,...,p}

of ordered p-tuples of elements of our group G. The cyclic group C,, of order p acts on G? by
cyclic shifts. Let X < GP? be the subset of p-tuples (g1, ..., g,) such that g; - g2-...- g, = eq.
Such a p-tuple is uniquely determined by the first p — 1 elements, hence | X| = n?~!. We
claim that X is stable under the action of C,. For this we need to show that in any group
G we have

g1-92°---"gp=€G =~ Gp-g1-G92° ... Gp—1 = €G-
Indeed, conjugation by g, turns the first equality into the second equality.

Let us look at the Cp-orbits of X. There can be two kinds of orbits: those of cardinality p
and those of cardinality 1, an example of which is the orbit consisting of (eg,...,eq). Now
says that |X| = n?~! = m + kp, where m is the number of 1-element orbits and & is
the number of p-element orbits. Since p divides n, and m > 1, we see that m > p > 2, so
there is an orbit (g, g, ...,¢g), where g? = e¢ and g # eg. The order of g in G is p. []
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Definition 2.9. Let p be a prime. A finite group G is called a p-group if the order of G is
a power of p.

Corollary 2.10. A finite group G is a p-group if and only if the order of every element of
G 1s a power of p.

Proof. In one direction this follows from Lagrange’s theorem and in the other direction
from Cauchy’s theorem. []

Arbitrary p-groups have very special properties.

Theorem 2.11. Let G be a p-group, where p is a prime. Then the centre of G is non-trivial,
that is, Z(G) # {eg}.

Proof. Consider the action of GG on itself by conjugations:
GxG— G, (a,b) — aba™*.
We note that the orbit of ¢ is {g} if and only if g € Z(G). Then (2.1]) takes the form

Pt =14 414> [G: St(x;)],
i=1

where the terms 1 are the cardinalities of the orbits of the elements of Z(G), which all
consist of one element only, and the remaining terms are the cardinalities of orbits which
have more than one element. But |G| = p", hence each index [G: St(x;)], for i =1,... ,m,
is a positive power of p. Considering the above equality modulo p we obtain that p divides
|Z(G)|. However, the unit element eq isin Z(G), so Z(G) contains at least p elements, hence
Z(G)| =2.0

Example 2.12. The dihedral group Dg has 8 elements, so it’s a 2-group. By Theorem [2.11]
there is an element g # e in the centre of Dg. Indeed, think of Dg as the group of symmetries
of a square in R? with centre at 0, so that Dg consists of 4 rotations and 4 symmetries. The
map g(z,y) = (—x,—y) (=rotation by 180 degrees) is in the centre of Ds.

Some other properties of p-groups will be discussed in problem sheets.

Definition 2.13. Let G x X—X be an action of a group G on a set X. If X is a G-orbit,
i.e., X = G(x) for some x € X, then we say that G acts transitively on X.

For example, the action of GG on itself by left multiplication is transitive, whereas the
action of GG on itself by conjugations is not. Another example of a transitive action is the
action of G on G/H, where H is a subgroup of G; here g € G sends the coset H to grH.

Definition 2.14. Let G x X—X be an action of a group G on a set X. An element x € X
is called a fixed point of g € G if g(x) = x. We denote by Fix(g) < X the set of fized
points of g € G.

A fixed point of g € GG is the same as a 1-point orbit of the cyclic group generated by g.
Theorem 2.15 (Jordan). Let G x X—X be a transitive action of a finite group G on a
finite set X. Then we have

> IFix(g)| = |G. (2.2)

geG
In particular, there is an element g € G such that Fix(g) = &.
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Proof. To prove the formula we consider the set Y of pairs (g, x), where g € G and x € X
are such that g(x) = x. We count |Y| in two different ways, using the maps

G—Y — X

that forget one of the coordinates of (g,z). Projecting to G, we write |Y| as the sum over
all g € G of |Fix(g)|. Projecting to X, we write |Y| as the sum over all x € X of |Stg(x)|.
Since G acts transitively on X, by Lemma we know that |Stg(x)| does not depend on
x, so that |Stg(z)| = |Stg(zo)| for any chosen point zo € X. We have X = G(x). By the
orbit-stabiliser theorem we have |G| = |G(xo)| - |Ste(2o)|. This proves (2.2).

The second statement is clear if | X| = 1. Assume |X| > 2. If |[Fix(g)| = 1 for every
g € G, then the left hand side has at least |G| elements, and in fact it has more because
Fix(eg) = X has more than one element. Thus we get a contradiction with (2.2). Hence
Fix(g) = & for at least one element g € G. []

Corollary 2.16. Let G x X—X be an action of a finite group G on a finite set X. Then
the number of G-orbits in X is |G|~ 3, ., [Fix(g)|.

Proof. Write X as a disjoint union of G-orbits, X = U ; X;. The number of fixed points
of g € G in X is the sum of the numbers of fixed points of g in X;, for i = 1,...,n. For each
orbit, the formula in the statement of the corollary gives 1, by Theorem Thus for X
the value of the formula is n. []

Example 2.17. Check the formula of Corollary for the cyclic subgroup G < S5 gener-
ated by (12)(345) acting on X = {1,2,3,4,5}.

3. FINITELY GENERATED ABELIAN GROUPS

3.1. Smith normal form. This section is a preparation for the main result proved in the
next section.

Definition 3.1. An (m x n)-matric A = (a;;) with entries a;; € Z is in Smith normal
form if the following conditions are satisfied.
(a) a;; =0 if i # j (only diagonal entries can be non-zero).
(b) Write a; = a;. For some integer k = 0 we have a; > 0 fori < k and a; = 0 fori > k.
(c) ar]as|ag] ... |ag.

Condition (c) says that a; divides ay which divides a3, and so on. The following result is
essentially a linear algebra statement with the added flavour that the entries are integers so
we have to be a bit more careful to take care of this.

Theorem 3.2. Any matrix with integer coefficients can be brought into Smith normal form
using row and column operations.

Recall that the three row operations are (1) switching the i-th and j-th rows, (2) multi-
plying the i-th row by —1 (and not just by any non-zero number!), (3) replacing the i-th row
r; by r; + arj, where 7 # j and a € Z. There are similar column operations.

We need some lemmas. Let d(A) be the greatest common divisor of the entries a;;. Let
t(A) be the smallest non-zero |a;;|. Then d(A) divides t(A), so d(A) < t(A). It is clear that
the row and column operations do not change d(A), because ged(r,s) =ged(r + as, s) for
a € Z. The following lemma is the key observation in the proof of the theorem.
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Lemma 3.3. Any matriz A with integer entries can be transformed using row and column
operations into a matriz B such that t(B) = d(B) = d(A).

Before proving the lemma let us explain the idea on an easier example of a finite set of
non-negative integers S = {s1,...,s,}. We can replace any s; by the remainder r, where
s; =as; +r,0<r <s; and a € Z. This operation does not change gcd(S). By taking s;
to be the smallest element of S, we can ensure, after finitely many steps, that ged(S) is the
smallest non-zero element of S. The lemma does the same for matrices.

Proof of Lemma/[3.3] 'We use induction on t = ¢(A). If t(A) = 1, then t(A) = d(A). Assume
that the lemma is proved for all matrices M of size m xn with d(M) = d(A) and t(M) < t(A).
Let us prove this for A.

Suppose that t(A) = |a;;|. By switching rows and columns, and multiplication of the first
row by —1 if necessary, we can assume that ¢ = t(A) = ay;. If ¢ divides all entries of A, we
are done. Otherwise, we can find a;; not divisible by ¢. If ¢ = 1 or j = 1, the induction step
is easy. If a;; is not divisible by ¢, we write a;; = ¢t + ¢, where £ € Z and 0 < ¢ < t, and
replace the ¢-th row by r; — ¢r;. The resulting matrix has an entry equal to ¢ < t, so we
have lowered t and can apply the induction assumption. If ay; is not divisible by ¢, we do a
similar column operation.

It remains to deal with the case when ¢ divides all the a;; and a,;. By doing row and
column operations we ensure that a;; = a;; = 0 for all 7 and j. Let B be the resulting
matrix. If £(B) < t, we can apply the induction assumption to B. Suppose that ¢(B) =t >
d(B) = d(A), so there is an entry x = b;; not divisible by ¢. Let C' be the matrix obtained
from B by replacing the first row of B by r; + r;. This does not change the (1,1)-entry
(because every entry in the first column is zero, except the (1,1)-entry), hence ¢(C) < t.
The (1, j)-entry of C'is . The matrix C falls into the easy case treated above, so we do as
before and replace the j-column of C' by ¢; — fci, where o = {t +r with £ € Z and 0 < r < t.
The resulting matrix D has the (1, j)-entry equal to r < t, hence t(D) < ¢ and we can apply
the induction assumption to D. This proves the lemma. []

Proof of Theorem[3.2] By Lemma [3.3] we transform A by row and column operations into a
matrix B with an entry which divides every other entry of B. Switching rows and columns,
and multiplying the first row by —1, if necessary, we can assume that the said entry is
byy = d > 0. Since by; divides every entry, we can perform row and column operations to
ensure that every entry in the first row and the first column, except the (1, 1)-entry, is zero.

The matrix now has the form
d 0
0o M )’

where M is a (m — 1) x (n — 1)-matrix with entries in Z, all divisible by d. (The two zeros
denote the row and column of zeros of the relevant sizes.) We now apply the same arguments
to M and finish the proof by induction. []

3.2. Classification of finitely generated abelian groups. For abelian groups it custom-
ary to write the group law additively, as x + y rather than xy as we did before. We shall
follow this convention. For example, an infinite cyclic group is isomorphic to the additive
group Z, so we’ll write it as Z and use + for the group law. If g € G, where G is an abelian
group, then ng is the shorthand for g + g + ... + ¢ (n times).
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Definition 3.4. The free abelian group of rank n is the product of n copies of Z. It is
denoted by Z.".

In other words, Z" = {(a1,...,a,)|a; € Z} is the set of ordered n-tuples of integers, with
coordinate-wise addition as the group law. The unit element (0, ...,0) is written as 0. The
inverse of a = (ay,...,a,) is —a = (—ay, ..., —a,). By convention, the group of one element

is the free abelian group of rank 0.

Proposition 3.5. If Z™ =~ 7", then n = m. Hence the rank of a free abelian group of finite
rank is a well defined integer.

~

Proof. Let f: Z™ — Z" be an isomorphism. Let ¢1,..., g, be the standard generators
of Z™ (the coordinates of g; are equal to 0 except the i-th coordinate which equals 1) and
let hi,...,h, be the standard generators of Z". Then each f(g;) is written as a linear
combination of hy,...,h, with integer coefficients, i.e., f(g;) = a1;h1 + ... + anjh, for some
a;; € Z. Consider the n x m-matrix A whose j-th column is the transpose of (aij, ..., an;).
Then f sends x = (x1,...,x,) € Z™ to A applied to the transpose of (x1, ..., x,,). The linear
map R™—R" sending v to Aw is surjective because its image contains a basis hq,...,h, of
R™, as follows from the surjectivity of f. Hence

n = dimg (R") = dimg (A(R™)) < dimg(R™) = m,

where we used the following fact from linear algebra: the dimension of the image of a vector
space under a linear map is not greater than the dimension of the source.
The situation is symmetric in n and m, hence m < n so that m = n. ]

See Problem Sheet 3 for a counting proof of this fact that does not use linear algebra.
Proposition 3.6. Any subgroup of Z" is isomorphic to Z™ for some m < n.

Proof. We use induction on n. For n = 1 the statement is clear, because every subgroup
of Z is the set of multiples of a given integer a € Z, hence is isomorphic either to Z (if a # 0)
or to the 1-element group (if a = 0).

Assume that the statement is true for the subgroups of Z"~!. The function f: Z"—Z which
sends (a1, ...,a,) to a, is clearly a surjective homomorphism with kernel Ker(f) =~ Z"~!.

Let G be a subgroup of Z". The image f(G) is a subgroup of Z, hence f(G) = Za for
some a € Z. If a = 0, we have G < Ker(f) =~ Z" !, so we can conclude by appealing
to the induction assumption. Assume a # 0. Choose g € G such that f(g) = a, that is,
g = (ay,...,a,) € G with some ay,...,a, 1 € Z.

Write Go = G n Ker(f). As an intersection of two subgroups of Z", this is a subgroup of
Z"™. We have Gy < Ker(f) =~ Z"'. Since G is isomorphic to a subgroup of Z"~! by the
induction assumption, Gy =~ Z* for some k¥ < n — 1. I claim that G is isomorphic to the
product of Gy and the infinite cyclic group Zg generated by g. It is enough to prove this
claim, because then G =~ ZF x Z ~ Z**! and we are done.

The claim is a consequence of Proposition [I.24] Indeed, we work with abelian groups, so
all subgroups are normal. We have Gy nZg = {0}. Finally, take any h € G. Then f(h) = ra
for some r € Z, so h = (h —rg) + rg, where h —rg € Gy and rg € Zg. This proves that every
element of GG is the sum of an element of GGy and an element of Zg. This proves the claim. []

Corollary 3.7. Let G be a finitely generated abelian group. Then there is a surjective
homomorphism f: Z"—G for some n. We have Ker(f) = Z™ for some m < n.
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Proof. Let gi1,...,9, be a set of elements of G that generates G. This means that G
is the only subgroup of G that contains ¢,...,g,. Define f: Z"—G as the map sending
(a1,...,a,) to ayg1 + ...+ ang, € G. This is clearly a homomorphism. The image f(Z")
is a subgroup of G containing ¢i,..., g, so f(Z") = G. The second claim follows from

Proposition [3.6] [

Theorem 3.8. FEvery finitely generated abelian group is isomorphic to a product of finitely
many cyclic groups.

Proof. By Corollary we need to prove that if H =~ Z™ is a subgroup of Z", then Z"/H
is isomorphic to a product of finitely many cyclic groups. Since H < Z" is isomorphic to
7™, it can be generated by m elements of Z". Let us write them as

(alla"’7a’1n)7 <a217"'7a2n)7 DR (amh"‘aamn)'

Consider the (m x n)-matrix A = (a;;). Since H is the subgroup of Z" generated by the
rows of A, the row operations do not change H. (This is obvious in the case of switching
rows and multiplication of a row by —1. As H is generated by rq,...,r,, we see that H
is also generated by the same elements with r; replaced by 7; + ar; for any a € Z.) Each
column operation is an automorphism ¢: Z" — Z". An automorphism sends a subgroup
to an isomorphic subgroup, ¢: H — ¢(H). Thus ¢ induces a map gH — ¢(g)p(H) on left
cosets Z"/H — 7" /p(H), which is an isomorphism. We conclude that performing row and
column operations on A does not change the quotient group Z"/H, up to isomorphism.

By Theorem [I.19] we can assume that A is in Smith normal form with non-zero diagonal
entries dq|ds| . ..|dg. The group generated by the rows of A is

H =7Zdy x Zdy x ... x Zdy x {0} x ... x {0} < Z".

The quotient of Z by the subgroup Zd, where d # 0, is isomorphic to the cyclic group Cy of
order d. By Question 6 (b) from Problem Sheet 1 we obtain an isomorphism

Z"/H = Cyq, % ... x Cq x Z"7".
This finishes the proof. []

Remark 3.9. Let GG be a finitely generated abelian group. By Theorem we have an
isomorphism G =~ F' x H, where F is a finite subgroup of G and H < G is a free abelian
group of some rank m. We note that F' = G, so is uniquely defined by G, see Definition
1.26, In contrast, H is not unique (unless G is a free abelian group), because if x € F', z # 0,
and y € H is infinite, then the order of z + y is also infinite but x + y ¢ H. However, the
rank m of H is well defined, because it equals the rank of the free abelian group G/F ~ H
which is well defined by Proposition [3.5] This non-negative integer is called the rank of G.

Corollary 3.10. Any finite abelian group is isomorphic to the product of its p-primary
torsion subgroups.

Proof. By Theorem [3.8] a finite abelian group is isomorphic to a product of cyclic sub-
groups. Now use Corollary [1.28] (This can be proved directly using the argument in the
proof of Corollary [1.28] so Theorem is not needed. I am grateful to Xiang Li for pointing
this out.) [

Theorem 3.11. Fvery finitely generated abelian group is isomorphic to a product of finitely
many infinite cyclic groups and finitely many cyclic groups of prime power order. The number
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of infinite cyclic factors and the number of cyclic factors of order p", where p is a prime and
r 18 a positive integer, depend only on the group.

Proof. Let G be a finitely generated abelian group. Theorem gives an isomorphism
G = Gios X 2™, for some integer m > 0, where G\ is a finite group. By Corollary
we have Giors = [ [, G{p} where p ranges over the prime factors of |Gios|. Each p-primary
torsion subgroup G{p} is the set of elements of G whose order is a power of p, so G{p} is a
well defined subgroup of G. By Theorem G{p} is isomorphic to a product of cyclic p-
groups. It remains to show that the collection of prime powers which are orders of these cyclic
p-groups is well defined. This boils down to the following claim: if we have an isomorphism

Cpar X ... X Cpam = Cppy X oo x Cyy (3.1)

where a; > ay > ... =2 a, =2 1land by = by > ... = b, > 1, then m = k and a; = b;
for all 4. Call this group H and let H[p] = {x € H|pz = 0}. We have Cy[p] = C,, thus
|H[p]| = p™ = p* so m = k. Now let pH = {px € H|z € H}. We have pCpa = Cpe-1, hence
pH is isomorphic to

C

p
Here we can ignore the factors which are 1-element groups, that is, the factors with a; = 1
and b; = 1. Using the previous argument we see that the number of a;’s such that a;, > 2
is equal to the number of b;’s such that b; > 2. Thus the number of cyclic groups of order
p is the same on both sides of . We apply the same argument to pH and obtain that
the number of cyclic groups of order p? is the same on both sides of . Continuing this
process, after finitely many steps we prove the claim. []

aj—1 X ... X Cpamfl = Opbl—l X ... X Cpbkfl.
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Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in their halls of stone,
Nine for Mortal Men, doomed to die,

One for the Dark Lord on his dark throne

In the Land of Mordor where the Shadows lie.
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4. BASIC THEORY OF RINGS

O J Ot W = =

12
12
13
14

4.1. Motivation, definitions, examples. The world of numbers has two operations: ad-
dition and multiplication. Groups are objects endowed with one operation, which in concrete
situations can be addition, multiplication or any other, provided it satisfies the axioms of a
group. But in most mathematical problems we need to deal with two operations at the same

time. A ring is a formal algebraic structure, like a group, but with two operations.

Traditionally, these operations are called addition and multiplication, and are denoted by
+ and X, respectively. There is no symmetry between + and x: we require addition to
satisfy group axioms and to be commutative, whereas multiplication does not have to be

commutative and the multiplicative inverses do not usually exist.
The crucial examples of rings, as we shall see soon, are as follows.

e The set of integers Z.
e The sets of rational, real or complex numbers Q, R, C.
e The set of polynomials with rational coefficients Q[¢].
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e The set M, (R) of (n x n)-matrices with entries in R, where n > 2.
e The binary field Fo = {0, 1} with binary addition and multiplication.

With the exception of the last one, each of these sets has usual addition and multiplication.

Definition 4.1. A ring is a set R together with two binary operations, + and x, satisfying
the following axioms:

(1) (R,+) is an abelian group. It is written additively, so the unit element of (R,+) is
denoted by 0 and the inverse of x is denoted by —x.

(2) Multiplication is associative: for any a,b,c € R we have (a-b)-c=a-(b-c).

(3) There is a unique unit element for multiplication, denoted by 1, which satisfies
l-x=x-1=x for any x € R.

(4) Distributivity: for any a,b,c € R we have a(b+ ¢) = ab+ ac and (a + b)c = ac + be.

The ring R is closed under + as well as under x. You won’t fail to notice that we do not
require the existence of multiplicative inverses. This is OK because we want to be able to
work with objects like Z where there are many non-invertible elements (only 1 and —1 have
multiplicative inverses).

Let us show how addition and multiplication interact.

Lemma 4.2. Let R be a ring.
(i) For any x € R we have x0 = 0z = 0.
(ii) For any z,y € R we have (—x)y = z(—y) = —xy.
(iii) If R # {0}, then 1 # 0.

Proof. We have 040 = 0, hence by axiom (4) we have z-0 = (04 0) = -0+ x-0. Adding
to both sides the additive inverse of = - 0 we obtain x - 0 = 0. Using the other distributivity
law we prove 0 -z = 0, hence complete the proof of (i).

We have y + (—y) = 0, so by axiom (4) we get -0 = z(y + (—y)) = 2y + z(—y). By part
(i) we have -0 = 0. Adding to both sides the additive inverse of xy we get —xy = = - (—y).
A similar proof gives (—z)y = —xy.

Assume that 1 = 0. Now (i) and axiom (3) imply that 0 is the only element of R. []

Henceforth we shall only consider non-zero rings, i.e., rings such that 1 # 0.

Definition 4.3. A subset of a ring which is a ring under the same operations and the same
1 is called a subring.

Lemma 4.4. Let S be a non-empty subset of a ring R. Then S is a subring of R if and
only if 1 € S and for any a,be S we havea+be S, abe S and —a € S.

Proof. A subring has these properties. Conversely, if S is closed under addition and taking
the additive inverse, then (S, +) is a subgroup of (R, +) (by group theory). Associativity
and distributivity hold in S because they hold in R. []

Definition 4.5. A ring R is called commutative if xy = yx for any x,y € R

Definition 4.6. An element x € R is called invertible if there are elements y,z € R such
that xy =1 and zx = 1.

Remark 4.7. We have y = z. Indeed, z = z -1 = z(ay) = (zx)y = 1 - y = y. One denotes
y = z by x71. The set of all invertible elements of R is denoted by R*. This set satisfies the
group axioms and is called the multiplicative group of the ring R.
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Definition 4.8. A ring in which every non-zero element is invertible is called a division
ring. A commutative division ring is called a field.

Thus a field has all the desirable properties: in a field one can add, subtract, multiply and
divide (by arbitrary non-zero elements). Q, R, C, F, are fields, whereas Z and Q[¢] are not.
All these rings are commutative. For n > 2 the ring of matrices M, (R) is not commutative
and is not a division ring.

Let us consider more examples of rings.

Example 4.9. Let X be a set and let R be a ring. The set of functions X —R is a ring with
respect to addition and multiplication of functions defined as follows:

(f+9)@): = [fl@) +9(x), (fo)(x): = fx)g(z).

The unit element for addition is the function which is identically 0, and the unit element for
multiplication is the function which is identically 1.

Example 4.10. For a ring R let M, (R) be the set of (n x n)-matrices with entries in R.
Usual addition and multiplication of matrices make M, (R) a ring.

Example 4.11. Let A be an abelian group (written additively, as is our convention). Let
End(A) be the set of endomorphisms A—A (i.e., homomorphisms from A to itself). Define
the addition of endomorphisms as the addition of functions, that is, (f+¢)(z): = f(z)+g(x).
Define the multiplication of endomorphisms as composition. Note that this multiplication is
not in general commutative.

4.2. Homomorphisms, ideals, quotient rings. In analogy with the theory of groups,
where homomorphisms of groups are maps between groups that preserve the group law, we
can define homomorphisms of rings.

Definition 4.12. Let R and S be rings. A function f: R—S is a homomorphism of rings
of

(1) f: (R, +)—(S,+) is a homomorphism of abelian groups;

(2) f(zy) = f(z)f(y) for all z,y € R;

(3) f(1gr) = 1s.

Here 1z and 1g are the unit elements for multiplications, in R and S, respectively. Since
in all of our rings we have 1 # 0, any homomorphism is a non-zero map. In other words, a
homomorphism of rings is a homomorphism of their additive groups which preserves multi-
plication and sends 1 to 1g.

A subset R’ of a ring R is a subring if and only if the tautological map R'—R is a
homomorphism of rings.

Lemma 4.13. Let f: R—S be a homomorphism of rings. The kernel Ker(f) is a subgroup
of (R, +) which satisfies the following property: for any x € Ker(f) and any r € R we have
ar € Ker(f) and rx € Ker(f).

Proof. This follows from group theory and Lemma (i). O

Here are some examples of homomorphisms.

Example 4.14. Let m be a positive integer. We have a subgroup mZ of Z. Consider the
homomorphism of abelian groups f: Z—Z/mZ sending n € Z to the coset n + mZ of the
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subgroup mZ. We can choose a coset representative n as the unique integer such that n —n
is a multiple of m and 0 < < m. Then f(n) is the coset of 7.

But Z is not just a group under addition, it is a ring. Then Z/mZ inherits multiplication
from Z: this is the operation defined by the rule (n + mZ) - (k + mZ) = nk + mZ. (This is
the same as defining 7 - k as nk.) This operation is well defined, because if n’ is any element
of n + mZ and k' is any element of k + mZ, then n'k" differs from nk by a multiple of m,
so nk + mZ = n'k’ + mZ which means that the product of cosets does not depend on the
choice of representatives and thus is well defined.

This multiplication makes Z/mZ a ring with 1 = 1+ mZ as the unit element for multipli-
cation. (Associativity of multiplication and distributivity hold in Z/mZ because they hold
in Z.) Now it is clear that f: Z—Z/mZ is a surjective homomorphism of rings.

Example 4.15. Let us consider a similar situation where Z is replaced by the polyno-
mial ring Q[t] and m is replaced by a polynomial p(t) of degree at least 1. We follow the
same procedure and consider Q[t] as an abelian group with subgroup p(t)Q[t] consisting
of polynomials divisible by p(t). The quotient group Q[¢]/p(t)Q[t] inherits multiplication
from Q[t], which turns it into a ring. The coset 1 + p(t)Q[t] of the polynomial 1 is the
unit element of Q[t]/p(t)Q[t]. The canonical surjective homomorphism of abelian groups
Q[t]—-Qlt]/p(t)Q[t] sending a polynomial ¢(t) to its coset ¢(t) + p(t)Q[¢] is then a surjective
homomorphism of rings. (Note that deg(p(t)) = 1 implies that p(¢)Q[t] # Q[t], so the ring
Q[t]/p(t)Q[t] is non-zero.)

These examples are particular cases of a general construction.

Definition 4.16. Let R be a ring. A subset I — R is called an ideal if it is a subgroup of
(R,+) (with respect to addition) and such that for any x € I and any r € R we have rx € I
and xr e I.

We shall mostly consider commutative rings, and in this case rz = xr, so one condition
rx € I is enough. In the non-commutative case what we defined above is called a two-sided
1deal, whereas if we only require rx € I, then [ is called a left ideal, and if only require xr € I,
then [ is called a right ideal.

In our definition R is an ideal of R. An ideal not equal to the whole ring is called a proper
ideal. Another standard example is the zero ideal {0}.

In the theory of rings, ideals play a role similar to that of normal subgroups in group
theory. One common feature is that kernels of homomorphisms of rings are ideals (in the
same way as kernels of homomorphisms of groups are normal subgroups). This follows from
Lemma [4.13] Note, however, that a proper ideal I < R is not a subring of R because it does
not contain 1. Indeed, if 1 € [ thenr-1=re [ foranyre R, so I = R.

Another common feature is that for a proper ideal I of a ring R we can define the quotient
ring R/I and a canonical surjective homomorphism f: R—R/I. Indeed, we take the quotient
group R/I of the additive group of R by the subgroup /. Then we turn R/ into a ring like
we did in the examples above, namely, the product of cosets x + I and y + I is defined as
the coset xy + I. A standard verification shows that this operation is well defined. The
unit element for multiplication in R/I is 1 + I € R/I. Associativity of multiplication and
distributivity hold in R/I because they hold in R. The surjective homomorphism of additive
groups f: R—R/I is thus a homomorphism of rings.
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Definition 4.17. Let R be a ring and let I — R be a proper ideal. The quotient abelian group
R/I with multiplication inherited from the multiplication on R is a ring called the quotient
ring of R by the ideal I.

This generalises two examples above. In the case when R = Z we take the ideal I = mZ,
and the quotient ring is R/I = Z/mZ. In the case R = Q[t] we take the ideal I = p(t)Q[t].
Such ideals have a special name.

Definition 4.18. Let R be a commutative ring. Take any a € R and consider the set of all
multiples of a, that is, the set aR = {ax|x € R}. This is an ideal in R. An ideal of this form
1s called o principal ideal with generator a.

It is indeed clear that aR is an ideal: this is a subgroup of (R, +) which is closed under
multiplication by arbitrary elements of R. A generator is usually not unique.
As in group theory, we have the following definitions.

Definition 4.19. A bijective homomorphism of rings f: R—S is called an isomorphism.
A homomorphism of rings R— R is called an endomorphism.
An isomorphism of rings R — R is called an automorphism.

Continuing the analogy with groups we note that the image of a homomorphism of rings
f: R—S is a subring of S. Indeed, f(R) is a subgroup of the additive group of .S, contains
lg and is closed under multiplication. (It is not an ideal unless f(R) = S.)

Theorem 4.20 (Isomorphism theorem). Let f: R—S be a homomorphism of rings. Then
the subring f(R) of S is isomorphic to the quotient ring R/Ker(f).

Proof. The isomorphism theorem from group theory (Theorem 1.19) says that the map
sending z + Ker(f) to f(z) is an isomorphism of groups under addition R/Ker(f) — f(R).
This map respects multiplication and sends 1 to 1, so it is an isomorphism of rings. []

4.3. Integral domains and fields.

Definition 4.21. Let R be a ring. Non-zero elements a,b € R are called zero-divisors if
ab = 0. A commutative ring without zero-divisors is called an integral domain.

Lemma 4.22. Let R be an integral domain and let a,b,c € R be such that a # 0. Then
ab = ac if and only if b = c.

Proof. One direction is obvious. So we assume ab = ac. Then by distributivity we have
a(b —¢) = 0. Since R has no zero-divisors, we must have b — ¢ = 0. []

Lemma 4.23. Let R be an integral domain and let a,b € R. Then aR = bR if and only if
a = br, where r € R*.

Proof. Assume aR = bR. If a = 0, then b = b-1 = 0, so the conclusion is true in this case.
Now let a # 0. We have a = a-1 € aR = bR. Thus a = bc for some ¢ € R. Similarly, b = ad
for some d € R. Thus a = acd. By Lemma we obtain e¢d = 1, hence c e R*.

Conversely, if a = br, where r € R*, then aR < bR, but we can also write b = ar~
this implies bR < aR, so we are done. []

I and

Proposition 4.24. Fvery field is an integral domain.

Proof. Exercise. []



6 ALEXEI N. SKOROBOGATOV

Theorem 4.25. Every finite integral domain is a field.

Proof. The only thing to check is that every non-zero element is invertible. Let R =
{r1,...,rn} (distinct elements) be our integral domain. Take any non-zero r € R. Consider
{rir,...,r,r}. If for some i and j we have r;r = r;r then r; = r; by the cancellation property
(Lemma [4.22)). Therefore {rir,...,r,r} is a set of n distinct elements of R. Since R has n
elements, {ryr,...,m,r} = R = {r1,...,r,}. Thus any r; can be written as r;r for some j. In
particular, 1 = r;r for some j, hence r; = r~'. [J

Corollary 4.26. Let n be a positive integer. The ring Z/nZ is an integral domain if and
only if it is a field, which happens exactly when n is a prime.

Proof. By Theorem m it is enough to prove that Z/nZ is not an integral domain if and
only if n is not a prime.

If n =1, then Z/nZ is the zero ring, hence not an integral domain (by definition).

Now assume n > 2. If n = ab, where a,be Z, a > 1,b> 1, then ab = ab=n = 0, so @
and b are zero-divisors in Z/nZ, so this is not an integral domain. Conversely, if 7 and 5 are
zero-divisors in Z/nZ, then n divides neither r nor s, but divides rs. But we know that if
a prime divides a product of two natural numbers, then it divides one of them. Hence n is
not a prime. []

Thus for any prime p we have a finite field with p element. We denote Z/pZ by F,,.

Definition 4.27. A subset K of a field F' is called a subfield of F if K is a field with the
same addition and multiplication. In this case, F' is called o field extension of K.

To check that K < F' is a subfield of a field F', it is enough to check that for any a,b e K
the elements a + b, —a, ab are in K, and for any non-zero a € K we have a~! € K.

Proposition 4.28. For any ring R there is a unique homomorphism of rings Z—R.

Proof. A homomorphism of rings f: Z—R must send 0 to 0 and 1 to 1g. Then, by
definition, f(2) = 1g + 1g, f(3) = 1g + 1g + 1g, and so on, and also f(—1) = —1g,
f(=2) = —(1g + 1g). By induction, if n is a positive integer, then f(n) is obtained by
adding 1x with itself n times; if n is a negative integer, then f(n) = —f(—n). Thus for any
ring there is a unique homomorphism Z— R, namely, the one defined above. []

Lemma 4.29. Let R be an integral domain. The kernel of the unique homomorphism Z— R
is either the zero ideal {0} < Z or the principal ideal pZ, where p is a prime.

Proof. The kernel is nZ for some n € Z, because there are no other ideals in Z (indeed,
all subgroups of (Z, +) are of this form). We have n = 0 or n > 2 (because 1 goes to 1g).
By the isomorphism theorem, the image of Z is a subring of R isomorphic to Z/nZ. By
Corollary if n > 0, then n is a prime. []

Definition 4.30. The characteristic of an integral domain R is the unique non-negative
generator of the kernel of a homomorphism Z— R, so it is 0 or a prime number.

We denote the characteristic of R by char(R).

Recall the definition of a vector space over a field from linear algebra. Note that we can
talk about vector spaces over any given field, not only over R as in the first year linear
algebra.
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Definition 4.31. Let k be a field. Let V be an abelian group together with an action of
the elements of k (called ‘scalars’) on the elements of V' (called ‘vectors’), that is, a rule
attaching to a scalar x € k and a vector v € V a vector xv € V, satisfying the following
azrioms:

(1) 1v = v and xz(yv) = (zy)v for any x,y € k and any v e V;

(2) (z +y)v=av+yv for any x,y € k and any v e V;

(3) z(v +w) = 2v + zw for any x € k and any v,we V.

Lemma 4.32. A field extension F of a field k is a vector space over k.
Proof. The axioms of a vector space obviously hold. []

Theorem 4.33. Let k be a field. If char(k) = 0, then k contains a unique subfield isomorphic
to Q so k is a vector space over Q. If char(k) = p (a prime), then k contains a unique subfield
isomorphic to Fp,, so k is a vector space over IF,,.

Proof. 1f char(k) = 0, then k contains a subring isomorphic to Z. This is the smallest
subring containing 1. Since k is a field, it contains multiplicative inverses of all non-zero
elements, hence all ratios of non-zero elements of Z, and this set is a field isomorphic to Q.
It remains to use the previous lemma. If char(k) = p, then the statement is clear. []

Corollary 4.34. Every finite field has p" elements, where p is a prime and n is a positive
nteger.

Proof. Such a field k is a vector space over I, by Theorem [£.33] Since k is finite, it is
spanned by finitely many vectors. By linear algebra, k has a finite basis vy, ..., v, for some
n = 1. Then every element of k is uniquely written as a;v; + ... + a,v,, where a; € IF,, for
alli=1,...,n. Hence |k| =p™. [

This prompts an interesting question: for a given prime power p”, does there exist a field
with p” elements? If yes, how to construct it explicitly? We shall answer both questions
later in this course.

4.4. More on ideals.

Proposition 4.35. A commutative ring is a field if and only if the only proper ideal is the
zero ideal.

Proof. If an ideal of a field contains a non-zero element, then it equals to the whole field,
because every non-zero element in a field is invertible. Conversely, let R be a commutative
ring and let @ € R be a non-zero element. If R has no non-zero proper ideals, then the
principal ideal aR equals R. Then 1 = ab for some b € R, hence a € R*. Thus R is a field.
[]

Proposition 4.36. Let f: R—S be a homomorphism of rings and let J < S be an ideal.
Then f~Y(J) is an ideal of R.

Proof. By group theory, the inverse image of a subgroup is a subgroup, hence f~!(.J) is
a subgroup of (R, +). If z € f~%(J) and r € R, then f(rx) = f(r)f(x). Since f(z) € J, we
have f(r)f(x) € J, thus rz e f~4(J). O

Note that the image of an ideal under a homomorphism of rings is not necessarily an ideal.
For example, the map sending n € Z to n € Q is an injective homomorphism Z—Q. But
27 is not an ideal of Q. However, this is true for surjective homomorphisms. (Compare the
following with a similar statement for groups, see Proposition 1.20.)
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Proposition 4.37. Let f: R—S be a surjective homomorphism of rings and let I < R be
an ideal. Then f(I) is an ideal of S. The maps I — f(I) and J — f~'(J) are inverse to
each other, so they give a bijection between the ideals of R that contain Ker(f) and the ideals
of S.

Proof. Let x € 1. To prove that f(I) is an ideal, we need to check that for any s € S we
have sf(z) = f(y) for some y € R. By the surjectivity of f we find an element r € R such
that f(r) = s. Then y = rz.

By the previous proposition, for any ideal J < S the inverse image f~1(J) is an ideal of
R that contains Ker(f). Since f is surjective, we have f(f~*(J)) = J. If Ker(f) < I, then
S7Y(f(I)) = I. (The inclusion I < f~'(f(I)) always holds. For the reverse inclusion note
that if x € f~1(f(I)), then f(z) = f(y) for some y € I. Then z — y € Ker(f) < I, hence
xel)

Let us define two most important classes of ideals.

Definition 4.38. Let R be a commutative ring. A proper ideal I < R called a prime ideal
if the quotient ring R/I is an integral domain.

For example, the prime ideals of Z are pZ, where p is a prime number, and the zero ideal
{0}.
Proposition 4.39. A proper ideal I of a commutative ring R is prime if and only if for any
x,y € R such that xy € I we have x € I orye I.

Proof. The property is equivalent to the property that (x + I)(y + I) = zy + I equals [ if
and only if z + [ = I or y + I = I. But this is exactly the same as the property that R/l
has no zero-divisors. (Note that I is proper, hence R/I is not the zero ring.) []

Definition 4.40. Let R be a commutative ring. A proper ideal I < R called a maximal
ideal if the quotient ring R/I is a field.

It is clear that every maximal ideal is prime.

Proposition 4.41. A proper ideal I of a commutative ring R is maximal if and only if there
1s mo proper ideal J < R such that I < J and I # J.

Proof. By Proposition the ring R/ is a field if and only if R/I has no non-zero
proper ideals. By Proposition this is equivalent to the absence of proper ideals of R
that strictly contain 7. []

The maximal ideals of Z are pZ, where p is a prime number (but not the zero ideal). This
proposition suggests that we can construct fields as quotients of commutative rings by their
maximal ideals, much in the same way as the finite fields IF, are quotients of Z by pZ. To
do this need to enlarge our supply of rings.

5. PID anp UFD

5.1. Polynomial rings. Let R be an integral domain and let R[¢] be the ring of polyno-
mials in one variable ¢ with coefficients in R, with the usual addition and multiplication of
polynomials. Every polynomial can be written as

p(t) = at™ + ...+ ait + ay,
where all a; € R and a,, # 0. In this case we call n the degree of p(t) and write deg(p(t)) = n.
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Proposition 5.1. If R is an integral domain, then

deg(p(t)q(t)) = deg(p(t)) + deg(q(?)), (5.1)
R[t] is an integral domain, and R[t]* = R*.

Proof. Formula (5.1) is due to the absence of zero-divisors in R, so the product of two
leading coefficients is non-zero. It implies that R[t] has no zero-divisors and that the in-
vertible elements of R[t] are the constant polynomials which are invertible elements of R.

]

We shall mostly consider polynomial rings with coefficients in a field k. A key feature of
the ring k[t] is the possibility to divide with remainder, exactly like in Z.

Proposition 5.2. Let k be a field. For any polynomials a(t),b(t) € k[t], where b(t) is
non-zero, there exist polynomials q(t),r(t) € k[t] such that

a(t) = q()b(t) + r(t)
where either r(t) = 0 or deg(r(t)) < deg(b(t)). These q(t) and r(t) are uniquely determined
by a(t) and b(t).

Proof. Let m = deg(a(t)) and n = deg(b(t)). If m < n we let ¢(t) be the zero polynomial
and r(t) = a(t). So assume m > n and use induction in m. Assume that this is proved
for degrees less than m. Write a,, (respectively, b,) for the leading coefficient of a(t) (re-
spectively, of b(t)). The degree of a(t) — a,,b, 't™ "b(t) is less than m, so we can apply the
induction assumption and finish the proof of the existence part.

If a(t) = q(t)b(t) + 7(t), where 7(t) = 0 or deg(7(t)) < n, then r(t) — 7(¢t) has degree less
n but is a multiple of a polynomial of degree n, hence r(t) = 7(t). Then q(t)b(t) = q(t)b(t),
and this implies ¢(t) = ¢(¢) by the cancellation property of integral domains. []

An obvious consequence of this is that if a polynomial p(t) € k[t] has a root « € k, then

p(t) = q(t)(t — «) for some q(t) € k[t]. Tterating this we see that a polynomial of degree d
can have at most d roots in k.

Definition 5.3. An integral domain R with a function ¢: R\{0}—Zs is called a Euclidean
domain if

(1) ¢(xy) = ¢(x) for any non-zero x,y € R;

(2) for any a,b € R there exist q,r € R such that a = gb + r where r = 0 or ¢(r) < ¢(b).

Examples of Euclidean domains:
e the ring Z together with ¢(n) = |n|;
e the ring k[t], where k is a field, together with the degree function;
e the ring of Gaussian integers Z[i] = {m + nilm,n € Z}, where i = /—1, with
d(m + ni) = m? + n?
e the ring of Eisenstein integers Z[(] = {m + n(|m,n € Z}, where ( = %53’ with
d(m + n¢) = m? — mn + n?.

For the last two examples, see Problem Sheet 6.

Definition 5.4. An integral domain R is called a principal ideal domain or o« PID if
every ideal of R is principal, that is, is of the form aR for some a € R.

Theorem 5.5. Any Fuclidean domain is a PID.
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Proof. Let I < R be a non-zero ideal. Let b € I be a non-zero element such that ¢(b) is
the minimum of ¢(x), x € I, x # 0. Any a € I can be written as a = ¢b + r, where r = 0
or ¢(r) < ¢(b). But r = a — gb € I (since I is an ideal) so ¢(r) < ¢(b) is impossible. Thus
every element of [ is a multiple of b, so I = bR. []

5.2. Factorisation in integral domains.

Definition 5.6. Let R be an integral domain. A non-zero element x € R\R* is called an
irreducible element if = is not a product of two elements of R\R*.

For example, the irreducible elements in Z are +p, where p is a prime number. The
irreducible elements of k[t] are called irreducible polynomials.

Lemma 5.7. Let R be an integral domain. If x is an irreducible element and a € R*, then
ax is also an irreducible element.

Proof. Indeed, ax # 0 cannot be in R* because then x € R*. Next, if ax = yz, where
y,z € R\R*, then x = (a'y)z. This cannot happen since a~'y € R\R*. []

Definition 5.8. An integral domain R is called a unique factorisation domain or ¢ UFD
if every element of R\R* is a product of finitely many irreducibles, and this decomposition
s unique up to changing the order of factors and multiplying the factors by elements of R*.

The main theorem of arithmetic says that Z is a UFD. The polynomial ring C[¢] with
coefficients in the field of complex numbers C is a UFD because every polynomial is uniquely
written as ¢[ [\, (t — z;), where c € C* and z; € C for ¢ = 1,...,n, up to permutation of
factors.

Unique factorisation domains are also sometimes called factorial rings.

Our goal is to show that any PID is a UFD.

Definition 5.9. Let R be an integral domain and let a,b € R. We say that a € R divides
be R and write alb if b = ra for some r € R. An element a € R properly divides b € R if
b=ra andr¢ R*. If b=ra for some r € R*, then we say that a and b are associates.

Proposition 5.10. Let R be a UFD. Then there is no infinite sequence of non-zero elements
r1,79,... of R such that r,,1 properly divides r,, for each n > 1.

Proof. Every element dividing an invertible element is invertible. Thus no element prop-
erly divides an invertible element, so ry ¢ R*. Write r;, = ay...a,,, where aq,...,a,, are
irreducibles (possible since R is a UFD). The number of factors m does not depend on the
factorisation (m only depends on r1). Write m = [(ry). If ro properly divides rq, then
l(re) < IU(r1). Hence l(r;) > l(ry) > --- Any decreasing sequence of natural numbers is
finite, so no infinite sequence rq, 79, ... exists. []

Proposition 5.11. Let R be a UFD. If p is irreducible and p|lab then pla or pl|b.

Proof. If a € R*, then p|b (since p|ab implies ab = pc and then b = pca™?, for some
¢ € R). So assume that a,b ¢ R*. Then a = ay...ay, b = by,...b, for some irreducible
elements a; and b; with m > 1 and n > 1. Write a; ...aub;...b, = pc for some c € R. If
c € R*, we have (c‘lal)ag ...amby -+ - b, = p, which is a contradiction because the number of
irreducible factors on both sides is not the same. Otherwise ¢ = ¢; . .. ¢, for some irreducibles
c1,...,¢s € R. Then we have two ways of writing ab as a product of irreducibles

ai...apuby... b, =pcy...cq.
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Thus p is associated with some a; or b;, hence pla or p|b. [

Theorem 5.12. Let R be an integral domain. Then R is a UFD if and only if the following
conditions hold:

(1) There is no infinite sequence r1,rs, . .. of elements of R such that r,1 properly divides
r, for allm > 1.
(2) For every irreducible element p € R, if plab, then pla or pl|b.

Proof. By Propositions and [5.11], conditions (1) and (2) are satisfied for any UFD.

Conversely, assume R satisfies (1) and (2). For contradiction, suppose that there is a
non-zero element r; in R\R*, which cannot be written as a product of irreducibles. Note
that r; is not irreducible, hence 1 = 1,85, for some 79, 5o € R\R*. At least one of the factors
cannot be written as a product of irreducibles, say 5. For the same reason as before, we can
write ry = 1383, with r3, s3 € R\R*. Continuing in this way, we obtain an infinite sequence
r1,T9,73,.... Moreover, in this sequence, 7,1 properly divides r, because s, is never in
R*. This contradicts condition (1). Hence every non-zero element of R\R* can be written
as a product of irreducibles.

Now assume that a; ... a,, = 01 ...0b,, where the a; and b; are irreducibles. We can assume
that m < n. Since a;|b1by - - - b, by (2) we see that a; divides b; for some j. Reorder the b;’s
so that aq|b;. Thus by = aqu for some u € R, u # 0. If u ¢ R*, then b; cannot be irreducible.
Therefore © € R* and hence a; and b, are associates. If m = 1 and n = 1, we are done, but
if m = 1 and n > 2 the cancellation property gives 1 = (ubs)...b,, which is impossible. If
m = 2 we have ay...a, = (uby)...b, by the cancellation property. Continue in this way
until we get 1 in the left hand side. Since a product of n — m irreducibles cannot equal 1,
we must have m = n and, possibly after reordering, a; and b; are associates, for ¢ > 1. []

Example 5.13 (Example of a non-UFD). Let
R={ay+ax+ - +a,2"|ay€Z, a;€Q fori>1}.

Clearly R < Q[z] and R is a subring of Q[z] and also an integral domain. Consider r; =

T, Ty = %I’,T:g = %x, -+~ e R and so r, = 2r,,1 but % ¢ R and hence 2 ¢ R* and x ¢ R* since

% ¢ Q[z]. Thus 1,41 properly divides r,. By Proposition , R is not a UFD.

Proposition 5.14. Suppose R is a PID and I, < I, < --- are ideals in R. Then for some
n we have I, = I,,;1 = --- (One says that any ascending chain of ideals stabilises.)

Proof. Define
I={JI.

n=1

This is a subset of R. We claim that [ is an ideal. Given x,y € I we must show that x + v,
—x, xy are in I. Any z € I belongs to some [,,. Similarly, any y € [ is in some [,,. Suppose
n = m. Then I, < I,,. So x,y € I,, and thus x + y, —x, xy € I,,. Therefore z +y, —x,zy € I.
Let r € R and z € I,,. Then rx € I,, and therefore rz € I. Thus [ is an ideal in R.

By assumption, I = aR for some a € R. Clearly, a € I. Hence, for some [ > 1, we
have a € I;. But then I = aR < [;. On the other hand, I;,,, < I for any m > 0, so
I=L=0,=...0

Example 5.15. Assume R = 7Z. Then 60Z < 30Z < 157 < 5Z < Z.

Proposition 5.16. Suppose that R is a PID. Let p € R be an irreducible element such that
plab. Then pla or p|b.
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Proof. We claim that I = aR + pR = {ary + pry | 11,79 € R} is an ideal: if r € R, then
r(ary + pre) = a(rry) + p(rry) € 1. Since R is a PID, we have I = dR for some d € R.

We have p = a-0+p-1 € I and so can write p = dr for some r € R. Since p is irreducible, r
ordisin R*. If r € R*, then p and d are associates. Since d dividies a, we see that p divides
a. If de R*, then I = dR contains 1 = dd~!. Therefore 1 = at + pu for some t,u € R. This
implies that b = abt + bpu. By assumption, p|ab, thus p|abt + bpu, so p|b. [

Theorem 5.17. Every PID is a UFD.

Proof. We will apply Theorem [5.12] whose second condition follows from Proposition [5.16]
It remains to prove that there does not exist an infinite sequence rq,79,... such that r,
properly divides r, for n = 1,2,... Indeed, let r{,75,... be such a sequence. This implies
that r,R < r,,1R for n = 1,2,.... By Proposition there exists [ > 1 such that
r R =r 1 R---. But then r,,1 and r; are associates, a contradiction. []

6. FIELDS

6.1. Field extensions. The only proper ideal of any field % is the zero ideal (Proposition
4.35)). Thus any homomorphism k— R, where k is a field and R is a ring, is injective. So the
only maps between fields are field extensions.

Definition 6.1. An extension of fields k < K is called finite if K is a finite-dimensional
vector space over k. In this case we call dimy(K) the degree of the extension and write
[K : k] = dimg(K).

Extensions of degree 2 are called quadratic, extensions of degree 3 are called cubic, etc.

Theorem 6.2. Let k < F and F < K be field extensions. Then K is a finite extension of k
if and only if F' is a finite extension of k and K s a finite extension of F. In this case we

have [K : k] = [K : F|[F : k].

Proof. If K is a finite-dimensional vector space over k, then any subspace of K is too, so
dimg(F') < . Any finite set of vectors that spans K as a k-vector space, spans K as an
F-vector space, hence dimp(K) < c0.

Conversely, suppose that vy, ..., v, is a basis of F' as a k-vector space and that wy, ..., w,,
is a basis of K as an F-vector space. We claim that {v;w,}, where 1 <i<nand1l<j<m,
is a basis of K as a k-vector space.

We first show that this set spans K over k. Any element u € K is written as

U =T 1W1 + ...+ TpWy,, T;€F.
But the z;, like all elements of F', are linear combinations of vy, ..., v, with coefficients in k:
T; = Y1U1 4+ ...+ YnjUns  Yij ek.

Hence u = >,  yijviw;, so {vyw;} spans K over k.

It remains to show linear independence of the vectors in {v;w;}. Indeed, if ZZ ; Yigviw; =0
for some y;; € k, then since wy, ..., w,, is a basis of K as an [-vector space, we must have
> yivi = 0 for each j = 1,...,m. But vy,...,v, is a basis of F' as a k-vector space, so
y;; = 0 for all ¢ and j. This proves that K is a finite-dimensional k-vector space of dimension

[K:kl=mn=[K:F|[F:k]. O
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6.2. Constructing fields from irreducible polynomials.

Proposition 6.3. Let R be a PID and leta€ R, a # 0. Then aR is mazimal if and only if
a 18 1rreducible.

Proof.

= Assume that aR < R is a maximal ideal. Since aR # R, we have a ¢ R*. Thus if a is
not irreducible we have a = bc for b,c ¢ R*. Then aR < bR & R since b ¢ R*. Since
aR is maximal we have aR = bR and so for some m € R we have b = am = bem and
so 1 = e¢m, hence ¢ € R*; a contradiction. Therefore a is irreducible.

< Now assume that a is irreducible. In particular, a ¢ R*, so aR # R. Assume that
there exists an ideal J such that aR & J & R. Since R is a PID, J = bR for some
b € R. Note that b ¢ R* because bR # R. Since aR < bR, we can write a = bc
for some ¢ € R. Also ¢ ¢ R* because otherwise aR = bR (if c € R* then ¢! € R
and so b = ¢ 'a € aR, hence bR < aR). Thus a is not irreducible; a contradiction.
Therefore aR is maximal. []

Corollary 6.4. If R is a PID and a € R is irreducible, then R/aR is a field.
This suggests a method to construct fields which we now explore.

Remark 6.5. Let k be a field, let R = k[t] and let p(t) € k[t] be an irreducible polynomial
of degree d. By Corollary [6.4, K = k[t]/p(t)k[t] is a field. Using Proposition we can
choose coset representatives to be polynomials of degree at most d — 1, then

K = {xo+xit + ...+ 201" + p(t)k[t]|2; € K}

By the uniqueness part of Proposition [5.2] each coset has exactly one representative of degree
< d -1, so dimy(K) = d. Consider the map k— K sending x € k to the coset x + p(t)k[t].
This maps sends sums to sums and products to products, so it is a homomorphism of fields.
Every non-zero homomorphism of fields is injective, so the image of this map is a subfield
of K isomorphic to k. Thus K is a field extension of k of degree [K : k] = dimy(K) = d.
Let 7 € K be the coset t + p(t)k[t]. Since k is a subfield of K we can think of p(t) as a
polynomial with coefficients in K. Then p(7) is the trivial coset p(t) + p(¢)k[t] = p(t)k[t];
in other words, we have p(7) = 0 in K. We conclude that for any irreducible polynomial
p(t) € k[t] there exists a finite field extension k = K such that p(t) has a root in K.

For example, let R = Q[t] and let p(t) = t> — a, where a is an integer not divisible by p?,
for any prime p. It is clear that p(t) is irreducible in Q[t]. Then it is immediate to check
that sending x + yt + p(t)Q[t] to x + y/a defines an isomorphism Q[t]/p(¢t)Q[t] = Q(v/a).

We saw that p(t) = t? — a is irreducible by observing that it has no roots. This also works
for polynomials of degree 3, but not in higher degrees. (For instance, (% + 1)(¢? 4+ 2) has no
real roots but is not irreducible in R[?].)

Proposition 6.6. Let k be a field. A polynomial f(t) € k[t] of degree 2 or 3 is irreducible if
and only if it has no root in k.
Proof.
< If f(t) is not irreducible, then f(t) = a(t)b(t) with deg f(t) = dega(t) + degb(t) and
dega(t),degb(t) = 1 (since polynomials in k[t]* have degree 0). Hence dega(t) = 1
or degb(t) = 1. Thus a linear polynomial, say ¢t — « divides f(¢), so that f(a) =0
for some a € k.
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= If f(t) has a root a € k then we can write f(t) = q(t)(t — «) + r(t), where r(t) = 0
or degr(t) = 0, so that r(¢) is an element of k. But f(a) =0, so r = 0. Neither ¢(t)
of degree 2, nor t — « of degree 1, is an element of k[t]*, so f ( ) is not irreducible. []

Example 6.7. Let k = Fy = Z/27. Then t* + t + 1 has no root in Fs, so is irreducible in
Fo[t]. Then K = Fy[t]/(t* + t + 1)Fo[t] is a quadratic extension of Fy, so |K| = 2% = 4. The
elements of K are {0,1,7,1+ 7}, where 7 is the image of ¢t € Fy[t], so we have 72 + 7+ 1 = 0.
Thus the multiplication in K is uniquely determined by the rule 72 = 1 + 7. For example,
we have 771 =1+ 7.

We can now prove the existence of fields of order p? for any odd prime p. An element a of
a field k is called a non-square if there is no element b € k such that a = b2

Proposition 6.8. Let p be an odd prime. The field ¥, = Z/pZ contains (p — 1)/2 = 1
non-squares. For any non-square a € IF,,, the polynomial t2 —a is irreducible in Fy[t] and the
field F,[t]/(t* — a)F,[t] is a quadratic extension of F,,.

Proof. By Proposition we only need to prove the first statement. The map x +— 22

is a homomorphism f: F—Fy. The element —1 € I, is contained in Ker(f), but —1 # 1
because 2 # 0 in [F, since the characteristic of F,, is p # 2. Thus Ker(f) has exactly two
elements 1 and —1, because if there were more, the polynomial 22 — 1 would have more that
two roots in [F,,, which is absurd. By the isomorphism theorem for groups we conclude that
[Im(f)| = (p — 1)/2. The set of non-squares in [, is the complement to Im(f) in IF’, hene
the result. []

If there was a simple way to construct irreducible polynomials of arbitrary degree over [,
or at least prove that they exist, then we would immediately deduce the existence of finite
fields of arbitrary prime power order. This is not obvious, however, so we need to do some
more work to achieve this.

Proposition 6.9. Let k be a field and let p(t) € k[t]. There exists a finite field extension
k < K such that p(t) = c][;_,(t — «;), where c€ k* and a; € K fori=1,...,n.

Proof. 1f deg(p(t)) = 1, then K = k does the job. Assume the statement is proved for all
polynomials of degree < n—1 and let’s prove it for a polynomial p(t) of degree n. Since k[t] is
a UFD, we can write p(t) = ¢p1(t) ... pm(t), where c € k* and py(t), ..., pm(t) are irreducible
monic polynomials in k[¢]. By Remark [6.5] there is a field extension k < ki such that p;(¢)
has a root in k;[t]. Then we have p(t) = (t — a)q(t) for some « € k; and ¢(t) € ki[t]. By
induction assumption there is a field extension k; < K such that ¢(t) is a product of linear
factors in K|[t]. By Theorem the field K is a finite extension of k, so we are done. []

It is possible to prove that there is a “smallest” extension in which a given polynomial
decomposes as a product of linear factors and that such an extension is unique up to iso-
morphism. The proof can be found in most algebra textbooks. We do not need this in this
course so we do not give a proof.

6.3. Existence of finite fields.

Lemma 6.10. Let k be a field of characteristic p, where p is a prime. Then for any x,y € k
we have

(+y)"" =2 +y" (6.1)
for any x,y € k and any positive integer m.
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Proof. See Problem Sheet 5, Question 8. []
Let k be a field and let p(t) = a,t" + ... + ag € k[t]. Define the derivative of p(t) as
Pt) =na,t" "+ (n— Da,_1t" 2+ ...+ 2ast +a; € k[t].

Let us stress that this is a formal definition. Although this is exactly the same formula as
in analysis, defining the derivative of a polynomial can be made over any field and does not
reply on any limiting process. The Leibniz formula still holds: for p(t), q(t) € k[t] we have

(p()q(t)) = p'()a(t) + p(t)d'(t).
Indeed, it is enough to prove this when p(t) = t* and ¢(t) = #°, and this is straightforward.

Lemma 6.11. Let k be a field and let p(t) = (t—ayq) ... (t—ay,), where a; € k fori=1,... n.
Then a; # a; fori # j if and only if p(t) and p'(t) have no common root.

Proof. By the Leibniz formula we have

ROEDY | ()
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<
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<

Hence p'(a;) = [ [j_; ji(ci — @) # 0 precisely when a; is a simple root of p(t). [J

Theorem 6.12. Let p be a prime number and let n be a positive integer. There exists a field
with p" elements.

Proof. Consider the polynomial #*" — ¢ in F,[t]. By Proposition there is a finite
extension F, — K such that

" —t=(t—a1)...(t— ),
where o; € K for i = 1,...,p". Define
F={ay,...,an} c K.

We claim that F'is a subfield of K. For this we need to show that F' is closed under + and
x, and under taking the additive and multiplicative inverses. (Clearly, F' contains 0 and
1.) That F is closed under multiplication and taking the multiplicative inverse is clear; that
F' is closed under addition follows immediately from . If p is odd, then « is a root of
tP" —t = 0 if and only if —« is a root. If p = 2, then there is no difference between plus and
minus, so the additive inverse of z is z. Thus F' is closed under taking the additive inverse.
We proved that F' is a subfield of K.

By Theorem F' contains the prime subfield F,. To complete the proof it remains
to show that o; # o if 7 # j. We do this using Lemma : the derivative of t#" — ¢ is
ptP" =1 —1 = —1, because char(k) = p. This is a non-zero constant, hence all roots of t*" —¢
are simple. Thus |F| = p™. [J

It can be proved that all finite fields with p™ elements are isomorphic.



