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Part 1
Linear Algebra

1 Prelim

Definition - Similair Matrices

A, B € M,,(F) similair (A ~ B) if 3 invertible P € M, (F) st P"*AP =B

~ is an equivalence relation.
Properties of Similair Matrices

e Same Determinant

e Same Char. Poly.

e Same eigenvalues

e Same rank Same Trace

Definition - Companion Matrix

Let p(x) a monic polynomial of degree r; p(z) = 2" + a,_12" 1 + -+ + ao.

Companion matrix of p(x);

—_
o
e}

Clp(x)) =10 1 0

Geometry

Definition - Dot Product
w=(ug,...,u,) and v = (vy,...,0n)

<
<
I
TM:
N
&
s

Length of u, ||[u]| = Vu-u
Distance between u and v = ||u — ||

e P orthogonal if PTP =1, (Pu-Pv) =u-v)

o A symmetric if AT = A, (Au-v =u- Av)
Properties of dot product

e linear in u,v

e symmetric; u-v =v-u

o u-v>0,Yu,v

0
0
0

—ag
—aq
—as
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3 Algebraic and Geometric multiplicities of eigenvalues

Definition - Multiplicity of eigenvalues
For T': V — V a linear map with char. poly. p(x) with roots A, Then 3 a()\) € N the algebraic multiplicity of A s.t

p(z) = (z — N)*Vg(x)

where A not a root of ¢(z)
Geometric multiplicity g(\) = dimFE), for E\ the eigenspace of T

Theorem 3.2
dimV =mn, Let T : V — V a linear map with finite distinct eigenvalues {\;}i_,

Characteristic polynomial of T is
-

ple) = JJ(w =2

i=1
so >.i_, a(\;) = n. Following are equivalent
e T diagonalisable
o Xi9(\)=n
e g(A\;) = a(\;)Vi (This can be used to test for diagonalisability.)

4 Direct Sums

Define
For {U;}i=1,...k subspaces of vector space V. Sum of these subspaces is:

U+ +Up ={us + - +ug : u; € U;, Vi}

Definition - Direct Sums
V' a vector space, {V;};=1,...x subspaces of vector space V. V a direct sum of {V}} if:

If Vo € V' can be expressed as v = vy + - - - + vp for unique vectors v; € V;
Corollary

k
V=Vi® -V, < dimV = ZdimVi and if B; a basis for V;, B = UBZ- is a basis for V'
i=1 i
Definition - Invariant subspaces
T:V — V alinear map, W a subspace of V.

W is T-invariant if T(W) C W, T(W) = {T(w) : w € W}

Write Ty : W — W for the restriction of T to W

Notation - Direct sums of matrices

Ay
A1€9"'@Ak:
A



5 Quotient Spaces

Definition - Cosets V a vector space over F, with W <V a subspace.

Cosets W+vforveVW+uvi={w+v:weW}

Quotient Space
Define V/W as a vector space of vectors W + v over F'

o Addition; (W +v1) + (W 4+ wv2) =W +v1 + v
e Scalar Multiplication; A(W +v) = W + \v

Can verify this using vector space axioms.
Dimension of V/W

dimV /W = dimV — dimW

Definition - Quotient Map B
T :V — V alinear map, W a T-invariant subspace of V. Quotient map: T : V/W :— V/W such that

TW +v) =W +T(v), YoeV

6 Triangularisation

Lemma - Diagonal Matrices

A1 M1

0 Ao * 0 e *
A= ,B=

0 0

0 0 An 0 O Lon

e Characteristic polynomial of A = [/, (z — \;), eigenvalues = {\;}
o detA=T["_, N
e AB also upper triangular, with diag(AB) = Ap1, ..., Anflin

Theorem 6.2 - Triangularisation Theorem
V an n dimensional vector space over F', T : V — V a linear map,
Where x(T) = [T\, (z — \;), where \; € F Vi = 3 basis B of V s.t [T'|p upper triangular

7 The Cayley-Hamilton Theorem

Theorem. 7.1 - (Cayley-Hamilton Theorem)
V a finite dimensional vector space over F. T : V — V a linear map with char. poly. p(z)

p(T)=0

8 Polynomials

Definition - Polynomials over a field
F a field,p(z) over F, for p(z) = >, a;x*, Flz] = {p(x) : a; € F}
Degree of polynomial
deg(p(x)) = the highest power of x in p(x)
Euclidean Algorithm
f,g € F[z] with deg(g) > 1, Then 3¢, € Flz]s.t
f=9q+r

for either » = 0 or deg(r) < deg(g)



Definition - Greatest Common Divisor (GCD) of polynomials
fyg € F[z]\{0}, Say d € F[z] the gcd of f,g if:

(i) dif and d|g
(ii) if e(z) € F[z] and e|f and e|g Then e|d

Say f, g are co-prime if ged(f,g) =1
Corollary
d=gcd(f,g) = Ir,se Flz]std=rf+sg

Definiton - Irreducible polynomials

p(z) € F[z] irreducible over F if deg(p) > 1 and p not factorisable over F as a product of {f;} € F s.t deg(f; < deg(p)
Corollary

p(z) € F[z] irreducible, {g;} € Flz], if p|g1 ...g9- = p|g; for some i

Theorem 8.7 - (Unique Factorization Theorem)
f(x) € Flz] st deg(f) > 1
f=pi-..pr

where each p; € Fx] irreducible. Factorisation of f is unique up to scalar multiplication

9 The minimal polynomial of a linear map

Definition -Minimal polynomial
Say m(x) € F[x] a minimal polynomial for T: V — V if

(i) m(T) =0
(ii) m(z) monic

(iii) deg(m) is as small as possible s.t (i) and (ii)

Properties of the minimal polynomial
e For T a linear map, its minimal polynomial my(z) is unique
o p(z) € Fla],p(T) =0 <= mr(2)|p(z)
o mp(z)|er(x) the char. poly. of T
e )€ F aroot of cp(z) = A aroot of mp(x)
e AABe M,(F)stA~DB = ma(z) =mp(zx)

Theorem 9.3
p(z) € F[z] an irreducible factor of er(xz) = p(z)|mr(z)

Corollaries
o cr(@) = ony (@)er (@)

e mry, (2) and my(z) both divide mr(x)



10 Primary Decomposition

Theorem 10.1 - (Primary Decomposition Theorem)
V a finite dimensional vector space over F, T : V — V a linear map with my(z)
Let factorisation of my(z) into irreducible polynomials be:

mr(z) = [[ fitz)™

Where {f;(x)} all distinct irreducible polynomials in F[x]
For 1 <i <k, define:
Vi = ker(f:(T)™)

Then
1. V=WVi&- - @V (Call this the primary decomposition of V w.r.t T)
2. each V; is T-invariant
3. each restriction Ty, has minimal polynomial f;(x)™

In the case where each f;(z) = (z — \;)
= mr(z) = H(:I: —A)"

With \; distinct eigenvalues of T' and V; = ker(T — \;I)™
We call V; the generalised )\;-eigenspace of T

Corollary
A linear map T : V — V diagonalisable <= mr(x) = Hle(x — Ai) a product of distinct linear factors

Corollary
For T : V — V a linear map, with g1(z), g2(x) € F[z] coprime polynomials s.t ¢g1(T")g2(T) =0

1. Then V = Vi & Vo, where V; = kerg;(T'),i = 1,2 with each V; being T-invariant

2. Suppose mr(z) = g1(v)g2(x) = mr, (z) = gi(v),i =1,2

11 Jordan Canonical Form

Definition - Jordan Block
F a field and let A € F. Define n x n matrix:

A1 0 0 0
0 A 1 0 0
Tn(\) = 0 0 A 0 0
0 0 O Al
0 0 O 0 A

Properties of the Jordan Blocks
1. characteristic and minimal polynomials of J, = (x — A\)")
2. X the only eigenvalue of J, with a(A) =n,g(\) =1

3. J— M = J,(0), multiplication by J — AI sends basis vectors as such:
en —+€en_1— - —ex—e —0
4. (J = X)"™ =0, and for i < n, rank((J — AI)?) = n —i. And under multiplication:

€n —7 €n—i; €n—1 —7 Ep—j—1.--



Lemma
Let A=Ay @ - @ Ay for each i let A; have char. poly ¢;(z) and min. poly. m;(x).

ca(@) =iy ei(a)
o mu(z) =lem(my(z),...,m(x))

VA eigenvalues of A, dimFE\(A) = Zle dimEy(4;)

e Vq(z) € Flz], ¢(A) = q(A1) @ - D q(Ag)

Theorem 11.3 - (Jordan Canonical Form)
A € M, (F), suppose ca(z) a product of linear factors over F'.
Then

1. A similair to matrix of form
J = Jnl()\l) - Jnk()\k)

This is the Jordan Canonical Form (JCF) of A

2. Matrix J from above, is uniquely determined by A up to order of Jordan blocks

Computing the JCF

JCF theorem says A ~ J, a JCF matrix.

A ~ J = same characteristic polynomial, eigenvalues, geometric multiplicities, minimal polynomial and ¢(A) ~ ¢(J) for
any polynomial q.

For each eigenvalue A, collect all Jordan blocks as such;

J = (Jm N Ing \) e (Jml (e Ty, (m)e...

A—Dblocks of J pn—blocks of J

Properties of JCF
J as above, A\ an eigenvalue;

1. ni+-+n,=a(A)

2. a = number of A-blocks = g(\)

3. max(nq,...,ng) =7, where (x — A)" the highest power of (x — A) dividing m4(z)
Theorem 11.6

T:V — V alinear map s.t cp(z) a product of linear factors = 3 basis B of V s.t [T]p a JCF matrix
Definition.- Nilpotent Matrix
Ak =0 for some k € N

Theorem 11.7
S :V — V anilpotent linear map == J basis B of V s.t



Computing a Jordan Basis

Finding the Jordan Basis B as above.

We have V =V, & --- &V}, by Primary Decomposition Theorem.
Take each restriction Ty, each with 1 eigenvalue.

Let S; = Ty, — A\l so each S; nilpotent.

Step 1 - Compute subspaces
VoS(V)DS8*V)D---28(V)D0
S (V) =0
Step 2 - Find basis of S"(V), Using the following rules extend to basis of S™~1(V):

Given basis u1,S(u1), ..., 8™ L(u1), ... up, S(uy), ..., 8™ " L(u,)
(1) for each ¢ add vector v; € V s.t u; = S(v;)

(2) note ker(S) contains linearly independent vectors
Sml—l(ul)7 e Sm”_l(ur)

extend to basis of ker(S) by adding vectors wy, ..., ws with dim ker(S) =r+s
Yielding
v1,9(v1)y .., ST (V1) U, S (U)o, ST (), W01, - WS

Step 3 - Repeat successively finding Jordan bases of S"72,...,S(V),V

12 Cyclic Decomposition & Rational Canonical Form

Definition - Cyclic Subspaces
V' a finite dimensional vector space over F', and T': V — V a linear map.
Let 0 # v € V and define

Say Z(v,T) the T-cyclic subspace of V' generated by v.
Z(v,T) is T—invariant. Write T,
Definition - T-annihilator of v and Z(v,T)

Considering, v, T'(v), T?(V),... with T%(v) first vector in span of previous ones
= T"() = —apv — a1 T(v) — - — ap_1T(v)

T—annihilator of v and Z(v,T) is
my(z) = 2% + ap_12" + - + ap € Flz]

This is monic polynomial of smallest degree s.t m,(T)(v) = 0 also with m,(T)(w) =0 VYw € Z(v,T)
Theorem 12.2 (Cyclic Decomposition Theorem)

V a finite dimensional vector space over F
T :V — V alinear map. Suppose mr(z) = f(x)* for irreducible f(z) € F[z]
= Jvy,...,v. €V st

V+Z(un, T)®- & Z(v,,T)

where
(1) each Z(v;,T) has T-annihilator f(z)* for 1 <i<r, k=Fk >ky>--- >k,

(2) r and kq,..., k. uniquely determined by T

10



Corollary 12.3
T a finite dimensional vector space over F'
=—> d basis B of V s.t
[T =C(f(x)") @@ C(f(a)*)

Corollary 12.3
A€ M,(F), with ma(z) = z*

— A~CEPh @ e C@h)
Theorem 12.5 (Rational Canonical Form Theorem)

V Dbe finite dimensional over field F with T': V' — V a linear map with

with {fi(z)}!_, € F|x] set of distinct irreducible polynomials = 3 basis B of V s.t

[Tp =C(filx)" )@ - & C(frlz)m)e...
& C(fr(x)*) & - & C(fe(x)*)

where for each 7

with r; and ki1, ..., ki, uniquely determined by T
Corollary 12.6

Ae M,(F)stma(z)= ]_[2:1 fi(x)*: distinct irreducible polynomials.

= A~C(fil)") @ e C(filz)n) e @ C(filx)) o - & C(fila)kr)
Computing the RCF

T:V — V we have

er(z) = [T file)™,  mr(e) =[] file)™
i=1 j

{fi(z)} all distinct irreducible polynomials in F[x]
enough to find; rank(f;(T)") Vie {1,...,t},1 <r <k

13 The Dual Space

Definition - Linear functional
V a vector space over F'
A linear functional on V a linear map ¢ : V — F' s.t

Plavy + Bv2) = ag(v1) + Bo(v2) Vv € V,Va,B € F
Operations of linear functionals
(i) (914 ¢2)(v) = d1(v) + d2(v),  VweV
(ii) (A@)(v) = Ao (v), YAe FYveV

Definition - The dual space

V* ={¢|¢: V toF a linear functional }

V* a vector space over F' w.r.t above multiplication and addition.
Dimension

{v;}; a basis of V with eigenvalues {\};

Jl¢p € V* sending v; — \;

¢(Z Oéﬂ%) = Z Qi

11



Proposition 13.1
Let n = dimV with {vq,...,v,} a basis of V'
Vi define ¢; € V* by

1 i=yj
= ¢;(>"a;vj) =a; = {¢1,...,6,} a basis of V* the dual basis of B
dimV* =n =dimV
Definition - Annihilators
V a finite dimensional vector space over F' and V* the dual space. X C V. Say annihilator X%ofX :

XV={pcV*:¢(x)=0vz € X}

X0 a subspace of V*
Proposition 13.2.
W subspace of V. = dimW?° = dimV — dimW

14 Inner Product Spaces

Definition - Inner Product
F =Ror. V a vector space over F'
Inner product on V a map (u,v) : V x V — F satisfying

(1) ()\1’[)1 + )\21)2, w) = )\1(’[)17 U)) + )\2('[}2, w)
(i) (w,v) = (w,v)
(iii) (v,v) >0ifv#0

Vv, v,w € V and A\; € F. Call such a vector space V' with inner product (,) an inner product space.

Properties of Inner Product Space
e right-linear for F = R; (v, \jw; + Aawg) = A1 (v, w1) + A2 (v, ws)
e (v,v) €R
e (0,v)=0VveV
e symmetry; F =R = (w,v) = (v,w)
e (w)=@V,x)WVveV = w=uz

Matriz of an inner product V a finite dimensional inner product space. B = {vy,...,v,} a basis.
Defining a;; = (v;,v;). So we have aj; = aj;

F R = A symmetric
F =— A hermitian

vweV = (v,w) = [v]A[w]p

Definition - Positive definite
Hermitian matrix A positive-definite if 27 AZ > 0 V non-zero x € F"

Proposition 14.1
For u,v,w € V we have

1) |(u,v)|] < IJul|lllv|]|  (Cauchy-Schwarz Inequality)
(i) ffu+ ol < [full + [Jv]]

(iil) |Ju—v|| <|lu —w||+ [Jlw—2|| (Triangle inequalities)

12



Dual Space
Let V' an inner product space over F' = R or
v € V define
fo: Vo F

fo(w) = (w,v)

= f, linear functional € Vx

];)eﬁnition -V
V has same vectors as V'

e Addition in V same as V
e Scalar multiplication; A x v = \v

Proposition 14.2.
V finite-dimensional. Define 7 : V — Vx as
m(v)=f, YveV

= 7 a vector space isomorphism

Definition - Orthogonality
{v1,..., v} orthogonal if (v;,v;) =0Vi,ji#j
Orthonormal if also ||v;|| = 1 Vi

Definition - W+
W C V define
Wt ={ueV: (u,w)=0VYwec W}

Proposition
V a finite dimensional inner product space. W <V

= V=Wawt

Theorem 14.5
V' a finite dimensional inner product space

(i) V has orthonormal basis
(ii) Any orthonormal set of vectors {wy, ..., w,} can be extended to orthonormal basis of V
Gram-Schmidt Process

Step 1 - Start with basis {v1,...,v,} of V

Step 2 - let uy = ﬁ define we = vo — (va, u1)u;
= (wq,ul) =0, letuy= oo

= {u1,u2} orthonormal

Step 3 - Let
wg = vg — (v3, u1)uy — (v3, u2)us2

With usz = Hng — {ul,uQ,u3}

Step 4 - Continue, for i*" step
w;

U; w; =v; — (v, ur)ur — - — (Vi Ui—1)Ui—1

]l
Yielding after n steps an orthonormal basis {u,...,u,} with

Sp(u,...,u;) =Sp(vy,...,v;) Vie{l,...,n}

13



Projections

V an inner product space. v,w € V\0
(v,w
(w,w

Ny

Projection of v along w defined to be Aw for A
For W<ViveV
define projection of V along W as follows:

V=Waow"
v=w+w for unique w € W,w' € W+

Define orthogonal projection map along W.
mw V> W

w(v) = w

Proposition 14.7.
V' an inner product space. W <V with 7y orthogonal projection map along W.

(i) veV = my vector in W closest to V
i.e for w € W, ||lw — v|| minimum for w = 7y (v)

(ii) dist(v,w) denotes shortest distance from v to any vector in W
= dist(v,w) = ||v — T (v)

(iii) {v1,...,v,} orthonormal basis of W
— mw(v) = 5o (v, 05)v;

Change of orthonormal basis

Proposition 14.8
V an inner product space. E = {e1,...,en}t, F ={f1,..., fn} orthonormal basis of V
P = (pi;) change of basis matrix.

n
fi = ijiej — PTP =]
j=1

Definition
e Pc M,(R): PP =1 = orthogonal matrix
e Pc M,(): PTP =1 = unitary matrix
Properties of the above matrices

(i) length-preserving maps of R™,™ (isometries)
ie ||Pv|| =|v|]] Wv

(ii) Set of all isometries form a group - classical group
orthogonal group; O(n,R) = {P € M, (R) : PTP =TI}
Unitary Group; U(n,) ={P € M,(): PTP =1

15 Linear maps on inner product spaces

Proposition 15.1.
V' a finite dimensional inner product space. T : V — V a linear map
— Jllinear map T* : V — V st Vu,v € V

(T(u),v) = (u, T"(v))

Say T* - adjoint of T'
T self-adjoint if T =T*

Proposition 15.2.

V' an inner product space with orthonormal basis E = {vy,...,v,}
T:V — V alinear map, A = [T|g

= [T*]gp = AT if field R = A symmetric, if field = A hermitian

14



Theorem 15.3. Spectral Theorem
V an inner product space. T : V — V a self-adjoint linear map = V has orthonormal basis of T-eigenvectors.

Corollary 15.4.
e A€ M,(R) = 3 orthogonal P s.t P~ AP diagonal
e Ae M,() = 3 unitary P s.t P71 AP diagonal

Lemma 15.5.
T:V — V self-adjoint

(i) eigenvalues of T real
(ii) eigenvectors for distinct eigenvalues, orthogonal to each other

(iii) If W C V, T—invariant == W+ is also T—invariant

16 Bilinear & Quadratic Forms

Definition. - Bi-linear form

V' a vector space over F

Bi-linear form on V amap; (,) : V x V — F which is both right and left-linear.
ieVa,f e F

° (O[’U] + ﬂ’UQ,U}) = a(vla w) + ﬁ(’UQ,U))
e (v,aw; + Pws) = a(v,wy) + B(v, ws)

General example

F afield, V = F" with A € M, (F)

= (u,v) =uTAv Vu,v € V a bilinear form on V/

Matrices

(,) a bilinear form on finited dimensional vector space V. With B = {vy,...,v,}
A matrix of (,) w.r.t B, So (a;;) = (v;,v;) = Yu,v €V (u,v) = [u]LAlv]p

Definition - Symmetric & Skew-symmetric
Bilinear form (,) on V is

e Symmetric if (u,v) = (v,u) Yu,v € V

e Skew symmetric if (v,u) = —(u,v) Yu,v € V
Definition - Characteristic of Field F

char of field F is the smallest n € Ny s.t n = 0. if no such n exists say char(F) =0

Lemma 16.1.
V' a vector space over F with char(F') # 2
(,) skew-symmetric bilinear form on V.= (v,v) =0Vv € V

(v,v) = —(v,v) = 2(v,v) =0 < 2=0o0r (v,v) =0

Orthogonality
Theorem 16.2
bilinear form (,) has property that
(v,w) =0 < (w,v) =0

—
(,) skew-symmetric or symmetric

Definition - Non-degenerate
(,) on V non-degenerate if V- = {0}. Where V* defined analogously w.r.t bilinear forms.

YueV, (u,v) =0V eV = u=0

15



V+ = {0} <= matrix of (,) w.r.t a basis is invertible.
Dual Space

Proposition 16.3.
Suppose (, ) non-degenerate bilinear form on a finite dimensional vector space V.

(i) v € V define f, € V*
fouw) = (v,u) YueV
= ¢:V — V* mapping v — f, (v € V) an isomorphism

(i) VW <V we have dim(W+) = dim(V) — dim(W)

Bases
Definition
A, B € M, (F) congruent if 3 invertible P € M, (F) s.t

B=PTAP
A, B congruent == bilinear forms (u,v); = u? Av and (u,v)s = uT Bv are equivalent

Skew-symmetric bilinear forms

Theorem 16.4.

V a finite dimensional vector space over F' where char(F') # 2
(,) non-degenerate skew-symmetric bilinear form on V. Then

(i) dim(V) even

(ii) 3 basis B = {e1, f1,...,em, fm} of V
s.t matrix of (,) w.r.t B is a block-diagonal matrix

0 1 0 1
=4 o)eo (o)

m blocks

So that (e, fi) = —(fi,ei) =1
(ei7ej):(fi7fj):(ei7fj):(fjaei)zo VZ#J
Corollary 16.5.
If A invertible skew-symmetric n X n matrix over F' where char(F) # 2 = n even and A congruent to J,

Symmetric bilinear forms

Theorem 16.6.
V a finite dimensional vector space over F' where char(F) # 2
(,) a non-degenerate symmetric bilinear form on V'
= V has orthogonal basis B = {v1,...,v,}
(vi,v;) =0 fori##j
(vi,v)) =a; #0 Vi

Matrix of (,) w.r.t B = diag(aq,...,ap)

Corollary 16.7.

A invertible symmetric matrix over F,char(F) # 2
= A congruent to diagonal matrix

Computing orthogonal basis for 16.6

1. find vy s.t (vy,v1) #0

2. Compute v{- and find vy € vi s.t (v2,v2) # 0

w

. Compute Sp(vy,v2)* and find v3 € Sp(vy,v2)* s.t (v3,v3) # 0

4. Continue until you get orthogonal basis

16



Quadratic Form

Assume from now F' s.t char(F) # 2, V a finite dimensional vector space over F’

Definition - Quadratic form
Quadratic form on V a map @ : V — F of form

Q) = (v,v) Yo eV

(,) a symmetric bilinear form on V'
@ non-degenerate if (,) non-degenerate.

Remarks

(i) given Q we find (u,v) = 3[Q(u +v) — Q(u) — Q(v)]

(ii) V = F™ every symmetric bilinear forms s.t

(z,y) = 2T Ay for A= AT (z,y € V)

For x = (z1,...,2,)7
Qz) = 2T Ax
= Z aijxixj
i,J
n
= Z G/MCL'? +2 ZZ < jaijxixj
i=1
A general homogeneous quadratic polynomial in z1,...,2, ( all terms of degree 2)

Change of variables
Definition - Equivalent Quadratic Forms

V=F"Q:V—>F

Q(r) = 27 Az Vz € V, A symmetric

Take y = (y1,-..,yn)T s.t ¥ = Py for P invertible
= Q(z) =y"PTAPy = Q'(y)

If such a P exists we say @), Q' equivalent

note:

Congruent matrices A, PT AP

A~ PTAP <= P orthogonal

Theorem 16.8.
V =F" @ :V — F non-degenerate quadratic form

(i) if F = = @ equivalent to form

Has matrix I,

(ii) it F =R = @ equivalent to unique Qp ;p+g=n

Qpa(@) =i+ +ap — (gp4y +

Has matrix I, ; = (Ig IO )
-1q

(z €")

tad,,) (@em)

(iii) if F = Q = 3 infinitely many inequivalent non-degenerate quadratic forms on Q"
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Definition - isometry
f =1(,) a non-degenerate symmetric/skew-symmetric bilinear form on finite dimensional vector space V'
Isometry of f alinear map T': V — V s.t

(T(w), T(v)) = (u,v) Yu,veV

T invertible since f non-degenerate.
Definition - Isometry Group

I(V, f) ={T : T an isometry }

forms a subgroup of general linear group GL(V)
Equivalently;
fix basis B of V, A matrix of f wrt Bif [T|p=X = TeI(V,f) — XTAX=A

— I(v,f)=2{X € GL(n,F): XTAX = A}

e f skew-symmetric = there is only one form (up to equivalence) so we get one isometry group; Classical symplectic
group Sp(V, f)

e f symmetric = there are many forms, forming the isometry groups; the classical orthogonal groups O(V, f)

18



Part 1
Computing with Numbers

1 Numbers

1.1 Binary Representation
Definition 1.1
By,...,B, €0,1 denote x € Ny in binary format

(Bp-~-B1B0)2 = 2po++2B1+BQ
For by, bs,... € {0,1}, Denote x € R in binary format by:
by | by b3

(Bp...Bo.bibobs...)a=(Bp...Bo)a+—+ 5+ =+

2 22 23
1.2 Integers

Definition 1.2 Ring of integers modulo m

L, := {0 (mod m),1 (mod m),...,m —1 (mod m)}
Integers with p—bits represent elements in Zg»
Integer arithmetic equivalent to arithmetic module 2P
1.2.1 Signed Integer

Use Two’s complement convention.

negative, if 1st bit =1

Integer is o . .
positive, if 1st bit =0

2P — y interpreted as —y

e.g

11001001 = -55 01001001 = 73

Overflow

Given arithmetic is modulo 27 we often get overflow errors

typemax (Int8) + Int8(1)# returns typemin(Int8) 01111111

127 + 1 = -128 00000001+
=10000000

1.2.2 Variable bit representation

Can represent integers using a variable number of bits, hence avoiding overflow.
In Julia we have BigInts created by big()

1.2.3 Division

We have 2 types of division
(i) Integer division (<)
5 + 2 equivalent to div(5,2) rounds down returning 2
(ii) Standard Division (/)
Returns floating-point number
5/ 2
Can also create rationals using (//)

(1//72) + (3//4)

Rational arithmetic often leads to overflow so combine it with big() often.
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1.3 Floating Point numbers
Subset of real numbers representable using a fixed number of bits.
Definition 1.3 Floating-point numbers

Given integers

o - (Exponential shift)

Q - (Number of exponent bits)
S - (The precision)

Define set of floating-point numbers as
Fa,Q,S — Fggfgal U F(;s:jég:gnormal U Fspecial

With each component as such

Frgrett = {£2977 x (Lbiby...bg)2 : 1 < g <29 —1}

F;:g):snm’mal = {:|:217‘7 X (O.b1b2b3 . bs)Q}.

[repecial {—00, 00, NaN}

Floating point numbers stored in 1 4+ @ + S total bits as such
S b] e bs

With first bit the sign bit: 0 positive, 1 negative
Bits gg—1...4qo the - binary digits of unsigned integer ¢
Bits b; ... bg the significand bits.

For ¢ = (qQ—-1---q0)2
(i) 1 < ¢ <29 —1 - Bits represent normal number

x =229 x (1.b1babs ... bs)a
(ii) ¢ = 0. (All bits are 0) - Bits represent sub-normal number.
=427 x (0.bybabs ... bg)s.
(iii) ¢ =29 — 1 (All bits are 1) - Bits represent special number. 4-oco
1.3.1 IEEE Floating-point numbers

Definition 1.4 TEFE Floating-point numbers

IEEE has 3 standard floating-point formats defined as such with corresponding types in Julia

Fig := F1575,10 Float16 — Double-precision
F39 := o783 Float32 — Single-precision
Fsa := Fi023,11,52 Float64 — Half-precision

Float64 - created by using decimals. e.g 1.0
Float32 - created by using £0 e.g 1£0

1.3.2 Special normal numbers
Definition 1.5 Machine epsilon

Denoted:
€m,S = 2—9

min |Fro78% =217
Largest (postive) normal number is

max Fgmel = 2297270 (111, 1), = 2277279 (2 — ¢,
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1.3.3 Special Numbers
Definition 1.6 Not a Number

We have NaN represent “not a number”

1.4 Arithmetic

Arithmetic on floating-points exact up to rounding.

Definition 1.7 Rounding

flg;s :R = Fy g,s rounds up

leOWN

o0,s R —=Fyqs rounds down

fléV;tgest :R = Fj; g,5 rounds nearest

In case of tie, returns floating-point number whose least significand bit is equal to 0
flmearest the default rounding mode. Exempt excess notation when implied by context.

Rounding modes in Julia we are going to use: RoundUp, RoundDown, RoundNearest
Use setrounding (Float__, roundingmode) to change mode in a chunk of code.

r@y = fl(z+y)
rOy:= fl(x —y)
r®Ry:= fl(z*y)
r 0y = fl(z/y)

Each of the above defined in IEEE arithmetic.
Warning These operations are not associative (z @ y)®z £z D (y D 2)

1.5 Bounding errors in floating-point arithmetic
Definition 1.8 Absolute/relative error
if 2 =24 0pma = (1 +6;)
(i) 94| - absolute error
(ii) 4, - relative error
Definition 1.9 Normalised Range

Normalised range N, g s C R - subset of reals, that lies between smallest and largest normal floating-point number:

Nog,s :={z:min|F, o s| < |z| <maxF, g s}

Proposition. - Rounding arithmetic

ifx e N =
flmOde(JZ) _ :L’(l +6;node)
With relative error:

|§Zearest‘ S Eﬂ

2
|5;¢p/down‘ < €.
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1.5.1 Arithmetic and Special numbers

We have the following identiites

1/0.0 # Inf Inf*0 # NaN NaN*0 # NaN
1/(-0.0) # -Inf Inf+5 # Inf NaN+5 # NaN
0.0/0.0 # NaN (-1)*Inf # -Inf 1/NaN # NaN
1/Inf # 0.0 NaN == NaN # false
1/(-Inf) # -0.0 NaN != NaN # true
Inf - Inf # NaN
Inf == Inf # true
Inf == -Inf # false

1.5.2 Special functions

Functions such as cos, sin, exp designed to have relative accuracy
e.g for s = sin(x) we satisfy
s=sin(z)(1+96) |0] < cem

for reasonable small ¢ > 0 given 2 € Frormal

1.6 High-precision floating-point numbers

Possible to set precision using BigFloat type created using big()

Use to find rigorous bound on a number.

e.g

setprecision(4_000) # 4000 bit precision

setrounding(BigFloat, RoundDown) do
big(1)/3

end, setrounding(BigFloat, RoundUp) do

big(1)/3
end

(0.3333333333333333333333333333333333333333333333333333333333333333333333333333305,
0.3333333333333333333333333333333333333333333333333333333333333333333333333333348)

2 Differentiation

Considering functions:

(i) Black-boz function ff¥ . D - F, DCF=F,0s
Only know function pointwise, F' discrete = f¥'* not differentiable rigorously.
Assume P approximates a differentiable function f with controlled error.

(ii) Generic function
A formula that can be evaluated on arbitrary types. e.g polynomial p(x) = po + p1x + - - - + ppa™
Consider both differentiable f : D — R, D C R and floating point evaluated ff : DN F — F, which is actually
computed.

(iii) Graph Function
Function built by composition of basic ”"kernels” with known differentiability properties.

2.1 Finite-differences
voon o fle+h) = f(z)
o) = oy === h

for sufficiently small h
Approximation uses only black-box notion of function.
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Proposition. - Bounding the derivative

feth) — f@)| M

h *2h

f'(z) =
where M = sup, <<, p, | f”(t)|. Given by Taylor’s theorem.

Can also use left-side and central differences to compute derivatives.

. f’(l‘) ~ f(x)—;:(ﬂf—h)

o f'(z)~ f(erh);hf(m*h)

2.1.1 Bounding the error

Theorem 2.1 (Finite differences error bound)

f twice-differentiable in neighbourhood of x
Assume fFP = f(x) + 5] has uniform absolute accuracy in that neighbourhood i.e |6f| < ce,, for fixed constant c.

Take h = 27" for n < S (no. of Significand bits) and |z|] < 1
Finite difference approximation then satisfies

(f"P@+h)e ffP@)oh=f(x)+o0r}

Where

|5FD| < |f/($)| deer,

z,h

for M = sup,<y<oyn [/ ().
3 terms in bound tell us behaviour.
Heuristic - (finite differences with floating po§int step.)

Choose h proportional to /€,

2.2 Dual numbers

Definition 2.1 Dual numbers

Dual numbers, D Commutative ring over reals generated by 1 and € with €2 = 0, written a + be
2.2.1 Connection with differentiation

Dual numbers not prone to growth due to round-off errors.

Theorem 2.2 (Polynomials on dual numbers)

p a polynomial.
p(a+be) = p(a) + V'p(a)e

Definition 2.2 Dual extension
f real-valued function differentiable at a, a dual extension at a if
fla+be) = f(a) +bf'(a)e
Lemma - (Product and Chain rule)
f a dual extension at g(a), g a dual extension at a
= ¢(x) := f(g(z)) a dual extension at a
f, g dual extensions at a

= r(x) := f(z)g(x) a dual extension at a
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Part II
Computing with Matrices

3 Structured Matrices

Consider the following structures

(i) Dense
Considered unstructured, need to store all entries in vector or Matrix.
Reduces directly to standard algebraic operations

(ii) Triangular
A matrix upper of lower triangular, can invert immediately with back-substitution
Store as dense and ignore upper/lower entries in practice.

(iii) Banded
A matrix zero, appart from entries a fixed distance from diagonal.
Have diagonal, bidiagonal and tridiagonal matrices.

(iv) Permutation
Permutation matrix permutes rows of a vector

(v) Orthogonal
Q orthogonal satisfies Q7 Q = I, hence easily inverted

3.1 Dense vectors and matrices

Storage in memory

e Vector of primitive type A=1[12; vec(A) =
stored consecutively in memory. 3 4;
5 6]

e Matrix stored consecutively in memory
going down column-by column. (column-major format)

DN OW

Transposing A done lazily, A’ stores entries by row
Matrix multiplication done as expected A*x
Implemented 2 ways
Using Traditional definition Or going column-by-column
D1 41,5 T181 + -+ Thay,
S
Both are O(mn) operations, but column-by-column faster due to more efficient memory accessing.

Solving a linear system done by \

A=1[12 3; returns # 41.000000000000036
12 4; -17.000000000000014
37 8] 1.0

b = [10; 11; 12]

ANDb
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3.2 Triangular Matrices

Represented as dense square matrices, where we ignore entries above/below diagonal.

A=1123; U = UpperTriangular (A) L = LowerTriangular(A)
4 5 6; # 1 2 3 # 1
7 8 9] 5 6 4 5
9 7 8 9

We have U,L both storing all the data of A

Solving upper-triangular system

U11 Uin T by
Unn| [Tn by,
by computing x,,Zn_1,...,21 by the back-substitution formula:

n
b — Zj:k+1 UkjTj

Ukk

T =

Multiplication and solving linear system O(n?) for a triangular matrix.

3.3 Banded Matrices
Definition 3.1 Bandwidths
Matrix A has
e lower-bandwidth, [ if A[k,j] =0k —j >1
e upper-bandwidth, u if Alk,j]=0Vj —k > u
o strictly lower-bandwidth if it has lower-bandwidth [ and 35 such that A[j +1,j] # 0
e strictly upper-bandwidth if it has upper-bandwidth « and 3k such that A[k,k +u] #0

Definition 3.2 Diagonal

Matrix diagonal if square and | = v = 0 the bandwidths.
Stored as Vectors in Julia.

Perform multiplication and solving linear systems in O(n) operations.

Definition 3.3 Bidiagonal
Matrix bidiagonal if square and has bandwidths
e (l,u) =(1,0) = lower-bidiagonal

e (I,u) =(0,1) = upper-bidiagonal

Bidiagonal([1,2,3], [4,5], :L) Bidiagonal([1,2,3], [4,5], :U)
# 1 #1 4
4 2 2 5
5 3 3

Multiplication and solving linear systems still O(n) operations.

Definition 3.4 Tridiagonal Tridiagonal([1,2], [3,4,5], [6,7])
# 3 6
. .1 . . 1 4 7
Matrix tridiagonal if square and has bandwidths | = u =1 5 5
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3.4 Permutation Matrices

Matrix representation of the symmetric group .S,, acting on R"
VYo € S, a bijection between {1,2,...,n} and itself.

1 2 3 -+ n
g1 02 O3 On
Where {o1,...,0n,} ={1,2,...,n}

Inverse permutation given by 0!, found by swapping rows of cauchy notation and reordering.

Cauchy Notation

Permuting a vector
_ T
o=lo1,...,00]

Vo

Obviously v[o][e~t] = v

Definition 3.5 Permutation Matrix

Entries of P, given by
Pylk, j] = €} Prej = 6560;1 = O o1 = 0oy

where 0y, ; is the Kronecker delta
Permutation matrix equal to identity matrix with rows permuted.

Proposition - Inverse of Permutation Matrix

PI'=p, . =P;' — P, orthogonal

3.5 Orthogonal Matrices
Definition 3.6 Orthogonal Matrix

Square matrix orthogonal if Q7Q = QQT =1
Special cases

3.5.1 Simple Roations
Definition 3.7 Simple Rotation

2 x 2 rotation matrix through angle 6

sinf  cos6

Qp : [cos@ —sin@}
6=

Definition 3.8 two-arg arctan

two-argument arctan function gives angle 6 through point [a, b]7

atan% a>0
atan§+7r a<0and b>0
atan(b,a) := S atan? +7 a <0and b< 0
/2 a=0and b>0
—m/2 a=0and b<0

atan(-1,-2) # angle through [-2,-1]
Proposition - Rotating vector to unit axis

- 1 a b
O=Varw b a
Satisfies Q {Z] =+va?+ b2 [(1)]
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3.5.2 Reflections

Definition 3.9 Reflection Matriz

Given vector v satisfying ||v|| = 1, reflection matrix is orthogonal matrix.
Qv :=1—2vvT

Reflections in direction of v
Proposition - Properties of reflection matriz

(i) 1. Symmetry: Q, = QT

(ii) 2. Orthogonality: Q,Q, = I

(iii) 2. v is an eigenvector of @, with eigenvalue —1
(iv) 4. Q, is a rank -1 perturbation of I

(v) 3. det@, = —1
Definition 3.10 Householder reflection

Given vector x define Householder reflection.
Q"= Quw
For y = Fllxlles + 2, w = 1%

Default choice in sign is
QH — Q—sign(xl),H
T ° xr

Lemma
Qi x = £[[x]|es

x

4 Decompositions and Least Squares
Consider decompositions of matrix into products of structured matrices.

1. QR Decomposition (For square or rectangular matrix A € R™*" m > n)

_>< e x-
X
A=QR=[aqi| - |qm] 0
~————
mXm .
L O_
—_——
mxn
Q orthogonal and R right /upper-triangular
2. Reduced QR Decomposition
X X
A= QI% = [Q1| e |q7n}
~————
mxm X
@ has orthogonal columns, and R upper-triangular.
3. PLU Decomposition (For square Matrix)
A=PTLU

P a permutation matrix, L lower triangular and U upper triangular

4. Cholesky Decomposition (For square, symmetric positive definite matrix (27 Az > 0Va € R", 2 # 0))

A=LLT
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Useful as component pieces easily inverted on a computer.

A=PTILU = A 'b=U"'L'Pb
A=QR = A 'b=R7'Q"b
A=LL — A 'b=L"L '

4.1 QR and least squares

Consider matrices with more rows than columns.
QR decomposition contains reduced QR decomposition within it

A= QR = [Qlaul-+lanl o, * | =0n

Least squares problem
Find & € R" s.t ||AZ — b]| is minimised

For m = n and A invertible we simply have Z = A~b.
QT
R } q71;+1
X - .

Om—nxn

I~ bl = Qx| =[x - Q7] = || b
Uy,
To minimise this norm, suffices to minimise

|[Rx—Q'b|| = x=R'Q"b

Provided column rank of A is full, we have R invertible

4.2 Reduced QR and Gram-Schmidt
4.2.1 Computing QR decomposition

(i) Write A = [a1]...|a,], ax € R™
Assume A has full column rank, a; all linearly independent.

Column span of first j columns in A same as first j columns in Q
span(ay,...,a,) = span(qi,...,dn,)
(ii) if v € span(ay,...,a,) = Ve € R

v=|ai]...|a]c
= [ai]...|a;] R[1:j,1:jlc
€ span(qi,...,dn)

(iii) if w € span(qi,...,q,), we have for d € R/

w=[al...la;]d
= [ai|...|a;] R[1:j,1:4]7'd
€ span(ay,...,a;)
We can find an orthogonal basis using Gram-Schmidst.

1. By assumption of full rank of A
span(ay,...,a,) = span(qi,...,qn)

2. q1,---,9, orthogonal
aiq = 6k
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3. For k,l < j. Define

j—1
.ot Ppp— T .
VvV, i=aj q; a;j gk
k=1 Y

Trj
4. For k< j
j—1
qivi=qia; — > qla;qlqp =0.
k=1
5. Define further v,
J
q; =
vl
Define r;; := ||v,||, rearrange definition to have
T15

a; = [CI1|~~|01]']
Tjj
L% S A ¥
[a1| . aj]
Tjj
Compute reduced QR decomposition column-by-column = apply for ;7 = n to complete decomposition.

Complexity and Stability

We have a total complexity of O(mn?) operations,
Gram-Schmidt algorithm is unstable, rounding errors in floating point accumulate, = lose orthogonality.

4.3 Householder reflections and QR

Consider multiplication by Householder reflection corresponding to first column.

. H
Q1:=Qy,
X X X
X e X r r e T1n .
e [ Coal ;1} ry = (@ap)ll] - af = (@iay)[2: m]
>< e x
Note that r17 = —(a;1)||a1|| with all entries of a} zero.
Now consider,
1 H
Q2 = [ Qfl:l =Q 0
2
a;
to achieve the following
X X X e X
X X e X i1 Ti2 Tz 0 Tin
Q2Q1A = . = Too T2z - Top Toj i= (anjl-)[l] a? = (an;)[Q cm — 1]
Do al ... a2
X e X

Inductively, we get
Defining a} := a; we have



Then

4.4 PLU Decomposition

11 Tin

Tnn

Qn"'QlA— 0
L 0_
| S —

R
— A:Ql"'QnR-
Q

4.4.1 Special ”one-column” Lower triangular matrices

Consider the following set of lower triangular matrices

With the following properties:

1

[ ] Lij=I+|:0

i 0
J| T k
Jere e

T
k

0;] 17
s

1
1
L, =
! biy15 1
L Cn,; 1]
1
€ L;
—liy1y 1 ’
—ln 1]

e 0 a permutation leaving first j rows fixed (o, = ¢V £ < j) and L; € L,

4.4.2 LU Decomposition

P,L;j=L;P, LjecL

Similarly to QR decomposition we perform a triangularisation using L; € L.

Taking the following definitions

0
Lj =1 — aj,,[2:n—j] e;F

aj+1[1]

A=L7' ... LN U
~———

a? = (Lk.a;?_l)[2 n—k+1]

Uy -+ Uln

= L,_1...11A=
unn

U

1
Z?»Jl . _621
Li=1+|"""]e] = L=|"tn
gn,j *énl
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4.4.3 PLU Decomposition

Achieved by always pivoting when performing Gaussian elimination, swap largest in magnitude entry on the diagonal.
This gives us
L, 1P, 1...PRL1PIA=U

for P; the permutation that leaves rows 1 — j —1 fixed, swapping row j with row & > j whose entry is maximal in magnitude.
Ly1Py1...PoL1Pi =Ly 1Lp_o...[1Py_1...PP;

L-t P

Tilde denotes combined actions of swapping permutations and lower-triangular matrices.

- 1 -
0, —lo1 1
_ . Civrg| -+ —l31 —L32 1
Pnfl"'ijLle:Ljpnfl"'ijLl - Lj:.[-f- . €, = L=
lnj —En:m —gnju e _qul,n72 1
L _enl _£n2 T _gn,n—2 _gn,n—l 1_

4.5 Cholesky Decomposition

Form of Gaussian elimination (without pivoting) for symmetric positive definite matrices
Substantially faster.

Definition 4.1 (Positive definite)
A square matrix A € R"*™ positived definite if Vx € R™, 2 # 0 we have
2T Az >0

Proposition
A € R™*" positive deifinite and V' € R™*"™ non-singular

— VT AV pos. definite

Proposition
A € R™™™ positive definite = diagonal entries a;; > 0

Theorem 4.1 (Subslice positive definite)
A € R™*™ positive definite and k € 1,...,n™ a vector of m integers, each integer appearing only once

= Alk, k] € R™*™ pos. definite

Theorem 4.2 (Cholesky and symmetric positive definite)

Matrix A symmetric positive definite <= has Cholesky Decomposition

A=LL"
Where diagonals of L positive.
Computing the Cholesky Decomposition
Using the following definitions:
A1 = A Qf 1= Ak[l, 1]
.
vii=Ag[2:n—k+1,1]  Agq ::Ak[2:n—k+1,2:n—k+1]—%
e -
vl
5 5
— L= vm Van a2




4.6 Timings

Different decompositions have trade-offs between stability and speed.

n = 100

A = Symmetric(rand(n,n)) + 100I
@btime cholesky(A);

@btime 1lu(A);

@btime qr(A);

Stability

# returns

82.313 s
127.977 s
255.111 s

Stable

Unstable

QR with Householder reflections

LU usually, unless diagonally dominant matrix

Cholesky for pos. def.

PLU rarely unstable.

Set of Matrices for which PLU unstable extremely small,

often one doesn’t run into them.

5 Singular Values and Conditioning

5.1 Vector Norms
Definition 5.1 (Vector-norm,)

Norm on || - || on R™ a function satisfying the following, Vz,y € R", ¢ € R:

(i) Triangle inequality: |z + y| < |z| + |y]
(ii) Homogeneity: [|cz| = |||zl
(iii) Positive-definiteness: ||z|| =0 <= z =0
Definition 5.2 (p-norm)

For1<p<oo, z€R"

[zll, ==

z k-th entry of z.
p = oo we define

n

O laklp)t/

k=1

Il = maux

5.2 Matrix Norms
Definition 5.3 (Frébenius norm)

A am X n matrix

[A]lp =
Given by norm(A) in Julia.
norm(A) == norm(vec(A))
Definition 5.4 (Matriz-norm)
A e R™™ for 2 norms || - ||x on R™ and || - ||y on R™
We have the induced matrix norm
A
[Alxoy = s fAvly = sup 1Ay

vi|v]x=1

ern 220 ||T]x

[Allx = [|Allx-x

14]] = max|a],

Given by opnorm(A,1) ,opnorm(A,Inf) in Julia

[Alloo = max||Alk, : [1
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5.3 Singular Value Decomposition

Definition 5.5 (Singular Value Decomposition)

For A € R™*"™ with rank,r >0
Reduced singular value decomposition (SVD) is
A=Uxv’

U e R™",V € R™*™ that have orthonormal columns

3 € R™ " diagonal of singular values, all positive and decreasing o9 < --- < g, >0

Full singular value decomposition (SVD) is

A=UxVTz
l_':f e Rm>xm Y € R™*™ orthogonal matrices,
3 € R™*™ has only diagonal entries.
Forop, =0if k> r
ifm>n ifm<n
o _
o1
- on -
Y= 0 Y=
. Om
L O -
Proposition - Gram matriz kernel
Gram-matrix: AT A Kernel of A also kernel of A4
Proposition - Gram matriz diagonalisation
Gram-matrix satisfies
AT A = QAQT

Q orthogonal and eigenvalues A\ non-negative
Theorem 5.1 (SVD ezistence)

VA € R6m x n has a SVD.

Corollary
A € R™™™ invertible

= |Alla=01, A7 2=0,"

Theorem 5.2 (Best low rank approzimation)

01

A = [u1|...|uk] [V1|---|Vk

Ok

The best 2-norm approximation of A by a rank k£ matrix.
We have V matrices B of rank k, [|[A — Agll2 < ||A — B||2

5.4 Condition numbers

Proposition

le;] < e and ne < 1, then

k=1

ne

for constant 6, s.t [0, < 775

33

]T



Lemma. - Dot product backward error
x,y € R”
dot(x,y) = (x+ 6x)Ty

Where we have [0x| < 5252—|x], |x| absolute value of each entry.

2—n€m,

Theorem 5.3 (Matriz-vector backward error)

AeR™" x € R”
mul(A,x) = (A4 0A)x

Where |04] < 2o ||A] =

2—né€m,
NEm,
0A —||A
641 < 5 Al
min(m, n)ney,
64, < YRR g
€m
ne
6A]lo € "~ Al
[84)c < 5 A

Definition 5.6 (Condition number)

A a square matrix.
Condition number (in p-norm)

kp(A) = [ Al A7,

Under the 2-norm:

o1
K2 A= —
(4) =
Theorem 5.4 (relative-error for matriz-vector)
Worst-case relative error in Ax ~ (A 4+ 0A)x
[16.Ax]|
< k(A)e
[Ax]|
if we have relative perturbation error ||[0A]| = || A|le
We know for floating point arithmetic the error is bounded by
ne
A —"m
( )2 — NEm,

6 Differential equations via Finite differences

6.1 Indefinite integration

For simple differential equation on interval [a, b]

u(a) =c¢
u'(z) = f(z)
We have, for up ~ u(xy),k1,...,n—1
Ukl — U
Flaw) = o (wx) = = = f(ax)
As a linear system
1 -1 1 f(ml)
" W=
-1 1 f(xn,l)
DpeRn—1xn £f
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Super-script / denotes forward differences.
Dy, not square = need to add extra row from the initial condition e’uf = ¢

1
el o —1/h 1/h | |
o) S

Ly

Lower-triangular bidiagonal system = solved using forward substitution in O(n)
Can choose either central or backwards-difference formulae too.

Central differences

Take my, = w — u’(mk) ~ Lh*“k — f(mk)
X -1 1 f(ma)
h o
-1 1 f(mp—1)
——
Dh fm
Convergence

We see experimentally that the error for solutions from forward differences is O(n~1) while for central differences it is a faster
O(n~2) convergence.
Both appearing to be stable.

6.2 Forward Euler

Consider scalar linear time-evolution for 0 < ¢ < T

Label n-point gird as t, = (k — 1)h, h = L=

n—1
Definition 6.1 (Restriction Matrices)

Define n — 1 X n restriction matrices as

Can replace discretisation using finite differences. “5—* — a(ty)up = f(ux)
Giving us the linear system

1
T —a —
e[
—a(tp—1)—1/h 1/h
L
Where we have
a(t1) f(t1)
A, = f= :
a(tn) f(tn)



6.3 Backward Euler

Simply replace forward-difference with backward-difference “A=%= — a(ty)ur = f(ux)
Giving us our system:

[ el ]uf _ _11/h 1/h.—'.a(t2) . o [Igf]

71./'h 1/h — a(ty)

L
Still bidiagonal forward-substitution
Uy ==«¢
(1 = ha(tys1))uprr = ugp + hf(tpr1)
upir = (1= ha(ter)) ™ (ug + hf(tes)

6.4 Systems of equations

Solving systems of the form

u(0) =c¢
w'(t) — A(tu(t) = f(t)

For u,f : [0,7] — R% and A : [0,T] — R4*4
Once again discretise at the grid ¢, approximating u(t) ~ u; € R?

Forward-Euler

u; =¢

Wt = (I = hA(tg41)) " (wy + pE(tr11)

6.5 Nonlinear problems

Forward-euler extends naturally to nonlinear equations.

u' = f(t,u(t))
Becomes:

Upy1 = ug + hf(tg, ug)

6.6 Two-point boundary value problem

Consider one discretisation, since symmetric

Ug—1 = 2Up + Ug41

u//(x) ~ s
So we use the n — 1 x n 4+ 1 matrix
1 -2 1
D= -
h? -
1 -2 1
6.7 Convergence
Definition 6.2 (Toeplitz)
Toeplitz matrix has constant diagonals
T[ka .7] = akfj

Proposition. - (Bidiagonal Toeplitz inverse)
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Inverse of n x n bidiagonal Toeplitz matrix is

-1

1 1
0 1 ¢ 1
0 1 I - A
0 1 1 2 41

Theorem 6.1 (Forward/Backward Euler Convergence)

Consider equation

Denote

u(ty)
Assume u twice differentiable with uniformly bounded 2nd derivative.
= error for forwardEuler is
lu — o, u” —ulls = O(n™")
6.7.1 Poisson

For 2D problems consider Poisson. First stage is to row-reduce to get a summetric tridiagonal pos. def. matrix

1
_1/m? 1 L L
1 1/h? —2/h? 1/h? 0 —2/h*> 1/h?
5 o2 2 9 o2
=y 1/h 2/h* 1/h 1/h 2/h* 0
1 1
L 1 -
Consider right-hand side, aside from first and last row, we have
-2 1 fa2) = co/h?
() f(zs
111 =2 - ( )
h2 : - :
1 Up—1 f(mn72)
1 -2 f(@n-1) —c1/h?
A P

Theorem 6.2 (Poisson Convergence)

Suppose u four-times differentiable with uniformly bounded fourth-derivative
= finite difference approximation to Poisson convergence like O(n?)
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7 Fourier Series

Definition 7.1 (Complex Fourier Series)

fi=ge |
Written as -
=
o P f
f0)=1[...le % e 1] |e*|.. ] @
F(6) h
f2
L N -
3
Build approximation using n approximate coefficients fk ~ fk
Seperating into 3 cases:
(i) Odd: n = 2m + 1 we approximate
m
f(e) ~ Z fnezké
k=—m
f’VL
—m
_ [e—im9| o |e—2i0|€—i9|1‘ei0|62i0| o ‘ez‘me} :
Fe o (6) Fi
(ii) Even: n = 2m we approximate
m—1
FO)= Y fre®
k=—m
S
[ —im@l o \6_21'9|e_i9|1|ew|e%9| o |ei(m—1)9]
Femm—1(0) oy

. we approximate:

(iii) Taylor: if we know negative coefficients vanish (0 = f_; = f_o = .

n—1
FO) =y fre
k=0

I8
— [1|ei0|6219| o |ei(n—1)9}
Fo.n—1(0) 7?71

0

Can be thought of as approximate Taylor expansion using change of var z = ¢!

7.1 Basics of Fourier series
Focus on case where fk absolutely convergent (1-norm of f bounded)

o0
Bl = > 1ful <00

k=—oc0
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Theorem 7.1 (Convergence)

if Fourier coefficients absolutely convergent

o0
Z fkeiko, Converges Uniformly

k=—o0

Remark
Also have convergence for continuous version of 2-norm

21
1]l = Avwm,

for any function s.t ||f|l2 < o0

Proposition - (Differentiability and absolutely convergence)
if f:R — and f’ periodic, with f’ uniformly bounded
— fourier coeff satisfy: .
[[£]]1 < o0
Remark
More times differentiabel a function = faster the coeff. decay = faster Fourier series converges.
If function smooth,2m periodic == fourier coeffs. decay faster than algebraically; decay like O(k~2) VA

Remark
Let z = €% then if f(z) analytic in a neighbourhood of unit circle
= fourier coeff. decay exponentially fast

f(2) entire = decay faster than exponentially fast.

7.2 Trapezium rule + discrete Fourier coefficients

2
0; = Z" j=01,....n

Gives n + 1 evenly spaced points over [0, 27]

Definition 7.2 (Trapezium rule)

Trapezium rule over [0, 27]

f periodic; f(0) = f(2n) )
2m n—
= f(0)do ~ 2x 1 > f6))

0
Ll
Define Trapezium rule approximation to Fourier coeffs by

n—1
i = Sl = ;2f e
£

n

Lemma. (Discrete Orthogonality

We have:
77«21 ik6; n ]{3:...,—271,—7’[,,077172’[’],7,_.
e =
= 0 otherwise
In other words,
Z[ei(k_j)ej] = 1 k_j = "'7_2n7 _n70?n?2n7~--
- 0 otherwise
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Theorem 7.2 (Discrete Fourier coefficients)

f absolutely convergent

= [l =+ fomon+ fromn + fi+ Foin + frgon + ...
Corollary. (Aliasing)
Vp 6 Z7f7l :Af]zl-',-pn‘A R
If we know f&,..., f}'_y = we know f' Vk via permutations.
egn=2m+1
~ . -
S fi
" |
~ N 1 ~
fon : n—1
L 1 -
Py
. 1 2 oo.om o m4+1 m+2 ... n
7T\m+2 m+3 ..on 1 2 ... om+1)
Take Case: Taylor (all neg. coeffs = 0)
Let z = ¢ -
F2) =" fi?"
k=0
Aél, RN f:LLl approx. of Taylor series coeffs. by evalueating on the boundary.

Theorem 7.3 (Taylor series converge)

0= f,l = f,g =...andf absolutely convergent
n—1 o
= fn(f) = Z fre™®?  converges uniformly to f(6)
k=0

7.3 Discrete Fourier Transform and Interpolation

Definition 7.3 (DFT)

Defined as:
1 1 1 1 1 1 1 1
1 e~ e~ 102 . e~ n—1 1wt w2 .. w (D
1 e—1201 e—1202 =205 1 1 g w2 w4 w—2(n=1) ( B m/n)
Q= T =7 w=e
1 e—i(n—l)«gl e—i(n—l)@g o e—i(n—l)«‘)n_l 1 wi(nil) w72(n71) N w*(nfl)z
1 1 1 1 T 1 1 1 1
1 e ei20r o giln=1)0: 1 w! w? . wiD
0 = 1 |1 it 1202 ei(n—1)0s _ i 1 w? wh w2(n—1)
"ovn vn
1 eifn—1  i20n-1 ei(nfl)ﬁn,l_ 1 w1 L2=-1) (n—1)?
Such that we have
fo' f(6o)
1
= —Q. |
Lfra f(0n)
——
f‘n fn
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Proposition - (DFT is Unitary)
Qn is unitary: QrQ, = QnQ;, = 1.

= easily inverted with map from DFT — values
\/EQZf” — fn

Corollary
fn(8) interpolates f at 6;

7.4 Fast Fourier Transform

Qn,Q; applied take O(n?) operations, reduced to O(nlogn) with FFT

1 1
2T Wan I Wn,
— 7). _ PT n
Wn exp( n )’ o [WQnI .
win wi !
Lzzn ‘Dn
For o — 2 3 n n+1 2n
o 3 5 2n —1 2 2n
o being the permutation that takes:
e Even entries — first n entries
e Odd entries — last n entries
With P! reversing that process.
1 1 1, @ a2 gn—t g @g2n—t
= Qb = —— [Lon|&on|&3,| ... |32 ] = —=PT | " " n g n, M one
@on V2n [ 20|20 (20| n ] Von 7 [1n wanWn w%nw'r% Wy, ! n ! Wop Wy - wgﬁ ! ’I2Ln !

1 PT|: Q: ;kL :|: 1 PT |:Q:

In In
_ﬁ 7 Q:;Dn 7Q>:7,Dn ﬁ 7 Q::| I:Dn Dn:|

Can reduce DFT to 2 DFTs applied to vectors of half dimension.
For n =29 = O(nlogn) opperations.

8 Orthogonal polynomials

Consider expansions of the form
n—1

o0
F@) =" erp(a) = > cipr()
k=0 k=0
For:
e pi(x) - special families of polynomials
e ¢; - expansion coefficients

e ¢} - approximate coefficients
8.1 General properties of orthogonal polynomials
Definition 8.1 (Graded polynomial basis)
Set of polynomials; {po(x), p1(x),...} if p, is precisely degree n
pn(x) = kpa™ + kMYt 4 kM 4 kO

If p, graded = {po(),...,pn(x)} a basis of all polynomials of degree n
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Definition 8.2 (Orthogonal polynomial)

Given integrable weight w(x) for x € (a,b), define continuous inner product

)= [ Tt
Graded polynomial basis {po(z),p1(x),...} are orthogonal polynomials (OPs) if

<Pn,Pm>=0 whenm #n
Definition 8.3 (Orthonormal polynomials)

A set of OPs {po(x),p1(x),...} orthonormal if ||¢,|| =1 Vn

Definition 8.4 (Monic OP)
A set of OPs {po(z),p1(x),...} monicif k, =1

Proposition - (Ezpansion) If r(x) a degree n poly., {p,} orthogonal and {g,} orthonormal =

n

r(e) =3 PR ()

2
2 Tpi]
n
= Z <qr, >qx(2)
k=0

Corollary - Zero inner product
If degree n polynomial r satisfies
O:<p07’l">:"':<pn,7’> = r=0

Corollary - (Uniqueness)
Monic OPs are unique

Proposition - Orthogonal to lower degree
Given weigth w(z), polynomial p of precisely degree n satisfies

<p,r>=0

Y degree m < n, polynmial r <= p(x) = ap,(z) where p,(z) are monic OPs.
= OP uniquely defines by k,

8.1.1 3-term Recurrence
Theorem 8.1 (3-term recurrence, 2nd form)

If {p,} are OPs = Ja,,b, #0,¢—1 Z0 ER s.t

wpo(z) = aopo() + bop1(x)
zpn(x) = Cn—lpn—l(x) + anpn(x) + bnpn+1(x)

p, Monic = xp,, Mmonic

Corollary - (monic 3-term recurrence)
If {p,} are monic = b, = 1.
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8.1.2 Jacobi Matrix
Corollary - (Jacobi Matriz)

For
P(z) := [po(z)|p1(z)] .. .]
ap Co
bo a1
= zP(z) = P(x) by an
X

More generally, for any polynomial a(z) we have

Corollary - (Orthonormal 3-term recurrence)
{gqn} are orthonormal = recurrence coeflicients satisfy ¢, = by,.
The Jacobi matrix is symmetric:

Qg bo
bo ay b1
X= bl a9

Remark
Typically Jacobi matrix is the transpose J := X7
If the basis orthonormal = X is symmetric and they are the same.

8.2 Classical Orthogonal Polynomials
Classic OPs special families of OPs with special properties
o Their derivatives are also OPs
e They are eigenfunctions of simple differential operators

We consider: Other important families discussed are

1. Chebyshev polynomials (1st kind) 7}, (z):
w(z) =1/v1—2? on [-1,1].

2. Chebyshev polynomials (2nd kind) U, (z):
w(z) =v1—2?on [-1,1]. 3. Laguerre polynomials

1. Ultraspherical polynomials

2. Jacobi polynomials

3. Legendre polynomials P, (z):
w(x) =1on [-1,1].

4. Hermite polynomials H,(x):
w(z) = exp(—z?) on (—o0,0)

8.2.1 Chebyshev
Definition 8.5 (Chebyshev polynomials, 1st kind)
T, (x) are orthogonal with respect to 1/sqrtl — z? and satisfy:

To(x) = 1, Tu(x) = 2" 12" + O(a" 1)

Definition 8.6 (Chebyshev polynomials, 2nd kind)

T, (z) are orthogonal with respect to 1/sqrt1 — z2.

Un(z) =2"2" + O(z" 1)
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Theorem 8.2 (Chebyshev T are cos)

T, (x) = cos(n - acosz) T, (cos()) = cosnb.

Corollary

Chebyshev polynomials particularly powerful

M8

flz) = Z fiTe(@), flx)= k cos (ko)
k=0 k=0
— coefficients recovered fast using FFT-based techniques.
Theorem 8.3 (Chebyshev U are sin)
For = = cos ¥,
sin(n + 1)0

Un(z) = sin 6

which satisfy:

xUg(z) = Uy (x)/2

8.3 Legendre
Definition 8.7 (Pochammer symbol)

The Pochammer symbol is

(a)():l
(a)p =ala+1)(a+2)...(a+n—1).

Definition 8.8 (Legendre)

Legendre polynomials P, (x) are OPs w.r.t w(z) =1 on [—1, 1], with

_21(1/2),

Fon n!

Theorem 8.4 (Legendre Rodriguez formula)
1 dm

Pn = - - (1- 2\n
@) = g L %)
Lemma - (Legendre monomial coefficients)
Po(l‘) =1
P(z)==x
(2n)! (2n — 2)! 9 4
P n _ n n
Ty e AT o o s A A
——
kn, k,(f)

Theorem 8.5 (Legendre 3-term recurrence)

xPy(z) = Pi(x)
2n+ 1)aP,(x) =nPp_1(z) + (n+ 1) Ppy1(x)
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9 Interpolation and Gaussian Quadrature

Polynomial Interpolation - process of finding poly. equal to data at precise set of points
Quadrature - act of approximating an integral by a weighted sum

b n
/ f@yw(x)de =~ w; f(z;)
a j=1
9.1 Polynomial Interpolation

Given n distinct points z1,...,z, € R, n samples fi,...,f, € R
Degree n — 1 interpolatory poly. p(x) satisfies

pz;) = f;
Definition 9.1 (Vandermonde)
The Vandermonde matrix associated with n distinct points z1,...,z, € R is the matrix
1 z ... x?_l
V= :
1 =z, zn=t

Proposition - (Interpolatory polynomial uniqueness)
Interpolatory polynomial is unique and Vandermonde matrix is invertible

Definition 9.2 (Lagrange basis polynomial)

la(z) = H T—x; (x—z1) ... (2 —2p—1)(@ — Tpg1) ... (x — )
ik Tk T (g —x1) ... (@ — 1) (X — Tpg1) - -« (Tk — Zn)
Proposition - (Delta interpolation)
() = O,
Theorem 9.1 (Lagrange Interpolation)

The unique polynomial of degree at most n — 1 that interpolates f at x; is

p(z) = f(z1)li(2) + - + fzn)ln()

9.2 Roots of orthogonal polynomials and truncated Jacobi matrices

Lemma
gn(x) has exactly n distinct roots

Definition 9.3 (Truncated Jacobi Matrix)

Given a symmetric Jacobi matrix X, (or weight w(x) with orthonormal polynomials associated with X') the truncated Jacobi
matrix is

ap  bo
X = bo ERan
n
) Up—2 bn72
bn72 Gp—1
Lemma - (Zeros)
The zeros z1,...,x, of ¢,(x) are the eigenvalues of the truncated Jacobi matrix X,,.
T
Tn
for the orthogonal matrix
qgo(xz1) ... qo(zn) art
qn—l(ml) Qn—l(xn) Olﬁl

where aj = \/qo(7;)2 + - + gn—1(z;)%
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9.3 Interpolatory Quadrature Rules

Definition 9.4 (interpolatory quadrature rule)

Set of points x = [z1,...,z,] the interpolatory quadrature rule is:
n b
S f] = ijf(xj) where w; :z/ Li(x)w(z)dx
Jj=1 @

Proposition - (Interpolatory quadrature is exact for polynomials)
Interpolatory quadrature is exact for all degree n — 1 polynomials p:

b
/ p(2)w(z)ds = SU(f]

9.4 Gaussian Quadrature

Definition 9.5 (Gaussian Quadrature)

Given weight w(x), the Gauss quadrature rule is:

b n
f@yw(@)de ~ Y w; f(x;)
a j=1
—_——
el
where 1, ...,x, are the roots of g, (z) and
1 1
w; = — = :
Ta qo(e)? A g (a)?
Equivalently, x1,...,x, are the eigenvalues of X,, and

b
w;= [ wle)deQul1.

(Note we have fab11)(:1c)dgcqo(gc)2 =1)
Lemma - (Discrete orthogonality)
For0< ¢{m< n—1,
Y lae am] = bem

Theorem 9.2 (Interpolation via quadrature)

n—1
fal) = crap(x)  for o =T [fa]
k=0

interpolates f(z) at the Gaussian quadrature points x1, ..., Zy,.
Corollary
Gaussian quadrature is an interpolatory quadrature rule with the interpolation points equal to the roots of ¢,:

51 =20
Theorem 9.3 (Exactness of Gauss quadrature)

If p(z) is a degree 2n — 1 polynomial then Gauss quadrature is exact:

b
/ p(zyw(z)dz = S2[p].
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