
LINEAR ALGEBRA, MATH 50003: Lecture Notes

Lecturer: Martin Liebeck

1 Course Overview

Most of the course will consist of basic results on matrices, vector spaces and linear
maps. The last part of the course will have a more geometrical flavour.

1.1 Matrix results

Let’s begin with a survey of some of the highlights among the matrix results in the
course. We start with a definition.

Definition Let A,B be n×n matrices over a field F . We say A is similar to B if there
exists an invertible n× n matrix P such that B = P−1AP .

Note that if we define a relation ∼ on n× n matrices by

A ∼ B ⇔ A is similar to B,

then ∼ is an equivalence relation (question on Problem Sheet 1).

Two similar matrices A,B share many basic properties: for example, they have

• the same determinant

• the same characteristic polynomial

• the same eigenvalues

• the same rank

• the same trace

(question on Problem Sheet 1). One of the major aims of the subject is:

Major Aim For an arbitrary n×n matrix A, find a “nice” matrix B such that A ∼ B.

In the course we’ll prove three famous therorems, in each of which the meaning of
the word “nice” will be apparent.

Example Probably the nicest matrices are the diagonal ones. Recall that an n × n
matrix A is diagonalisable if it is similar to a diagonal matrix D = diag(λ1, . . . , λn) (the
diagonal matrix with diagonal entries λ1, . . . , λn, the eigenvalues of A). This property
can be used to do many computations with A, such as calculating any power Ak: a matrix
P such that D = P−1AP can be computed (its columns are a basis of eigenvectors of
A). Then A = PDP−1, so

Ak = (PDP−1) (PDP−1) · · · (PDP−1) = PDkP−1,

and Dk is the diagonal matrix D = diag(λk1, . . . , λ
k
n).
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However, many matrices are not diagonalisable, for example

A =

(
1 1
0 1

)
.

To see this, suppose that A is diagonalisable. Then since the only eigenvalue is 1, there
exist P such that P−1AP = diag(1, 1) = I, so A = PIP−1 = I, a contradiction.

So not every matrix can be diagonalised. However, every complex matrix can be
triangularised. This is one of the first main results of the course:

Triangularisation Theorem If A is an n× n matrix over C, then A is similar to an
upper triangular matrix, i.e. there exists P such that

P−1AP =


λ1

0 λ2 ∗
.
.

0 0 λn

 .

Note that this result does not hold for matrices aver arbitrary fields: for example

over the real numbers R, the matrix

(
0 1
−1 0

)
has complex eigenvalues ±i, so is not

similar to a real upper triangular matrix.

The theorem has a more serious drawback though: there is nothing unique about an
upper triangular matrix similar to A. For example, for any a, b, a′, b′ 6= 0, 1 a b

1 0
1

 ∼
 1 a′ b′

1 0
1

 ,

(question on Sheet 1), so if A is similar to one such matrix, it is similar to all of them.

It is very desirable to have a unique matrix of a nice form that is similar to A, and
that is provided by the next main result.

Jordan Canonical Form Theorem If A is an n×n matrix over C, then A is similar
to a matrix of the form

J =


J1

J2

.
.
Jk

 ,

a block-diagonal matrix with blocks

Ji =



λi 1 0 . . . 0 0
0 λi 1 . . . 0 0
0 0 λi . . . 0 0

. . .
0 0 0 . . . λi 1
0 0 0 . . . 0 λi


(these are called Jordan blocks). The collection of Jordan blocks J1, . . . , Jk is uniquely
determined by A.
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We call the matrix J the Jordan Canonical Form (JCF) of A. Its uniqueness is a
vital part of the theorem, since it gives a powerful test for the similarity of two arbitrary
complex matrices A and B: find the JCFs of A and B, call them J and J ′. If J and J ′

are the same (apart from changing the order in which the Jordan blocks appear), then
A ∼ B; if not, then A 6∼ B. This test can be programmed very efficiently, and can be
used for huge matrices.

The Jordan Canonical Form Theorem is an ideal result for complex matrices. But
what about matrices over other fields, such as R or Q or the finite field Fp (the field of
prime order p consisting of the integers 0, 1, . . . , p − 1 with addition and multiplication
modulo p)? The JCF theorem does not hold for arbitrary matrices over these fields, for
the same reason that the Triangularisation theorem does not hold.

However we will prove another canonical form theorem – the Rational Canonical
Form – that holds over arbitrary fields. To state this, we need a bit of notation. Let
F be a field, and denote by F [x] the set of polynomials in x over F . We can add and
multiply polynomials (indeed, under addition and multiplication they form what is called
a ring).

We call a polynomial p(x) ∈ F [x] monic if it has degree r ≥ 1 and its leading
coefficient is 1, i.e.

p(x) = xr + ar−1x
r−1 + · · ·+ a0. (1)

Definition Let p(x) be a monic polynomial of degree r as in (1). The companion matrix
of p(x) is the r × r matrix C(p(x)) defined as follows:

C(p(x)) =


0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

· · ·
0 0 0 · · · 1 −ar−1

 .

For example,

C(x3 − x+ 1) =

 0 0 −1
1 0 1
0 1 0

 .

Note that C(p(x)) has characteristic polynomial p(x) (question on Sheet 1).

Rational Canonical Form Theorem Let A be an n × n matrix over F , with char-
acteristic polynomial p(x).

(i) There exists a factorization p(x) = p1(x) · · · pk(x) such that A is similar to a block-
diagonal matrix with blocks C(pi(x)) for i = 1, . . . k.

(ii) Under some conditions, the polynomials p1(x), . . . , pk(x) are uniquely determined
by A.

The “conditions” in part (ii) will be spelled out when we state and prove the theorem
in the lectures.

1.2 Geometry

The last part of the course will be concerned with some geometrical aspects of linear
algebra.
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Recall the dot product on Rn: if u = (u1, . . . , un) and v = (v1, . . . , vn) ∈ Rn, then

u.v =
n∑
i=1

uivi.

Much of the geometry of Rn is based on the dot product. For example, the length
||u|| =

√
u.u, and the distance between u and v is ||u − v||. Various types of n × n

matrices fit naturally into this geometrical picture, for example

• P is orthogonal if P TP = I (which implies that Pu.Pv = u.v for all u, v)

• A is symmetric if AT = A (which implies that Au.v = u.Av for all u, v).

It is useful to axiomatise the basic properties of the dot product, to obtain the theory
of inner product spaces: an inner product space is a real vector space with a map sending
any pair of vectors u, v to a scalar (u, v) satisfying the following axioms:

(1) the map is linear in each variable u, v

(2) the map is symmetric, i.e. (v, u) = (u, v) for all u, v

(3) (u, u) > 0 for all nonzero vectors u.

We shall develop the theory of inner product spaces. In order to extend the geometrical
notions to vector spaces over arbitrary fields, we shall also develop the theory of bilinear
forms.

2 Some revision from 1st Year Linear Algebra

This chapter is a summary of some of the theory of matrices and linear maps from the
1st year course that we’ll need.

Let V be a finite dimensional vector space over a field F and T : V → V a linear
map. If B = {v1, . . . , vn} is a basis of V , let

T (v1) = a11v1 + . . .+ an1vn,
...

T (vn) = a1nv1 + . . .+ annvn

where all the coefficients aij ∈ F . The matrix of T with respect to B is

[T ]B = (aij) =

 a11 · · · a1n
...

...
an1 · · · ann

 .

Proposition 2.1 Let S : V → V and T : V → V be linear transformations and let B
be a basis of V . Then

[ST ]B = [S]B[T ]B,

where ST is the composition of S and T .
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As a consequence of the proposition, the map T → [T ]B from linear maps to n × n
matrices has many nice properties. For example, if [T ]B = A then [T 2]B = A2 and
similarly

[
T k
]
B

= Ak for any positive integer k. More generally, for a polynomial
q(x) = arx

r + · · ·+ a1x+ a0 (ai ∈ F ), define

q(A) = arA
r + · · ·+ a1A+ a0I

and
q(T ) = arT

r + · · ·+ a1T + a0IV

where IV : V → V is the identity map. Then Proposition 2.1 implies that

[q(T )]B = q(A).

Change of basis

Let V be n-dimensional, and let bases E = {e1, . . . , en} and F = {f1, . . . , fn} be two
bases of V . Write

f1 = p11e1 + · · ·+ pn1en,
...

fn = p1ne1 + · · ·+ pnnen.

and define P to be the n×n matrix (pij). We call P the change of basis matrix from E
to F .

Proposition 2.2 (i) The change of basis matrix P is invertible.

(ii) If T : V → V is a linear map, then [T ]F = P−1[T ]EP (so [T ]E and [T ]F are
similar matrices).

Determinants

As we already noted in Chapter 1, if A,B are similar n×n matrices, then they have
the same determinant. Hence if T : V → V is a linear map, and E,F are two bases of
V , then the matrices [T ]E and [T ]F have the same determinant (by Proposition 2.2(ii)).
Therefore we can define the determinant det(T ) of a linear map T to be the determinant
of the matrix [T ]E for any basis E of V . The characteristic polynomial of T is defined
to be det(xIV − T ). This is a polynomial in x of degree n = dimV .

Proposition 2.3 (i) The eigenvalues of T are the roots of the characteristic polyno-
mial of T .

(ii) If λ is an eigenvalue of T , the eigenvectors corresponding to λ are the nonzero
vectors in

Eλ = {v ∈ V : (λIV − T )(v) = 0} = ker(λIV − T ).

(iii) The matrix [T ]B is a diagonal matrix iff B consists of eigenvectors of T .

Definition We call Eλ the λ-eigenspace of T . Note that Eλ is a subspace of V (since
it is the kernel of the linear map λIV − T ).

Proposition 2.4 Let V a finite-dimensional vector space over C, and let T : V → V be
a linear map. Then T has an eigenvalue λ ∈ C.

5



Proof The characteristic polynomial of T has a root λ ∈ C by the Fundamental
theorem of Algebra. �

Note that Proposition 2.4 is not necessarily true for vector spaces over other fields.
For example T : R2 → R2 defined by T (x1, x2) = (x2,−x1) has characteristic polynomial
x2 + 1, which has no real roots.

Diagonalisation

Recall that a linear map T : V → V is diagonalisable iff there exists a basis of V
consisting of eigenvectors of T . Here is a very useful result on eigenvectors.

Proposition 2.5 Let T : V → V be a linear map. Suppose v1, . . . , vk are eigenvec-
tors of T corresponding to distinct eigenvalues λ1, . . . , λk. Then v1, . . . , vk are linearly
independent.

Corollary 2.6 Let V be n-dimensional over F , and let T : V → V a linear map.
Suppose the characteristic polynomial of T has n distinct roots in F . Then T is diago-
nalisable.

Example Let

A =


λ1

0 λ2 ∗
...

. . .

0 · · · 0 λn


be upper triangular, with diagonal entries λ1, . . . , λn, all distinct. The characteristic
polynomial of A is

∏n
i=1(x− λi), which has roots λ1, . . . , λn. Hence by Corollary 2.6, A

is diagonalisable, so there exists P such that P−1AP = diag(λ1, . . . , λn).

Note that this is not necessarily true if the diagonal entries are not distinct, e.g.(
1 1
0 1

)
is not diagonalisable.

As a final point about diagonalisation, it is sometimes important to specify which
field we are working over. If A is an n×n matrix over a field F , we say A is diagonalisable
over F if it is similar to a diagonal matrix with entries in F . For example, the matrix(

0 1
−1 0

)
is not diagonalisable over R, but it is diagonalisable over C.

3 Algebraic and geometric multiplicities of eigenvalues

In this chapter we introduce and study two types of eigenvalue multiplicity.

Definition Let T : V → V be a linear map with characteristic polynomial p(x). Let
λ be a root of p(x) (i.e. an eigenvalue of T ). Then there is a positive integer a(λ) such
that

p(x) = (x− λ)a(λ)q(x),

where λ is not a root of q(x). We call a(λ) the algebraic multiplicity of λ as an eigenvalue
of T .
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The geometric multiplicity of λ is defined to be

g(λ) = dimEλ,

where Eλ is the λ-eigenspace of T .

We adopt similar definitions for n× n matrices.

Example For A =

(
1 1
0 2

)
, we have

a(1) = g(1) = 1, a(2) = g(2) = 1.

And for B =

(
1 1
0 1

)
, we have

a(1) = 2, g(1) = 1.

Proposition 3.1 If λ is an eigenvalue of T : V → V , then g(λ) ≤ a(λ).

Proof Let r = g(λ) = dimEλ and let v1, . . . , vr be a basis of Eλ. Extend to a basis
of V :

B = {v1, . . . , vr, w1, . . . , ws} .
We work out the matrix [T ]B:

T (v1) = λv1,
...

T (vr) = λvr,
T (w1) = a11v1 + · · ·+ ar1vr + b11w1 + · · ·+ bs1ws,

...
T (ws) = a1sv1 + · · ·+ arsvr + b1sw1 + · · ·+ bssws.

So

[T ]B =



λ 0 · · · 0 a11 · · · a1s

0 λ · · · 0
...

...
...

...
. . .

...
...

0 0 · · · λ ar1 · · · ars
0 · · · · · · 0 b11 · · · b1s
...

...
...

...
...

...
...

...
0 · · · · · · 0 bs1 · · · bss


=

(
λIr A
0 B

)
.

The characteristic polynomial of this is

p(x) = det

(
(x− λ)Ir −A

0 xIs −B

)
.

Using Q4 on Sheet 1, this is

p(x) = det((x− λ)Ir) det(xIs −B) = (x− λ)rs(x),

where s(x) is the characteristic polynomial of B. Hence the algebraic multiplicity a(λ) ≥
r = g(λ). �

Using this we can prove the following basic criterion for diagonalisation.
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Theorem 3.2 Let dimV = n, let T : V → V be a linear map, let λ1, . . . , λr be the
distinct eigenvalues of T , and let the characteristic polynomial of T be

p(x) =
r∏
i=1

(x− λi)a(λi)

(so
∑r

i=1 a(λi) = n). The following statements are equivalent:

(1) T is diagonalisable.

(2)
∑r

i=1 g(λi) = n.

(3) g(λi) = a(λi) for all i.

Proof We first prove (1)⇒ (2). Suppose (1) holds, so V has a basis B consisting of
eigenvectors of T . Each vector in B is in some eigenspace Eλi , so

r∑
i=1

g(λi) =
r∑
i=1

dimEλi ≥ |B| = n.

By 3.1,
∑r

i=1 g(λi) ≤
∑r

i=1 a(λi) = n. Hence
∑
g(λi) = n.

Next we show that (2)⇔ (3). This is easy, as∑
g(λi) = n⇔

∑
g(λi) =

∑
a(λi)⇔ g(λi) = a(λi) ∀i

(using 3.1 for the last implication).

To complete the proof, we show that (2)⇒ (1). Suppose (2) holds, so
∑r

i=1 dimEλi =
n. Let Bi be a basis of Eλi and let B =

⋃r
i=1Bi, so |B| = n (the Bi’s are disjoint as

they consist of eigenvectors for different eigenvalues).

We claim that B is a basis of V (hence (1) holds). Since |B| = n = dimV , it is
enough to show that B is linearly independent. Suppose there is a linear relation on the
vectors in B, and write it as ∑

a∈B1

αaa+ · · ·+
∑
z∈Br

αzz = 0. (2)

Write
v1 =

∑
a∈B1

αaa,
...

vr =
∑

z∈Br
αzz,

so vi ∈ Eλi and v1 + · · · + vr = 0. As λ1, . . . , λr are distinct, the set of nonzero vi’s is
linearly independent by 2.5. Therefore there can’t be any nonzero vi’s, and so vi = 0 for
all i. Then v1 =

∑
a∈B1

αaa = 0, so as B1 is linearly independent (it is a basis of Eλ1)
all the coefficients αa = 0. Similarly all the other α’s in (2) are 0. This completes the
proof that B is linearly independent, hence a basis of V . �

Using 3.2 we obtain a test to check whether a given n × n matrix or linear map is
diagonalisable:

1. Find the characteristic polynomial, and factorise it as

r∏
i=1

(x− λi)a(λi).
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2. Calculate each g(λi) = dimEλi .

3. If g(λi) = a(λi) for all i, YES.
If g(λi) < a(λi) for some i, NO.

Example Let A =

 −3 1 −1
−7 5 −1
−6 6 −2

. Check that

(1) Characteristic polynomial is (x+ 2)2(x− 4).

(2) For eigenvalue 4: a(4) = 1, g(4) = 1 (as it is ≤ a(4)).
For eigenvalue −2: a(−2) = 2, g(−2) = dimE−2 = 1.

So g(−2) < a(−2) and A is not diagonalisable.

4 Direct sums

Recall that if U1, . . . , Uk are subspaces of a vector space V , we can form their sum

U1 + · · ·+ Uk = {u1 + · · ·+ uk : ui ∈ Ui for all i},

which is another subspace of V . A direct sum of subspaces is a particular case of this,
defined as follows.

Definition Let V be a vector space, and let V1, . . . , Vk be subspaces of V . We write

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk (3)

if every vector v ∈ V can be expressed as v = v1 + · · · + vk for unique vectors vi ∈ Vi.
The uniqueness statement means that if v1 + · · ·+vk = v′1 + · · ·+v′k with vi, v

′
i ∈ Vi, then

vi = v′i for all i. If (3) holds, we say that V is the direct sum of the subspaces V1, . . . , Vk.

As an obvious first example, R2 = Sp(1, 0) ⊕ Sp(0, 1). (Here, and throughout these
notes, “Sp” is an abbreviation for “Span”.)

It will be important for us to be able to check quickly whether the direct sum con-
dition (3) holds. For a direct sum of two subspaces (the case k = 2), this is easy:

Proposition 4.1 The following statements are equivalent:

(1) V = V1 ⊕ V2.

(2) V1 ∩ V2 = {0} and dimV1 + dimV2 = dimV .

Proof First we show (1) ⇒ (2). Assume (1), so that V = V1 ⊕ V2. If there exists
0 6= v ∈ V1 ∩ V2, then

v = v + 0 = 0 + v

gives two different expressions for v as a sum of vectors in V1 and V2, contradicting the
uniqueness statement in the definition of a direct sum. Therefore V1 ∩ V2 = {0}. It
follows that

dimV = dim(V1 + V2) = dimV1 + dimV2 − dimV1 ∩ V2 = dimV1 + dimV2.
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Hence (2) holds.

Now we show (2)⇒ (1). Assume that (2) holds. Then

dim(V1 + V2) = dimV1 + dimV2 − dimV1 ∩ V2 = dimV1 + dimV2 = dimV.

Hence V = V1 + V2. To show uniqueness, suppose v1 + v2 = v′1 + v′2 with vi, v
′
i ∈ Vi.

Then
v1 − v′1 = v′2 − v2 ∈ V1 ∩ V2.

Since V1 ∩ V2 = {0}, this implies that v1 = v′1, v2 = v′2. Hence V = V1 ⊕ V2. �

The next result shows how to check the direct sum condition (3) for arbitrary values
of k.

Proposition 4.2 The following statements are equivalent:

(1) V = V1 ⊕ · · · ⊕ Vk.

(2) dimV =
∑k

i=1 dimVi, and if Bi is a basis for Vi for 1 ≤ i ≤ k, then B =
B1 ∪ · · · ∪Bk is a basis of V .

Proof First we prove (1)⇒ (2). Assume that V = V1 ⊕ · · · ⊕ Vk. Let Bi be a basis
of Vi for 1 ≤ i ≤ k, and let B = B1 ∪ · · · ∪Bk.
Claim B is a basis of V .

Proof of Claim: Clearly B spans V , since V = V1 + · · · + Vk. Now we show linear
independence. Suppse there is a linear relation on the vectors in B, and write this as∑

a∈B1

αaa+ · · ·+
∑
z∈Br

αzz = 0. (4)

Now V = V1⊕ · · ·⊕Vk, hence 0 = 0 + · · ·+ 0 is the unique expression for the zero vector
as a sum of vectors in V1, . . . , Vk. Hence each sum in the left hand side of (4) is equal to
0, and so all the α’s in (4) are 0. This proves that B is linearly independent, hence is a
basis, proving the Claim.

As in the proof of 4.1 we see that Vi ∩Vj = {0} for i 6= j, and hence Bi ∩Bj = ∅ and
B is the disjoint union of the Bi. By the Claim, therefore, we have

dimV = |B| =
k∑
i=1

|Bi| =
k∑
i=1

dimVi,

so that (2) holds.

Now we prove that (2) ⇒ (1). Assume that (2) holds. For each i let Bi be a basis
of Vi, and let B =

⋃k
1 Bi, a basis of V . As dimV =

∑k
1 dimVi, we have |B| =

∑
|Bi|,

so the Bi’s are disjoint sets. Every vector in V is in the span of B, hence is a sum of
vectors in V1, . . . , Vk, so V = V1 + · · ·+ Vk. To prove uniqueness, suppose that

v1 + · · ·+ vk = v′1 + · · ·+ v′k

where each vi, v
′
i ∈ Vi. Then

0 = (v1 − v′1) + · · ·+ (vk − v′k).
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If any term vi − v′i is nonzero, this equation will give a nontrivial linear relation on the
vectors in the basis B, a contradiction. Hence vi = v′i for all i, proving uniqueness, and
so V = V1 ⊕ · · · ⊕ Vk. �

Example In R4 let V1 = sp((1, 1, 0, 0), (0,−1, 1, 0)), V2 = sp(2, 1, 2, 1), V3 = sp(0, 0, 1, 1).
Is R4 = V1 ⊕ V2 ⊕ V3 ?

Answer: no, as {(1, 1, 0, 0), (0,−1, 1, 0), (2, 1, 2, 1), (0, 0, 1, 1)} is not a basis of R4.
(The simplest way to check this is to write the vectors as the rows of a 4× 4 matrix and
show that this can be reduced by row operations to a matrix with a zero row.)

To complete this chapter, we demonstrate an important link between direct sums
and linear maps. First we need a definition.

Definition Let T : V → V be a linear map, and W a subspace of V . We say that W
is T -invariant if T (W ) ⊆ W , where T (W ) = {T (w) : w ∈ W} (in other words, T maps
W →W ). If W is T -invariant, write TW : W →W for the restriction of T to W . Thus
TW is the linear map W →W defined by TW (w) = T (w) for all w ∈W .

Proposition 4.3 Let T : V → V be a linear map, and suppose that V = V1 ⊕ · · · ⊕ Vk,
where each subspace Vi is T -invariant. For each i let Bi be a basis of Vi, and let Ai be
the matrix of the restriction [TVi ]Bi. Then if B is the basis

⋃k
1 Bi of V , the matrix [T ]B

is the block-diagonal matrix

[T ]B =


A1

.
.
Ak

 . (5)

Proof Let B1 = {v1, . . . , vr}. Then T (v1) = TV1(v1) is a vector in V1, say T (v1) =
a11v1 + · · ·+ ar1vr. Similarly for T (v2), . . . , up to T (vr) = TV1(vr) = a1rv1 + · · ·+ arrvr.
So we see that the top left hand block of [T ]B is the r× r matrix (aij), which is [TV1 ]B1 .
Carrying on like this, we see that the next diagonal block is [TV2 ]B2 , and so on. �

Notation In view of the proposition, and for convenience of notation, we shall denote
the block-diagonal matrix in (5) by A1⊕· · ·⊕Ak. Thus for ni×ni matrices Ai (1 ≤ i ≤ k),
we write

A1 ⊕ · · · ⊕Ak =


A1

.
.
Ak

 ,

an n× n block-diagonal matrix, where n =
∑k

i=1 ni.

5 Quotient spaces

Let V be a vector space over a field F , and W a subspace of V . In this section we define
the quotient space V/W . Its vectors are the cosets W + v for v ∈ V , where

W + v = {w + v : w ∈W}.

These are just cosets of the additive subgroup W of the group (V,+), as seen in 1st
Year Group Theory. (They are right cosets, but the right coset W + v is the same as
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the left coset v + W because addition is commutative, so we just call them cosets.) It
is of course possible to have W + v = W + v′ for different vectors v, v′; it is easy to tell
when this happens:

W + v = W + v′ ⇔ v − v′ ∈W.
You will have seen this fact in the 1st Year, but I have also set it as a question on Sheet
2 to make sure.

To make V/W into a vector space, we need to define addition and scalar multiplica-
tion of cosets. The natural definitions are:

(A) (W + v1) + (W + v2) = W + v1 + v2

(S) λ(W + v) = W + λv

for all vi, v ∈ V , λ ∈ F . We must check that these operations are well-defined. Here is
the check for (A):

W + v1 = W + v′1, W + v2 = W + v′2 ⇒ v1 − v′1, v2 − v′2 ∈W
⇒ v1 + v2 − (v′1 + v′2) ∈W
⇒W + v1 + v2 = W + v′1 + v′2.

And here is the check for (S):

W + v = W + v′ ⇒ v − v′ ∈W
⇒ λ(v − v′) ∈W
⇒ λv − λv′ ∈W
⇒W + λv = W + λv′.

Proposition 5.1 Let V/W be the set of cosets W + v for v ∈ V . Then with addition
and scalar multiplication defined by (A) and (S) as above, V/W is a vector space over
F .

Proof. We need to check the vector space axioms for V/W . These are:

Addition axioms: these amount to saying that (V/W,+) is an abelian group, with iden-
tity element the zero vector W + 0 = W .

Scalar multiplication axioms – these are

(S1) λ ((W + v1) + (W + v2)) = λ(W + v1) + λ(W + v2)

(S2) (λ+ µ)(W + v) = λ(W + v) + µ(W + v)

(S3) (λ(µ)(W + v)) = (λµ)(W + v)

(S4) 1(W + v) = W + v.

Checking all the axioms is a routine exercise. I will just do (S1) and leave the rest to
you to check:

λ ((W + v1) + (W + v2)) = λ(W + v1 + v2)
= W + λ(v1 + v2)
= W + λv1 + λv2

= (W + λv1) + (W + λv2)
= λ(W + v1) + λ(W + v2). �

We call the vector space V/W the quotient space of V by W . Its dimension is given
by the next result.
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Proposition 5.2 Let V be finite-dimensional, and let W be a subspace of V . Then
dimV/W = dimV − dimW .

Proof. Let w1, . . . , wr be a basis of W . Extend this to a basis of V :

w1, . . . , wr, v1, . . . , vs.

So dimW = r and dimV = r + s.

Claim W + v1, . . . ,W + vs is a basis of V/W .

Proof of Claim We first show the given set of vectors is linearly independent. Suppose

s∑
i=1

λi(W + vi) = W (the zero vector of V/W ).

Then LHS = W +
∑
λivi = W , so

∑
λivi ∈W . Hence there exist scalars µj such that

s∑
i=1

λivi =
r∑
j=1

µjwj .

As w1, . . . , wr, v1, . . . , vs is a basis, this implies that λi = 0 for all i, proving that the set
of vectors in the Claim is linearly independent.

Now we prove the set spans V/W . Let W + v ∈ V/W . There are scalars λi, µj such
that

v =

r∑
j=1

µjwj +

s∑
i=1

λivi = w +

s∑
i=1

λivi,

where w ∈W is the first sum. Hence

W + v = W +

s∑
i=1

λivi =

s∑
i=1

λi(W + vi).

This proves the spanning assertion, and so the Claim is proved.

By the Claim, we have

dimV/W = s = dimV − dimW. �

Example Let V = R3 and W = Sp(e1 + e2 + e3). To find a basis of V/W , extend the
basis w = e1 + e2 + e3 of W to a basis of V – say w, e1, e2. Then by the Claim in the
above proof, W + e1,W + e2 is a basis of V/W .

Quotient spaces and linear maps

Let T : V → V be a linear map. Suppose that W is a T -invariant subspace of V
(recall this means that T (W ) ⊆ W ). Then we can define the restriction TW : W → W .
We can also define a quotient map T̄ : V/W → V/W as follows:

T̄ (W + v) = W + T (v) ∀v ∈ V.

We need to check that T̄ is well-defined; here is the check:

W + v = W + v′ ⇒ v − v′ ∈W
⇒ T (v − v′) ∈W (since T (W ) ⊆W )
⇒ T (v)− T (v′) ∈W
⇒W + T (v) = W + T (v′)
⇒ T̄ (W + v) = T̄ (W + v′).
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We now show that there is close relationship between the matrices of T , TW and T̄
with respect to certain bases. Choose of basis BW of W :

BW = {w1, . . . , wr}.

Extend this to a basis B of V :

B = {w1, . . . , wr, v1, . . . vs}.

As in 5.2, we have a basis B̄ of V/W :

B̄ = {W + v1, . . . ,W + vs}.

Proposition 5.3 Let X = [TW ]BW
(an r × r matrix) and Y = [T̄ ]B̄ (an s× s matrix).

Then

[T ]B =

(
X Z
0 Y

)
,

where Z is r × s.

Proof. Let

T (wi) =
∑r

j=1 xjiwj (1 ≤ i ≤ r),
T (vi) =

∑r
j=1 zjiwj +

∑s
j=1 yjivj (1 ≤ i ≤ s)

Then
T̄ (W + vi) = W +

∑r
j=1 zjiwj +

∑s
j=1 yjivj

= W +
∑s

j=1 yjivj
=
∑s

j=1 yji(W + vj).

Hence [TW ]BW
= (xij) = X, [T̄ ]B̄ = (yij) = Y and

[T ]B =

(
X Z
0 Y

)
,

where Z = (zij). �

Example Let V = R3 and T : V → V be given by T (v) = Av for all v ∈ V , where

A =

 1 −2 1
−2 0 2
1 1 −2

 .

Let w = (1, 1, 1)T . Then T (w) = 0, so W = Sp(w) is a T -invariant subspace. We
extend the basis {w} of W to a basis B = {w, e1, e2} of V , so we have a basis B̄ =
{W + e1,W + e2} of V/W . Check that

T (e1) = (1,−2, 1)T = w − 3e2, T (e2) = (−2, 0, 1)T = w − 3e1 − e2.

Hence T̄ (W + e1) = W − 3e2, T̄ (W + e2) = W − 3e1 − e2, and so

[T̄ ]B̄ =

(
0 −3
−3 −1

)
.

Finally,

[T ]B =

 0 1 1
0 0 −3
0 −3 −1

 =

(
[TW ]BW

Z
0 [T̄ ]B̄

)
,

where Z = (1, 1).
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Corollary 5.4 Let T : V → V be a linear map, and let W be a T -invariant subspace
of V . Let c(x), c1(x) and c2(x) be the characteristic polynomials of T , TW and T̄ ,
respectively, Then c(x) = c1(x)c2(x).

Proof. In the notation of Prop. 5.3,

c(x) = det

(
xIr −X −Z

0 xIs − Y

)
= det(xIr −X) det(xIs − Y )
= c1(x)c2(x). �

6 Triangularisation

Triangular matrices are not as easy to compute with as diagonal matrices, but they do
have many nice properties. Here are a couple that will be familiar to you from 1st Year.

Proposition 6.1 Let A and B be upper triangular n× n matrices:

A =


λ1

0 λ2 ∗
.
.

0 0 λn

 , B =


µ1

0 µ2 ∗
.
.

0 0 µn

 .

(i) The characteristic polynomial of A is
∏n
i=1(x− λi), the eigenvalues are λ1, . . . , λn

and the determinant is
∏n
i=1 λi.

(ii) The product AB is also upper triangular, with diagonal entries λ1µ1, . . . , λnµn.

So the characteristic polynomial of a triangular matrix is
∏n

1 (x − λi), a product of
linear factors. The triangularisation theorem shows that the converse is true:

Theorem 6.2 (Triangularisation Theorem) Let V be an n-dimensional vector
space over a field F and let T : V → V be a linear map. Suppose that characteristic poly-
nomial c(x) of T factorizes as a product of linear factors, so that c(x) =

∏n
1 (x−λi) with

all λi ∈ F . Then there is a basis B of V such that the matrix [T ]B is upper triangular.

We will prove this after making a few remarks on it. First we state the corresponding
matrix version:

Corollary 6.3 Let A be an n× n matrix over a field F , and suppose the characteristic
polynomial of A factorizes as a product of linear factors. Then A is similar to an upper
triangular matrix over F .

Proof. Let V = Fn and apply 6.2 to the linear map T : V → V given by T (v) = Av
for all v ∈ V . �

Remarks (1) If F = C then by the Fundamental Theorem of Algebra, every polynomial
over F factorizes as a product of linear factors. So Corollary 6.3 shows that every n×n
matrix over C can be triangularised.
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(2) For other fields this may not be the case; for example for F = R, the matrix(
0 1
−1 0

)
has characteristic polynomial x2 + 1 which has no roots in R, hence is not

similar to a real triangular matrix.

Proof of Theorem 6.2. The proof goes by induction on n = dimV . The result is
obvious for dimV = 1.

Now assume the result for vector spaces of dimension n − 1. Let n = dimV , and
T : V → V a linear map whose characteristic polynomial c(x) factorizes as a product of
linear factors. Then c(x) has a root λ ∈ F . Let w1 ∈ V be a corresponding eigenvector
with T (w1) = λw1, and let W = Sp(w1), a T -invariant subspace.

The quotient space V/W has dimension n − 1 by Prop. 5.2. Consider the quotient
map T̄ : V/W → W/W (defined by T̄ (W + v) = W + T (v) for v ∈ V ). By Cor. 5.4,
the characteristic polynomial of T̄ divides c(x), hence is also a product of linear factors.
Hence by the induction assumption, V/W has a basis

B̄ = {W + v2, . . . ,W + vn}

such that the matrix [T̄ ]B̄ is upper triangular. Let Y = [T̄ ]B̄. Then B = {w1, v2, . . . , vn}
is a basis of V , and by Prop. 5.3,

[T ]B =

(
λ Z
0 Y

)
(where Z is 1× n− 1 and 0 is n− 1× 1). This matrix [T ]B is upper triangular, so the
induction proof is complete. �

The above proof gives an algorithm for triangularising a linear map T : V → V
(assuming its characteristic polynomial factorizes):

(1) Find an eigenvector w1 for T ; let W = Sp(w1).

(2) Find an eigenvector W + w2 for T̄ : V/W → V/W . Let W ′ = Sp(w1, w2).

(3) Find an eigenvector W + w3 for ¯̄T : V/W ′ → V/W ′.

(4) Continue, until we have a basis B = {w1, w2, w3, . . . , wn} of V . Then [T ]B is upper
triangular.

Here is a an example.

Example Let V = R3 and let T : V → V be defined by T (v) = Av for all v ∈ V , where

A =

 3 2 1
−1 0 0
−1 −1 0

 .

Check that the characteristic polynomial of T is (x− 1)3.

(1) We find an eigenvector w1 = (1,−1, 0)T . Let W = Sp(w1).

(2) Extend w1 to a basis C = {w1, e2, e3} of V . Then C̄ = {W + e2,W + e3} is a
basis of V/W . Compute that

[T̄ ]C̄ =

(
2 1
−1 0

)
.

16



This matrix has an eigenvector (1,−1)T , which corresponds to an eigenvector W+e2−e3

of T̄ . So in the algorithm we can take w2 = e2 − e3.

(3) Thus our final triangularising basis is B = {w1, w2, e3} (the third vector can be
any vector that makes a basis with w1, w2): the matrix [T ]B is upper triangular (with 1’s
on the diagonal, as 1 is the only eigenvalue of T ). Also, if P is the matrix with columns
w1, w2, e3, then P−1AP is upper triangular.

7 The Cayley-Hamilton theorem

Recall that if T : V → V is a linear transformation and p(x) = akx
k + · · ·+ a1x+ a0 is

a polynomial, then p(T ) : V → V is defined by

p(T ) = akT
k + ak−1T

k + · · ·+ a1T + a0IV .

Likewise if A is n× n matrix,

p(A) = akA
k + · · · a1A+ a0I.

In this chapter we prove one of the most fundamental results in the whole of linear
algebra:

Theorem 7.1 (Cayley-Hamilton Theorem) Let V be a finite-dimensional vector
space over a field F , and let T : V → V be a linear map with characteristic polynomial
p(x). Then p(T ) = 0.

An immeadiate consequence is the corresponding statement for matrices:

Corollary 7.2 If A is an n × n matrix over a field F with characteristic polynomial
p(x), then p(A) = 0.

Remarks (1) Here is a “proof” of the corollary: by definition

p(x) = det (xI −A).

Substitute x = A: this gives p(A) = det (AI −A) = 0!

Is this a valid proof? No, of course not: the substitution x = A makes no sense, as
x is a scalar variable and A is a matrix.

(2) Note that Corollary 7.2 is obvious for diagonal matrices A = diag(λ1, . . . , λn): the
characteristic polynomial of A is

∏n
i=1(x− λi), and p(A) = diag(p(λ1), . . . , p(λn)) = 0.

(3) Proving Corollary 7.2 for upper triangular matrices is also not too difficult (set as
a question on Problem Sheet 3). Combined with the Triangularisation Theorem 6.2, this
gives a proof of the Cayley-Hamilton theorem for matrices over C, but not for arbitrary
fields.

(4) What about a direct proof of the Cayley-Hamilton theorem? Consider the 2× 2

case: let A =

(
a b
c d

)
. This has characteristic polynomial p(x) = x2−(a+d)x+ad−bc,

so
p(A) = A2 − tr(A)A+ det(A) I.

We can verify by direct calculation that this is 0. But for 3× 3, . . . , n× n matrices, this
is not a pleasant approach, and we need a better idea.
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There are several different proofs of the Cayley-Hamilton theorem. I have chosen to
present my favourite proof, which also has the merit of introducing some material that
will be needed in later chapters.

Proof of Theorem 7.1

Let T : V → V be a linear map with characteristic polynomial p(x). The proof
proceeds by induction on n = dimV . The result is trivial for n = 1. Now assume it is
true for vector spaces of dimension at most n− 1.

(A) Assume first that there exists a T -invariant subspace W such that W 6= 0 or V .
As in Proposition 5.3, choose a basis BW of W , and extend it to a basis B of V such
that

[T ]B =

(
X Z
0 Y

)
,

where X = [TW ]BW
, Y = [T̄ ]B̄. By Corollary 5.4,

p(x) = pX(x)pY (x),

where pX , pY are the characteristic polynomials of X and Y . Now X is r × r and Y is
s× s, where r = dimW < n, s = dimV/W < n. Hence by the induction hypothesis,

pX(X) = 0, pY (Y ) = 0.

It follows that if we let A = [T ]B =

(
X Z
0 Y

)
, then

p(A) = pX(A)pY (A)

=

(
pX(X) Z1

0 pX(Y )

)(
pY (X) Z2

0 pY (Y )

)
=

(
0 Z1

0 pX(Y )

)(
pY (X) Z2

0 0

)
= 0.

(B) By (A), we can now assume that

V has no T -invariant subspaces apart from 0 and V. (6)

Claim Let 0 6= v ∈ V , and let B = {v, T (v), . . . , Tn−1(v)}. Then B is a basis of V .

Proof Since dimV = n, it is enough to show that B is linearly independent. Let j be
the largest integer such that the set

S = {v, T (v), . . . , T j−1(v)}

is linearly independent. Since v 6= 0 we have j ≥ 1, and obviously j ≤ n. Let X = Sp(S),
so that dimX = j.

By the choice of j, the set {v, T (v), . . . , T j(v)} is linearly dependent. Hence T j(v) ∈
Sp(S) = X, and so X is T -invariant. Therefore by (6), we have X = V . Hence j = n,
proving the Claim.

Now we work out the matrix [T ]B, where B is as in the Claim. Since Tn(v) ∈ Sp(B),
we can write

Tn(v) = −a0v − a1T (v)− · · · − an−1T
n−1(v) (7)
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for some scalars ai ∈ F . Then

[T ]B =


0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

· · ·
0 0 0 · · · 1 −an−1

 . (8)

By Q7 of Problem Sheet 1, the characteristic polynomial of this matrix is

p(x) = xn + an−1x
n−1 + · · ·+ a0.

Hence by (7),
p(T )(v) = Tn(v) + an−1T

n−1(v) + · · ·+ a0v = 0.

This is true for any v ∈ V (since the choice of v in the Claim was arbitrary). Hence
p(T ) = 0, and the proof is complete. �

Definition For p(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ F [x], we call the n×n matrix in (8)

the companion matrix of p(x), denoted C(p(x)) (or just C(p)).

8 Polynomials

Let F be a field. A polynomial in x over F is an expression

p(x) = anx
n + an−1x

n−1 + · · ·+ a0

where each ai ∈ F . We denote the set of all polynomials over F by F [x]. Addition and
multiplication are defined on F [x] as follows: if p(x) =

∑
aix

i, q(x) =
∑
bjx

j , then

p(x) + q(x) =
∑

(ai + bi)x
i,

p(x) q(x) =
∑
ckx

k, where ck =
∑

i+j=k aibj .

The zero polynomial is the one with all coefficients equal to 0, and is also denoted as
0. For p(x) 6= 0, the degree deg(p(x)) is the highest power of x occuring in p(x) with a
nonzero coefficient. (The degree of the zero polynomial is undefined.) I leave it as an
exercise for you to show that

deg(p(x)q(x)) = deg(p(x)) + deg(q(x)).

We say that p(x) divides q(x) if there exists r(x) ∈ F [x] such that q(x) = p(x)r(x).
Note that if p(x) divides q(x), then also λp(x) divides q(x) for any scalar λ 6= 0, since
q(x) = (λp(x)) (λ−1r(x)). We write p(x)|q(x) to denote that p(x) divides q(x). Finally,
p(x) is monic if its leading coefficient (that is, the coefficient of the highest power of x)
is 1.

In what follows, we shall often write just f, g instead of f(x), g(x), etc. for notational
convenience. We aim to develop a theory of factorization of polynomials analogous to the
theory of prime factorization of the integers. The main result is the Unique Factorization
Theorem for polynomials, Theorem 8.7 below.

The theory starts with the following basic result.
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Proposition 8.1 (Euclidean Algorithm) Let f, g ∈ F [x] with deg(g) ≥ 1. Then
there exist polynomials q, r ∈ F [x] such that

f = qg + r,

where either r = 0 or deg(r) < deg(g).

Proof The proof goes by induction on n = deg(f). The result is clear if deg(f) = 0
(just take q = 0, r = f).

Now let n = deg(f), m = deg(g), and write

f = anx
n + · · ·+ a0, g = bmx

m + · · ·+ b0

(so that an, bm 6= 0). If n < m, take q = 0, r = f and the conclusion holds. So assume
that n ≥ m. Let

f1 = f − anb−1
m xn−mg.

Then deg(f1) < deg(f) = n, so by induction hypothesis, there are polynomials q1, r1

such that
f1 = q1g + r1

and either r1 = 0 or deg(r1) < deg(g). Then

f = f1 + anb
−1
m xn−mg

=
(
q1 + anb

−1
m xn−m

)
g + r1.

Hence the result holds by induction. �

Definition Let f, g ∈ F [x] \ {0}. We say that d ∈ F [x] is a greatest common divisor
(gcd) of f, g if the following two conditions hold:

(1) d|f and d|g,

(2) if e(x) ∈ F [x] and e|f and e|g, then e|d.

Note that if d is a gcd of f, g, then so is λd for any nonzero λ ∈ F . But apart from
this, gcd(f, g) is unique, if it exists (Q on Sheet 3). In fact it does exist:

Proposition 8.2 If f, g ∈ F [x] \ {0}, then gcd(f, g) exists, and is unique up to scalar
multiplication.

Proof We can assume that deg(f) ≥ deg(g), and repeatedly apply the Euclidean
Algorithm 8.1:

f = qg + r1, deg(r1) < deg(g),
g = q1r1 + r2, deg(r2) < deg(r1),
r1 = q2r2 + r3, deg(r3) < deg(r2),
. . .
rn−1 = qnrn + rn+1, deg(rn+1) < deg(rn),
rn = qn+1rn+1.

Then rn+1 = gcd(f, g). �

Definition We say that the polynomials f, g ∈ F [x] are coprime if gcd(f, g) = 1.
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Proposition 8.3 If d = gcd(f, g), then there exist r, s ∈ F [x] such that d = rf + sg.

Proof Referring to the previous proof, start with the equation d = rn+1 = rn−1−qnrn.
Substitute for rn using the previous equation; then substitute for rn−1, and so on. �

Factorization

First we define what are the “primes” in F [x].

Definition A polynomial p(x) ∈ F [x] is irreducible over F if deg(p) ≥ 1, and p(x)
cannot be factorized as a product of polynomials in F [x] of smaller degree.

Note that there are always factorizations of the form p(x) = (λp(x)) (λ−1) with
λ ∈ F \ {0}. A polynomial that is not irreducible is called reducible.

Examples (1) The irreducibility of a polynomial depends on the field: for example
x2 + 1 is irreducible over R, but not over C (since x2 + 1 = (x+ i)(x− i)).

(2) Every polynomial in C[x] of degree at least 1 has a root in C, by the Fundamental
Theorem of Algebra. So the only irreducible polynomials in C[x] are linear polynomials
ax+ b. The irreducibles in R[x] are linear polynomials, and also quadratic polynomials
with no real roots (Q on Sheet 3).

(3) Here are the irreducibles of small degree in F2[x] (where F2 = {0, 1}, the field of
2 elements):

degree 1: x, x+ 1

degree 2: x2 + x+ 1 (this is irreducible as it has no roots in F2)

degree 3: x3 + x+ 1, x3 + x2 + 1 (these are irreducible as they have no roots in F2)

In Q on Sheet 3 you are asked to find all the irreducibles of degree 4.

Let me now briefly discuss irreducible polynomials in Q[x], an interesting and tricky
topic. Given p(x) ∈ Q[x], it is usually hard to decide whether it is irreducible. The next
result is a useful tool for monic polynomials that happen to have integer coefficients.

Proposition 8.4 Let p(x) ∈ Q[x] be a monic polynomial with integer coefficients.

(1) If α ∈ Q is a root of p(x), then α ∈ Z.

(2) If p(x) is reducible over Q, then it has a factorization p = ab, where a(x), b(x) are
also monic with integer coefficients.

Proof Part (1) is Q on Sheet 3. Part (2) is a famous result called Gauss’s Lemma.
We won’t prove it here – if you are interested, you can find a proof in the recommended
textbook by I N Herstein. �

Example We show that x3 + x+ 1 is irreducible over Q. Suppose it is reducible: then
it has a linear factor, hence has a root α ∈ Q. Then α ∈ Z by Prop. 8.4(1), and α
divides the constant term 1, hence α = ±1. But 1 and −1 are not roots of x3 + x + 1,
contradiction.

Irreducible polynomials have several properties which are analogous to those of prime
numbers. Here is one such basic property.
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Proposition 8.5 Let p(x) ∈ F [x] be irreducible, and let a(x), b(x) ∈ F [x]. If p|ab, then
either p|a or p|b.

Proof Suppose that p|ab and also p 6 |a. As p is irreducible, gcd(p, a) = 1, and so by
Proposition 8.3, there exist r, s ∈ F [x] such that

1 = rp+ sa.

Multiplying through by b, this gives b = rpb+ sab. As p divides ab, it divides the RHS
of this equation, hence it divides b. �

Corollary 8.6 If p(x) ∈ F [x] is irreducible and p|g1 · · · gr (where each gi ∈ F [x]), then
p|gi for some i.

Proof This is by induction on r, using Proposition 8.5. �

Theorem 8.7 (Unique Factorization Theorem) Let f(x) ∈ F [x] with deg(f) ≥ 1.

(1) Then f factorizes as a product

f = p1 · · · pr,

where each pi ∈ F [x] is irreducible.

(2) The factorization is unique (apart from multiplying factors by scalars).

Proof (1) The proof is by induction on deg(f). The result is obvious if deg(f) = 1.

Let n = deg(f), and assume the result holds for polynomials of degree less than n.
If f is irreducible, the result holds, taking p1 = f . And if f is reducible, then f = ab
where a, b ∈ F [x] both have degree less than n. By induction hypothesis, a and b are
products of irreducibles, hence so is f .

(2) Again we proceed by induction on deg(f). Suppose

f = p1 · · · pr = q1 · · · qs, (9)

where all the polynomials pi, qi are irreducible. Then p1|q1 · · · qs, so by Corollary 8.6,
p1|qi for some i. Re-label the q’s to take i = 1. Hence q1 = bp1 for some b ∈ F [x], and
as q1 is irreducible, b is a scalar. Reaplce q1 by b−1q1 (and q2 by bq2), so that p1 = q1.
Now we can cancel these factors in (9), giving

p2 · · · pr = q2 · · · qs.

By the induction hypothesis, r = s and (re-ordering the factors), pi = qi for all i ≥ 2,
up to scalar multiplication of factors. Hence pi = qi for all i ≥ 1 (up to scalar mult.),
completing the proof by induction. �

To complete the section, we define the least common multiple lcm(f, g) of two poly-
nomials f, g ∈ F [x]: this is a polynomial h ∈ F [x] such that

(1) f and g both divide h, and

(2) if f and g both divide a polynomial k ∈ F [x], then h|k.

Q of Sheet 3 shows that lcm(f, g) exists and is equal to fg
gcd(f,g) . It can also be computed

using the factorizations of f and g as products of irreducibles.
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9 The minimal polynomial of a linear map

Let V be a vector space of dimension n over a field F , and T@V → V a linear map. We
know that there are nonzero polynomials f(x) ∈ F [x] such that f(T ) = 0 – for example,
f(x) = cT (x), the characteristic polynomial of T (by the Cayley-Hamilton theorem).

Definition We say that a polynomial m(x) ∈ F [x] is a minimal polynomial for T :
V → V if the following three conditions hold:

(1) m(T ) = 0,

(2) m(x) is monic,

(3) deg(m) is as small as possible such that (1) and (2) hold.

Our first result shows that the minimal polynomial of T is unique.

Proposition 9.1 Let T : V → V be a linear map.

(1) T has a unique minimal polynomial: denote it as mT (x).

(2) For p(x) ∈ F [x],
p(T ) = 0⇔ mT (x)|p(x).

Proof (1) Suppose m(x) and m1(x) satisfy conditions (1)-(3) of the definition. Then
m and m1 are monic of the same degree, so deg(m−m1) < deg(m) and (m−m1)(T )−
m(T )−m1(T ) = 0. Hence by the minimality of the degree, m−m1 = 0 and so m = m1.

(2) (⇐) For p(x) ∈ F [x],

mT (x)|p(x)⇒ p(x) = mT (x)q(x)⇒ p(T ) = mT (T )q(T ) = 0.

(⇒) Suppose p(x) ∈ F [x] and p(T ) = 0. By the Euclidean Algorithm, there exist
q, r ∈ F [x] such that

p(x) = q(x)mT (x) + r(x)

and either r = 0 or deg(r) < deg(mT ). Then

0 = p(T ) = q(T )mT (T ) + r(T ) = r(T ).

As deg(r) < deg(mT ) this implies r = 0, hence mT |p. �

We adopt the same definition as above for the minimal polynomial mA(x) of an n×n
matrix A. Note that if A and B are similar, they have the same minimal polynomial (Q
on Sheet 4).

It will be important for us to be able to compute the minimal polynomial of a linear
map or a matrix. The next result is useful for this.

Proposition 9.2 Let T : V → V be a linear map.

(1) mT (x) divides cT (x), the characteristic polynomial of T .

(2) If λ ∈ F is a root of cT (x) (i.e. an eigenvalue of T ), then λ is also a root of mT (x).
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Proof (1) This follows from Proposition 9.1(2), since cT (T ) = 0 by Cayley-Hamilton.

(2) Let v be an eigenvector of T with T (v) = λv. Then 0 = mT (T )(v) = mT (λ)(v).
Hence mT (λ) = 0. �

Examples (1) Let A be a diagonal matrix, with characteristic polynomial
∏r
i=1(x −

λi)
ai , where λ1, . . . , λr are the distinct diagonal entries with multiplicities a1, . . . , ar.

Then

mA(x) =

r∏
i=1

(x− λi),

a product of distinct linear factors (Q on Sheet 4).

(2) Let us find the minimal polynomial of the matrix

A =

 2 2 −5
3 7 −15
1 2 −4

 .

We first compute the characteristic polynomial cA(x) = (x − 1)2(x − 3). By Prop.
9.2, mA(x) divides this and has the same roots. Hence mA(x) = (x − 1)(x − 3) or
(x − 1)2(x − 3). We compute the matrix (A − I)(A − 3I) and find that it is 0. Hence
mA(x) = (x− 1)(x− 3).

(3) Recall that for p(x) = xn + an−1x
n−1 + · · · + a0 ∈ F [x], the companion matrix

C(p(x)) is defined by

C(p(x)) =


0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

· · ·
0 0 0 · · · 1 −an−1

 .

Then

(a) this has characteristic polynomial p(x) (Q7 on Sheet 1)

(b) it also has minimal polynomial p(x) (Q on Sheet 4).

By Proposition 9.2, mT (x) and cT (x) have the same linear factors. What about
other irreducible factors? The answer is the same:

Theorem 9.3 Let T : V → V be a linear map. If p(x) ∈ F [x] is an irreducible factor
of cT (x), then p(x) divides mT (x).

For the proof we need to recall some facts from Sections 4 and 5 about T -invariant
subspaces W (ie. subspaces W such that T (W ) ⊆ W ). There are two associated linear
maps:

TW : W →W , the restriction of T to W

T̄ : V/W → V/W , the quotient map T̄ (W + v) = W + T (v) for v ∈ V .

Proposition 9.4 (1) We have cT (x) = cTW (x) cT̄ (x).

(2) The minimal polynomials mTW (x) and mT̄ (x) both divide mT (x).

24



Proof (1) is Corollary 5.4.

(2) For w ∈W ,
mT (TW )(w) = mT (T )(w) = 0.

And for v ∈ V ,

mT (T̄ )(W + v) = W +mT (T )(v) = W + 0 = W.

Hence mT (TW ) = 0 and mT (T̄ ) = 0, so mTW and mT̄ divide mT by Prop. 9.1(2). �

Proof of Theorem 9.3

Let T : V → V be a linear map, and let p(x) ∈ F [x] be an irreducible factor of
cT (x). We need to show that p(x) divides mT (x). The proof proceeds by induction on
dimV ; it is trivial for dimV = 1. We follows a similar approach to the proof of the
Cayley-Hamilton theorem 7.1.

(A) Assume first that there exists a T -invariant subspace W that is not equal to V
or 0. Then by Prop. 9.4(1), cT (x) = cTW (x) cT̄ (x). By Prop. 8.5, p(x) divides either
cTW (x) or cT̄ (x). Since both W and V/W have dimension less than dimV , the induction
hypothesis therefore implies that p(x) divides either mTW (x) or mT̄ (x). Both of these
divide mT (x) by Prop. 9.4(2), so p(x)|mT (x), as required.

(B) By (A), we may now assume that V has no T -invariant subspaces apart from 0
and V . Let 0 6= v ∈ V , and define

B = {v, T (v), . . . , Tn−1(v)}.

By the proof of the Cayley-Hamilton theorem 7.1, B is a basis of V , and

[T ]B = C(cT (x)),

the companion matrix of cT (x). The minimal polynomial of this matrix is also cT (x), by
Q of Sheet 4, so mT (x) = cT (x). Hence p(x) divides mT (x), and the proof is complete.
�

Example Let A be the following 5× 5 matrix over the field F2 = {0, 1}:

A =


0 1 0 0 1
1 1 0 0 0
0 0 0 1 0
0 0 1 1 0
0 0 0 0 1

 .

Find the minimal polynomial mA(x).

Answer First compute the characteristic polynomial cA(x) and factorize it as a
product of irreducibles in F2[x]:

cA(x) = (x2 + x+ 1)2(x+ 1).

Hence by Theorem 9.3, mA(x) = (x2 + x + 1)i(x + 1) with i = 1 or 2. Now compute
that (A2 +A+ I)(A+ I) 6= 0. Hence

mA(x) = cA(x) = (x2 + x+ 1)2(x+ 1).
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10 Primary Decomposition

Recall from Section 1: we are aiming to prove “Canonical Form” theorems. These say
that any n× n matrix A over a field F is similar to a block-diagonal matrix

M1 ⊕ · · · ⊕Mr =


M1

.
.
Mk


where the Mi are “nice” matrices (Jordan blocks or companion matrices). To prove these
theorems, we need methods for decomposing a vector space V as V = V1 ⊕ · · · ⊕ Vr,
a direct sum of A-invariant subspaces. In this section we prove a fundamental such
decomposition theorem.

Theorem 10.1 (Primary Decomposition Theorem) Let V be a finite-dimensional
vector space over a field F , and let T : V → V be a linear map with minimal polynomial
mT (x). Let the factorization of mT (x) into irreducible polynomials be

mT (x) =

k∏
i=1

fi(x)ni ,

where f1(x), . . . , fk(x) are distinct irreducible polynomials in F [x]. For 1 ≤ i ≤ k, define

Vi = ker (fi(T )ni) .

Then

(1) V = V1 ⊕ · · · ⊕ Vk,

(2) each Vi is T -invariant,

(3) each restriction TVi has minimal polynomial fi(x)ni.

Definition We call the decomposition V = V1 ⊕ · · · ⊕ Vk in Theorem 10.1 the primary
decomposition of V with respect to T .

Before starting the proof of the theorem, we make some remarks on the important
special case where every irreducible fi(x) is linear, say fi(x) = x − λi (eg. this will be
the case if F = C). In this case, the factorization is

mT (x) =
k∏
i=1

(x− λi)ni

where λ1, . . . , λk are the distinct eigenvalues of T , and

Vi = ker(T − λiI)ni .

We call Vi the generalized λi-eigenspace of T .

Example Let A =

 2 0 0
−1 −3 −1
−1 4 1

 and let T : V → V be the linear map T (v) = Av,

where V = R3. Let us compute the primary decomposition of V .
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First find that mA(x) = cA(x) = (x − 2)(x + 1)2. So in this case V1 and V2 are the
generalized eigenspaces ker(A− 2I) and ker(A+ I)2.

Compute that V1 = ker(A− 2I) = Sp(v1), where v1 = (−1, 0, 1)T , and V2 = ker(A+
I)2 = Sp(e2, e3). So V = V1 ⊕ V2 is the primary decomposition, and with respect to the
basis B = {v1, e2, e3}, we have

[T ]B =

 2 0 0
0 −3 −1
0 4 1

 .

The diagonal blocks (2) and

(
−3 −1
4 1

)
are the matrices of the restrictions TV1 and

TV2 .

Corollary 10.2 A linear map T : V → V is diagonalisable if and only if mT (x) =∏k
i=1(x− λi), a product of distinct linear factors.

Proof (⇒) Suppose T is diagonalisable, and let B be a basis of V consisting of
eigenvectors of T . Let λ1 . . . , λk be the distinct eigenvalues of T , and let f(x) =

∏k
i=1(x−

λi). Then f(T ) =
∏k

1(T − λiI) maps each basis vector of B to 0, and hence f(T ) = 0.
Hence mT (x) divides f(x), and so mT (x) is a product of distinct linear factors.

(⇐) Suppose mT (x) =
∏k
i=1(x−λi), a product of distinct linear factors. By Theorem

10.1, we have V = V1 ⊕ · · · ⊕ Vk, where each Vi = ker(T − λiI) = Eλi , the λi-eigenspace
of T . By Prop. 4.2, the union of bases of V1, . . . , Vk is a basis of V , and it consists of
eigenvectors of T . Hence T is diagonalisable. �

We now begin working towards the proof of Theorem 10.1. This is based on the
following result.

Proposition 10.3 Let T : V → V be a linear map, and suppose g1(x), g2(x) ∈ F [x] are
coprime polynomials such that g1(T )g2(T ) = 0.

(1) Then V = V1 ⊕ V2, where Vi = kergi(T ) for i = 1, 2; also each Vi is T -invariant.

(2) Suppose also that mT (x) = g1(x)g2(x). Then mTVi
(x) = gi(x) for i = 1, 2.

Proof (1) As g1(x), g2(x) are coprime, there exist s1(x), s2(x) ∈ F [x] such that

s1(x)g1(x) + s2(x)g2(x) = 1.

Then
s1(T )g1(T ) + s2(T )g2(T ) = IV .

Let v ∈ V . Then
v = IV (v) = s1(T )g1(T )(v) + s2(T )g2(T )(v).

So v = v1 + v2, where vi = si(T )gi(T )(v) for i = 1, 2. Since g1(T )g2(T ) = 0, we see that
v1 ∈ kerg2(T ) = V2 and v2 ∈ kerg1(T ) = V1. Hence

V = V1 + V2.

Also
v ∈ V1 ∩ V2 ⇒ v = s1(T )g1(T )(v) + s2(T )g2(T )(v) = 0,
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and so V1∩V2 = {0}. Therefore V = V1⊕V2 by Prop. 4.1. Finally, each Vi is T -invariant
since

v ∈ Vi ⇒ gi(T )(v) = 0⇒ gi(T )T (v) = T gi(T )(v) = 0⇒ T (v) ∈ kergi(T ) = Vi.

(2) Let mi(x) = mTVi
(x) for i = 1, 2. As Vi = kergi(T ), we have gi(TVi) = 0, so

mi(x) divides gi(x) by Prop. 9.1(2). As g1, g2 are coprime, so are m1,m2. Therefore by
Q on Sheet 4,

mT (x) = lcm(m1(x),m2(x)) = m1(x)m2(x).

Since by the hypothesis of (2) we have mT (x) = g1(x)g2(x), it follows that mi(x) = gi(x)
for i = 1, 2. �

Proof of Theorem 10.1

Let T : V → V be a linear map with mT (x) =
∏k
i=1 fi(x)ni , where f1(x), . . . , fk(x)

are distinct irreducible polynomials in F [x]. The proof proceeds by induction on k. It
is trivial for k = 1, so assume k ≥ 2.

In Proposition 10.3, take

g1(x) = f1(x)n1 , g2(x) =
k∏
i=2

fi(x)ni .

These are coprime, so by 10.3, we have

V = V1 ⊕W

where V1 = kerg1(T ), W = kerg2(T ), and also

minimal poly. of TV1 is g1(x) = f1(x)n1 ,

minimal poly. of TW is g2(x) =
∏k
i=2 fi(x)ni .

Applying the induction hypothesis to the restriction TW : W →W , we obtain

W = V2 ⊕ · · · ⊕ Vk,

where for i = 2, . . . , k we have Vi = kerfi(TW )ni and also the minimal poly. of (TW )Vi is
fi(x)ni . Note that kerfi(TW )ni = kerfi(T )ni , since the RHS of this equation is contained
in kerg2(T ) = W . Also (TW )Vi = TVi . Hence we have shown that the following conditions
hold:

• V = V1 ⊕W = V1 ⊕ V2 ⊕ · · · ⊕ Vk,

• each Vi = kerfi(T )ni ,

• each TVi has minimal poly. fi(x)ni .

These are the conditions specified in the conclusion of the theorem , so this completes
the proof by induction. �
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11 Jordan Canonical Form

In this chapter we prove the first of the canonical form theorems mentioned in the
introductory chapter 1. This is the Jordan Canonical Form theorem, one of the main
results in the whole of linear algebra.

Definition Let F be a field and let λ ∈ F . Define the n× n matrix

Jn(λ) =



λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0

. . .
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


Such a matrix is called a Jordan block.

For example

J2(5) =

(
5 1
0 5

)
, J3(0) =

 0 1 0
0 0 1
0 0 0

 , J1(λ) = (λ).

Here are some basic properties of Jordan blocks.

Proposition 11.1 Let J = Jn(λ).

(1) Both the characteristic and the minimal polynomials of J are equal to (x− λ)n.

(2) λ is the only eigenvalue of J : its algebraic multiplicity is n and its geometric
multiplicity is 1.

(3) J − λI = Jn(0), and multiplication by J − λI sends the standard basis vectors

en → en−1 → · · · → e2 → e1 → 0.

(4) (J − λI)n = 0, and for i < n, (J − λI)i has rank n − i and sends en → en−i,
en−1 → en−i−1 and so on.

Proof (1) As J is upper triangular, the characteristic polynomial cJ(x) = (x − λ)n.
Hence mJ(x) = (x − λ)i for some i ≤ n. As (J − λI)n−1 6= 0 by part (4), mJ(x) must
be (x− λ)n.

(2) The eigenspace Eλ(J) is the solution space of (J − λI)v = 0, which is Sp(e1), of
dimension 1. Hence the geometric multiplicity g(λ) = 1.

Finally, (3) is clear, and it follows that (J − λI)i = Jn(0)i sends en → en−i, en−1 →
en−i−1 and so on, giving (4), �

Recall the definition of a block diagonal matrix: if A1, . . . , Ak are square matrices,
where Ai is ni × ni, define

A1 ⊕A2 ⊕ · · · ⊕Ak =


A1 0 . . . 0
0 A2 . . . 0

. . .
0 0 . . . Ak


This is n× n, where n =

∑
ni.
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Proposition 11.2 Let A = A1 ⊕ · · · ⊕ Ak and for each i let Ai have characteristic
polynomial ci(x) and minimal polynomial mi(x).

(1) The characteristic polynomial cA(x) =
∏k

1 ci(x).

(2) The minimal polynomial mA(x) = lcm (m1(x), . . . ,mk(x)).

(3) For any eigenvalue λ of A, dimEλ(A) =
∑k

1 dimEλ(Ai).

(4) For any polynomial q(x), we have q(A) = q(A1)⊕ · · · ⊕ q(Ak).

Proof Parts (1) and (4) are clear; part (3) is in Q5 of Sheet 2; and part (2) is Q on
Sheet 4. �

Here is the great theorem.

Theorem 11.3 (Jordan Canonical Form) Let A be an n× n matrix over a field F ,
and suppose the characteristic polynomial of A is a product of linear factors over F .
Then

(1) A is similar to a matrix of the form of the form

J = Jn1(λ1)⊕ Jn2(λ2)⊕ · · · ⊕ Jnk
(λk) (10)

where
∑
ni = n. (Note that the eiegnvalues λi are not necessarily distinct.)

(2) The matrix J in (10) is uniquely determined by A, apart from changing the order
in which the Jordan blocks appear.

Definition We call the block-diagonal matrix J in (10) the Jordan Canonical Form
(JCF) of A.

There is of course an equivalent statement of Theorem 11.3 for linear maps T : V →
V , where V is an n-dimensional vector space over F . This states that if cT (x) is a
product of linear factors, then there is a basis B of V such that [T ]B = J , a unique JCF
matrix.

Note that the condition on cA(x) in the hypothesis of the theorem says that all the
eigenvalues of A lie in F . This condition is obviously necessary for the conclusion to hold
(as it was for the Triangularisation Theorem). It always holds when the field F = C, by
the Fundamental Theorem of Algebra.

Example Here are a few examples of JCFs:

A = J2(1)⊕ J2(1) =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,

B = J3(1)⊕ J1(1) =


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,

C = J1(1)⊕ J3(1) =


0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .
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The uniqueness part (2) of Theorem 11.3 implies A is not similar to B or C. But note
that B is similar to C (see Q5 on Sheet 2).

Notice that the only diagonal JCF matrices are of the form J1(λ1) ⊕ · · · ⊕ J1(λk) –
so in some sense “most” matrices are not diagonalisable.

How to compute the JCF of a matrix

We shall prove the JCF Theorem 11.3 later. First we make some remarks on how
to compute the JCF of any given matrix. Let A be an n× n matrix such that cA(x) is
a product of linear factors. The JCF Theorem tells us that A ∼ J , a JCF matrix as in
(10) (where as usual we use ∼ to denote similarity of matrices). How can we compute
J?

First note that A and J have the same characteristic polynomial, minimal polyno-
mial, eigenvalues and geometric multiplicities, and that q(A) ∼ q(J) for any polynomial
q(x). For each eigenvalue λ, collect up all the Jordan blocks with evalue λ, and change
the order of the blocks to re-write

J = (Jn1(λ)⊕ · · · ⊕ Jna(λ))⊕ (Jm1(µ)⊕ · · · ⊕ Jmb
(µ))⊕ · · ·

We call the first bracket the λ-blocks of J , then the µ-blocks, and so on.

Proposition 11.4 Let J be as above, and λ an eigenvalue.

(1) n1 + · · ·+ na = a(λ), the algebraic multiplicity of λ.

(2) a =number of λ-blocks = g(λ), the geometric multiplicity of λ.

(3) max (n1, . . . , na) = r, where (x−λ)r is the highest power of x−λ dividing mA(x),
the minimal polynomial of A.

Proof (1) The power of x− λ dividing the characteristic polynomial of J is
∏a
i=1(x−

λ)ni , so a(λ) =
∑a

1 ni.

(2) Each λ-block has geometric multiplicity 1 by Prop. 11.1(2), so by Prop. 11.2(3),
we have a = g(λ).

(3) By Prop. 11.1(1), the minimal polynomial of Jni(λ) is (x−λ)ni . Hence by Prop.
11.2(2), the power of x − λ dividing mJ(x) is lcm ((x− λ)n1 , . . . , (x− λ)na), which is
equal to (x− λ)max (n1,...,na). �

So computing the multiplicities a(λ), g(λ) and the minimal polynomial of A gives
a lot of information about the JCF of A. Often – but not always – this is enough to
determine the JCF. Here are some examples.

Examples (1) Find the JCF of

A =


−1 5 0 0 1
0 −1 0 0 0
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 1


Answer The characteristic poly cA(x) = (x + 1)2(x − 1)3, so the eigenvalues are −1, 1
with a(−1) = 2, a(1) = 3. Calculate that rank(A + I) = 4 and rank(A − I) = 3, so
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g(−1) = 1 and g(1) = 2. This means that the JCF of A has one −1-block and two
1-blocks, which is already enough to determine it uniquely as

J2(−1)⊕ J2(1)⊕ J1(1).

(2) Find the JCF of

A =


1 1 −1 0
0 1 0 1
0 0 1 1
0 0 0 1


Answer Here cA(x) = (x− 1)4, and rank(A− I) = 2, so g(1) = 2 and so the number of
1-blocks is 2. Hence the JCF is either J2(1)⊕ J2(1) or J3(1)⊕ J1(1). Which ?

To determine which, we need to compute mA(x): check that (A − I)2 = 0, so
mA(x) = (x − 1)2. Hence by Prop. 11.4(3), the largest block has size 2, so the JCF of
A is J2(1)⊕ J2(1).

(3) Suppose we are given the following information about a matrix A:

cA(x) = x7, mA(x) = x3, g(0) = 3. (11)

Can we compute the JCF of A?

Well, by Prop. 11.4 we know that there are 3 blocks of sizes adding up to 7, and the
maximum size is 3. There are two JCFs satisying these conditions:

J = J3(0)⊕ J3(0)⊕ J1(0), and J ′ = J3(0)⊕ J2(0)⊕ J2(0).

So the information in (11) is not sufficent to determine the JCF.

What further information about A is needed to determine the JCF? Well, (11) de-
termines the ranks of A and A3: we have rank(A) = 7 − g(0) = 4, and rank(A3) = 0
since mA(x) = x3. If we are given also rank(A2), we can determine the JCF, since
rank(J2) = 2, whereas rank(J ′2) = 1.

A completely general method for computing the JCF of a given matrix will be pro-
vided by the proof of uniqueness part (2) of the JCF Theorem, coming up right now....

Uniqueness of JCF

Here we prove the uniqueness part (2) of the JCF Theorem .11.3:

Theorem 11.5 Suppose A is an n×n matrix over a field F , and A is similar to a JCF
matrix J , where

J = Jn1(λ1)⊕ Jn2(λ2)⊕ · · · ⊕ Jnk
(λk).

Then J is uniquely determined by A, apart from changing the order in which the Jordan
blocks appear.

Proof (A) First we handle the case where A has only one eigenvalue λ – so all λi = λ
and cA(x) = (x− λ)n. Re-order the blocks to take

J = J1(λ)a1 ⊕ J2(λ)a2 ⊕ Jr(λ)ar ,
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where all ai ≥ 0 (some can be 0) – meaning that J has a1 blocks of size 1, a2 blocks of
size 2, and so on. For i ≥ 1, define

mi = rank (A− λI)i = rank (J − λI)i.

We shall show that the ai’s can be expressed in terms of the mi’s. Observe that

J − λI = J1(0)a1 ⊕ J2(0)a2 ⊕ Jr(0)ar .

Hence using Prop. 11.1(4), we see that

mr = rank (J − λI)r = 0,
mr−1 = rank (J − λI)r−1 = ar,
mr−2 = rank (J − λI)r−2 = 2ar + ar−1,
mr−3 = rank (J − λI)r−3 = 3ar + 2ar−1 + ar−2,
...
m2 = (r − 2)ar + · · ·+ 2a4 + a3,
m1 = (r − 1)ar + · · ·+ 2a3 + a2.

Hence, given the mi’s, we can determine the ai’s uniquely.

This proves the uniqueness statement of the theorem for the case of one eigenvalue.

(B) Now we handle the general case. We are given that A ∼ J , a JCF matrix. Let
λ be an eigenvalue of A, let Jλ be the block-diagonal sum of all the λ-blocks in J , and
let L be the sum of the other blocks of J . So re-ordering the blocks, we have

J = Jλ ⊕ L,

where λ is not an eigenvalue of L. So L− λI is invertible and rank (L− λI)i = l for all
i ≥ 1, where L is l × l.

For i ≥ 1, define

ri = rank (A− λI)i = rank (J − λI)i.

Then
ri = rank (Jλ − λI)i + l,

and so for each i we can compute

mi = rank (Jλ − λI)i = ri − l.

Hence, as in (A), we can determine uniquely the sizes of all the λ-blocks in Jλ. Now
repeat this for all the other eigenvalues of A, and the proof is complete. �

Existence of JCF

Now we prove part (1) of the JCF Theorem 11.3. It is convenient to prove it for
linear maps rather than matrices. Here is the statement.

Theorem 11.6 Let T : V → V be a linear map, and suppose that cT (x) is a product of
linear factors. Then there exists a basis B of V such that [T ]B is a JCF matrix.
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First we shall reduce the proof of this theorem to the case where T has only one
eigenvalue.

Let T : V → V be as in the theorem, and let

cT (x) =
k∏
i=1

(x− λi)ai , mT (x) =
k∏
i=1

(x− λi)ni ,

where λ1 . . . , λk are the distinct eigenvalues of T , and ai ≥ ni ≥ 1. We apply the Primary
Decomposition Theorem 10.1. If we define Vi = ker(T − λi)ni for 1 ≤ i ≤ k, this tells us
that

V = V1 ⊕ · · · ⊕ Vk.

Let Bi be a basis of Vi. Then B = B1 ∪ · · · ∪ Bk is a basis of V by Prop. 4.2. Let
Ai = [TVi ]Bi . Then by Prop. 4.3,

[T ]B = A1 ⊕ · · · ⊕Ak,

and by Theorem 10.1(3), each Ai has minimal polynomial (x− λi)ni . Hence if we prove
Theorem 11.6 for each restriction TVi , the theorem will follow in general.

We have now shown that it is enough to establish Theorem 11.6 for the case where
T has only one eigenvalue.

The case of one eigenvalue

Let dimV = n and let T : V → V be a linear map with cT (x) = (x− λ)n, so that T
has only one eigenvalue λ. Define S = T − λIV . Then

Sn = (T − λIV )n = 0,

so S has only one eigenvalue 0. Such a linear map is said to be nilpotent.

Here is the JCF Theorem 11.6 for S:

Theorem 11.7 Let S : V → V be a nilpotent linear map. Then there exists a basis B
of V such that

[S]B = Jn1(0)⊕ · · · ⊕ Jnk
(0).

Corollary 11.8 Then T = S + λIV has [T ]B = Jn1(λ)⊕ · · · ⊕ Jnk
(λ). In other words,

Theorem 11.6 holds for any linear map T having only one eigenvalue.

So to complete the proof of Theorem 11.6 it remains to prove Theorem 11.7.

Proof of Theorem 11.7

Let n = dimV and S : V → V with S nilpotent. We are aiming to find a basis B
such that [S]B = Jn1(0)⊕· · ·. So if vn1 , . . . , v1 are the first n1 vectors of B in that order,
we require

S(v1) = v2, S(v2) = v3, . . . , S(vn1) = 0.

In other words, the first n1 vectors of B should be (in reverse order):

v1, S(v1), . . . , Sn1−1(v1),
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where Sn1(v1) = 0. Thus we are looking for a basis B of V of the form

v1, S(v1), . . . , Sn1−1(v1), . . . , vk, S(vk), . . . , S
nk−1(vk), (12)

where Sni(vi) = 0 for i = 1, . . . , k. Then (after reversing each subsequence vi, . . . , S
ni−1(vi)

in B), the matrix [S]B will be the JCF matrix in the conclusion of the theorem. We call
such a basis a Jordan basis of V .

We prove by induction on n = dimV that a Jordan basis of V exists. It is obvious
for n = 1. Now assume it is true for vector spaces of dimension less than n.

Consider Im(S) = S(V ) ⊆ V . As 0 is an eigenvalue of S, we have ker(S) 6= 0, and
so by the Rank-Nullity theorem, S(V ) 6= V . Hence

dimS(V ) < n.

Let W = S(V ). Then W is S-invariant of dimension less than n, and the restriction
SW : W →W is clearly nilpotent, so we can apply the induction hypothesis to SW . This
implies that there is a Jordan basis of W ; write it as

u1, S(u1), . . . , Sm1−1(u1), . . . , ur, S(ur), . . . , S
mr−1(ur), (13)

where Smi(ui) = 0 for i = 1, . . . , r and
∑r

1mi = dimW .

Now add vectors to the list in (13) as follows:

(1) for each i, add a vector vi ∈ V such that ui = S(vi);

(2) note that ker(S) contains the linearly independent vectors

Sm1−1(u1), . . . Smr−1(ur);

extend these to a basis of ker(S) by adding further vectors w1, . . . , ws (so dim ker(S) =
r + s).

With these additions to (13), we now have a list of vectors

v1, S(v1), . . . , Sm1(v1), . . . , vr, S(vr), . . . , S
mr(vr), w1, . . . , ws. (14)

Claim The list (14) is a basis of V .

Proof We first prove the list is linearly independent. Suppose we have a linear
relation

α1v1 + · · ·+ αm1+1S
m1(v1) + · · ·+ γ1vr + · · ·+ γmr+1S

mr(vr) +
s∑
i=1

δiwi = 0. (15)

Apply S to this, noting that Smi+1(vi) = Smi(ui) = 0 and also S(wi) = 0. This gives

α1S(v1) + · · ·+ αm1S
m1(v1) + · · ·+ γ1S(vr) + · · ·+ γmrS

mr(vr) = 0.

This is a linear relation on the basis (13) of W . Hence

α1 = · · · = αm1 = · · · = γ1 = · · · = γmr = 0.

Hence (15) is now

αm1+1S
m1(v1) + · · ·+ γmr+1S

mr(vr) +
s∑
1

δiwi = 0.
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This is a linear relation on our basis of ker(S), so all the coefficients are 0:

αm1+1 = · · · = γmr+1 = δi = 0 ∀i.

Hence all the coefficients in the linear relation (15) are 0, proving the linear independence
of (14).

To complete the proof of the Claim, we count the number of vectors in the list (14):
the number is

(m1 + 1) + · · ·+ (mr + 1) + s = (
∑r

1mi) + r + s
= dimW + r + s
= dim Im(S) + dim ker(S)
= dimV.

Hence the list (14) consists of n = dimV linearly independent vectors, so it is a basis of
V , proving the Claim.

Now let B be the basis (14) of V , and reverse each of the subsequences vi, . . . , S
mi(vi).

Then
[S]B = Jm1+1(0)⊕ · · · ⊕ Jmr+1(0)⊕ J1(0)s.

Hence B is a Jordan basis of V , and the proof of the theorem by induction is complete.
�

Computing a Jordan basis

Given any linear map T : V → V with cT (x) a product of linear factors, a basis B
for which [T ]B is a JCF matrix is called a Jordan basis of V . We can use the method of
the inductive proof of Theorem 11.7 to give an algorithm for computing a Jordan basis
for any such linear map T . As we argued before, the Primary Decomposition Theorem
gives

V = V1 ⊕ · · · ⊕ Vk,
where each restriction TVi has only one eigenvalue λi. And if we let Si = TVi − λiI,
then Si is nilpotent. Hence we just need to find a Jordan basis for nilpotent linear maps
S : V → V . Here is the algorithm for this.

Let S : V → V be nilpotent.

Step 1 Compute the subspaces

V ⊃ S(V ) ⊃ S2(V ) ⊃ · · · ⊃ Sr(V ) ⊃ 0,

where Sr+1(V ) = 0.

Step 2 Find a basis of Sr(V ). Then use rules (1) and (2) in the proof of Theorem 11.7 to
add vectors to get a Jordan basis of Sr−1(V ).

Step 3 Repeat: successively find Jordan bases of Sr−2(V ), . . . , S(V ), V .

Example Here is an example carrying out this algorithm. Let F be a field, let V = F 5

and let S : V → V be defined by S(v) = Av for all v ∈ V , where

A =


0 1 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

 .
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Find a Jordan basis for this map.

Answer Observe that cA(x) = x5, mA(x) = x4 and the geometric multiplicity
g(0) = 2. Hence the JCF of A is J4(0)⊕ J1(0).

To find a Jordan basis, we use the algorithm.

First check that
S(V ) = Sp(e1, e2, e3 + e4),
S2(V ) = Sp(e1, e2),
S3(V ) = Sp(e1),
S4(V ) = 0.

We now perform Steps 2 and 3. A basis of S3(V ) is e1.

Add vectors to get a Jordan basis of S2(V ): e2, e1 (since S(e2) = e1).

To get a Jordan basis of S(V ): add v1 ∈ S(V ) such that S(v1) = e2: take v1 =
1
2(−e2 + e3 + e4). So Jordan basis of S(V ) is

v1, e2, e1.

Finally get a Jordan basis of V :

1) add x1 ∈ V such that S(x1) = v1: take x1 = 1
2(−e3 + e5);

2) add w1 such that e1, w1 is a basis of ker(S): take w1 = e2 + e3 − e4.

So our final Jordan basis of V is

x1, v1, e2, e1, w1.

To get the ordered basis B such that [S]B is the JCF matrix J4(0) ⊕ J1(0), we must
reverse the sequence of the first four vectors in this basis.

12 Cyclic Decomposition and Rational Canonical Form

Let V be a finite-dimensional vector space over a field F , and T : V → V a linear map.
If F = C, then the characteristic polynomial cT (x) factorizes as a product of linear
factors, so the JCF Theorem applies to T . But for other fields, such as R, Q or Fp (p
prime), many polynomials do not factorize into linear factors so the JCF Theorem does
not apply. We need a more general canonical form theory. In this section we will prove
the Rational Canonical Form Theorem. This works over any field, and states that there
is a basis B of V such that

[T ]B = C(f1)⊕ · · · ⊕ C(fk),

where the matrices C(fi) are the companion matrices of uniquely determined polynomi-
als fi ∈ F [x]. The theory behind this result is based on the notion of cyclic subspaces,
which we now introduce.

Cyclic subspaces

Let V be a finite-dimensional vector space over F , and T : V → V a linear map.

Definition Let v ∈ V with v 6= 0, and define

Z(v, T ) = {f(T )(v) : f(x) ∈ F [x]}
= Sp

(
v, T (v), T 2(v), . . .

)
.
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Call Z(v, T ) the T -cyclic subspace of V generated by v (or slightly more briefly, the
cyclic subspace generated by v). Clearly Z(v, T ) is T -invariant; we write Tv to denote
the restriction of T to Z(v, T ).

Similarly, if A is an n × n matrix over F , and 0 6= v ∈ Fn, we define Z(v,A) =
Sp(Aiv : i ≥ 0).

Example Let

A =

 1 1 0
0 1 0
0 0 1

 .

The 1-eigenspace of A is E1 = Sp(e1, e3), so for any v ∈ E1 we have Z(v,A) = Sp(v).
All other cyclic subspaces Z(w,A) are 2-dimensional: for w 6∈ E1, we have Z(w,A) =
Sp(w, e1).

We next prove some basic facts about cyclic subspaces. Let v, T be as above. In the
sequence

v, T (v), T 2(v), . . .

let T k(v) be the first vector that is in the span of the previous ones. So we can express

T k(v) = −a0v − a1T (v)− · · · − ak−1T
k−1(v) (16)

for some ai ∈ F . Define

mv(x) = xk + ak−1x
k−1 + · · ·+ a0 ∈ F [x].

By the choice of k, this is the monic polynomial of smallest degree with the property
that mv(T )(v) = 0. Note that also mv(T )(w) = 0 for all w ∈ Z(v, T ).

Definition We call the polynomial mv(x) the T -annihilator of v and Z(v, T ).

Proposition 12.1 With the above notation, the following hold:

(1) B = {v, T (v), . . . , T k−1(v)} is a basis of Z(v, T ) (so dimZ(v, T ) = k).

(2) The matrix [Tv]B is the companion matrix

C(mv) =


0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

· · ·
0 0 0 · · · 1 −ak−1

 .

(3) The minimal polynomial of Tv is mv(x).

Proof (1) By the choice of k, no vector in B is in the span of the previous ones, hence
B is linearly independent. Now we show that B spans Z(v, T ). By (16), T k(v) ∈ Sp(B).
Hence, applying T to both sides of (16), we see that T k+1(v) ∈ Sp(B). Continuing
like this (or using induction), we see that T r(v) ∈ Sp(B) for all r ≥ 0, and hence
Sp(B) = Z(v, T ).

(2) This is clear.
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(3) By Q on Sheet 4, the minimal polynomial of the companion matrix C(mv) is
mv(x). �

Example Let A be the following matrix over the field F2:

A =


0 0 0 1
0 1 1 1
1 1 0 1
1 0 0 1

 . (17)

We compute the cyclic subspace Z(e1, A). The list of vectors e1, Ae1, . . . is

e1, e3 + e4, e1 + e3 + e4, . . .

Hence Z(e1, A) has dimension 2 and basis B = {e1, e3 + e4}, and me1(x) = x2 + x + 1.
Finally, denoting also by A the linear map sending v → Av, we have

[Ae1 ]B = C(me1) =

(
0 1
1 1

)
.

Recall the Primary Decomposition Theorem 10.1: if mT (x) =
∏k
i=1 fi(x)ni where

f1(x), . . . , fk(x) ∈ F [x] are distinct irreducible polynomials, then V = V1⊕· · ·⊕Vk, where
each restriction TVi has minimal polynomial fi(x)ni . Hence, as for the JCF Theorem,
to decompose V further we need to focus on the case where mT (x) = f(x)k with f(x)
irreducible. This is the content of the next result, which is the main theorem of this
chapter.

Theorem 12.2 (Cyclic Decomposition Theorem) Let V be a finite-dimensioanal
vector space over a field F , let T : V → V be a linear map, and suppose the minimal
polynomial mT (x) = f(x)k, where f(x) ∈ F [x] is irreducible. Then there exist vectors
v1, . . . , vr ∈ V such that

V = Z(v1, T )⊕ · · · ⊕ Z(vr, T ),

where

(1) each Z(vi, T ) has T -annihilator f(x)ki for 1 ≤ i ≤ r, and k = k1 ≥ k2 ≥ · · · ≥ kr,

(2) the numbers r and k1, . . . , kr are uniquely determined by T .

Before proving this, we deduce two corollaries. The first is just the matrix version of
the theorem, which follows using Prop. 12.1.

Corollary 12.3 Let T be as in Theorem 12.2. Then there is a basis B of V such that

[T ]B = C
(
f(x)k1

)
⊕ · · · ⊕ C

(
f(x)kr

)
,

where k = k1 ≥ k2 ≥ · · · ≥ kr, uniquely determined by T .

Example Let A be the matrix over F2 as in (17) in the previous example. The
characteristic polynomial cA(x) = (x2 + x + 1)2. Hence (as x2 + x + 1 ∈ F2[x] is
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irreducible), mA(x) = (x2 + x+ 1)i with i = 1 or 2. Check that A2 + A+ I = 0, hence
mA(x) = x2 + x+ 1. So it follows from Cor. 12.3 that

A ∼ C(x2 + x+ 1)⊕ C(x2 + x+ 1) =


0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1

 .

Corollary 12.3 implies one of the main results in our proof of the JCF Theorem,
namely the nilpotent case (which was covered in Theorem 11.7):

Corollary 12.4 Let A be an n× n matrix over F , and suppose mA(x) = xk. Then

A ∼ C(xk1)⊕ · · · ⊕ C(xkr),

where k = k1 ≥ k2 ≥ · · · ≥ kr, uniquely determined by A.

Note that

C(xk) =



0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0

· · ·
· · · 0 0
· · · 1 0

 = Jk(0)T

and Jk(0)T ∼ Jk(0), so this does indeed imply Theorem 11.7. We chose to give a different
proof of that theorem, since the method provided us with an algorithm for computing a
Jordan basis.

Proof of Theorem 12.2

The proof proceeds by induction on dimV . The result is obvious for dimV = 1.

Now let n = dimV , and assume the result is true for vector spaces of dimension less
than n. The minimal polynomial mT (x) = f(x)k with f(x) ∈ F [x] irreducible. Hence
there exists v1 ∈ V such that f(T )k−1(v1) 6= 0. The T -annihilator of v1 is therefore
f(x)k. Define

Z1 = Z(v1, T ),

a cyclic subspace with T -annihilator f(x)k.

Let V̄ = V/Z1, and let T̄ : V̄ → V̄ be the quotient map (defined by T̄ (Z1 + v) =
Z1 + T (v) for v ∈ V ). By Prop. 9.4, the minimal polynomial mT̄ (x) divides f(x)k, so is
f(x)k2 for some k2 ≤ k. So we can apply the induction hypothesis to the map T̄ : →̄V̄ :
this impies that there are cosets w̄2 = Z1 + w2, . . . w̄r = Z1 + wr ∈ V̄ = V/Z1 such that
the following hold:

(a) V̄ = Z(w̄2, T̄ )⊕ · · · ⊕ Z(w̄r, T̄ ), and

(b) for 2 ≤ i ≤ r, w̄r has T̄ -annihilator f(x)ki , where k2 ≥ · · · ≥ kr.

Claim 1 There exists a vector v2 ∈ Z1 + w2 with T -annihilator f(x)k2 .
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Proof Let v ∈ Z1 +w2 = w̄2. Since f(T̄ )k2(w̄2) = Z1 (the zero vector of V̄ = V/Z1),
and f(T̄ )k2(Z1 + v) = Z1 + f(T )k2(v) by definition of T̄ , we have

f(T )k2(v) ∈ Z1.

Hence by definition of Z1 = Z(v1, T ), there exists g(x) ∈ F [x] such that

f(T )k2(v) = g(T )(v1). (18)

Then
0 = f(T )k(v) = f(T )k−k2g(T )(v1).

The T -annihilator of v1 is f(x)k, so f(x)k divides f(x)k−k2g(x). Hence there exists
h(x) ∈ F [x] such that g(x) = f(x)k2h(x). Define

v2 = v − h(T )(v1).

Then v2 ∈ Z1 + v = Z1 + w2, and

f(T )k2(v2) = f(T )k2(v)− g(T )(v1) = 0 (by (18)).

Hence v2 has T -annhilator f(x)k2 , proving Claim 1.

Similarly, for i = 2, . . . , r, there exists vi ∈ Z1 +wi with T -annhilator f(x)ki . Define

Zi = Z(vi, T ) (2 ≤ i ≤ r).

Claim 2 We have V = Z1 ⊕ Z2 ⊕ · · · ⊕ Zr (and so part (1) of the Theorem 12.2 is
proved).

Proof We shall prove

(i) dimV =
∑r

i=1 dimZi, and

(ii) V = Z1 + Z2 + · · ·+ Zr.

By Prop. 4.2, Claim 2 follows from (i) and (ii).

Let us define a little more notation. Write d = deg(f). For v ∈ V , let v̄ = Z1 + v ∈
V/Z1 = V̄ . And for i ≥ 2, define

Z̄i = {z̄ : z ∈ Zi} = Z(w̄i, T̄ ).

First note that for i ≥ 2, both Z̄i and Zi have annihilator f(x)ki . Hence by Prop.
12.1(1),

dim Z̄i = dimZi = dki.

Also Z1 has annihilator f(x)k1 (where k1 = k), so dimZ1 = dk1. As V̄ = Z̄2 ⊕ · · · ⊕ Z̄r
(by (a) above), we have dim V̄ =

∑r
i=2 dim Z̄i, and it follows that

dimV = dim V̄ + dimZ1 =

r∑
i=1

dimZi.

Finally, V̄ = Z̄2 ⊕ · · · ⊕ Z̄r implies that V = Z1 + Z2 + · · · + Zr. Thus (i) and (ii) are
established, proving Claim 2.
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We have now proved part (1) of Theorem 12.2, so it remains to prove the uniqueness
statement (2). From Claim 2, we have

V = Z1 ⊕ · · · ⊕ Zr, (19)

where each Zi has T -annihilator f(x)ki , and k = k1 ≥ · · · ≥ kr. For 1 ≤ i ≤ r, let ni
be the number of subspaces Zi having annihilator f(x)ki . If we apply f(T )k−1 to both
sides of (19), we get

f(T )k−1(V ) = f(T )k−1(Z1)⊕ · · · ⊕ f(T )k−1(Zn1).

By Q on Sheet 6, each subspace f(T )k−1(Zi) (for 1 ≤ i ≤ n1) is cyclic with T -annihilator
f(x), and hence by Prop. 12.1(1) has dimension d. Hence

dim f(T )k−1(V ) = dn1.

Thus the value of n1 is uniquely determined by T .

Next, apply f(T )k−2 to both sides of (19):

f(T )k−2(V ) =
(
f(T )k−2(Z1)⊕ · · · ⊕ f(T )k−2(Zn1)

)
⊕(

f(T )k−2(Zn1+1)⊕ · · · ⊕ f(T )k−2(Zn1+n2)
)
.

By Q on Sheet 6, on the right hand side, the n1 subspaces in the first bracket have
annihilator f(x)2, and the n2 subspaces in the second bracket have annihilator f(x).
Hence

dim f(T )k−2(V ) = 2dn1 + dn2,

showing that n2 is uniquely determined. Continuing in this fashion, we see that all of
the ni are determined uniquely, completing the proof of part (2) of Theorem 12.2. �

Rational Canonical Form

We are now ready to state and prove the Rational Canonical Form Theorem. The
great thing about it is that it applies completely generally – to any linear map of any
finite-dimensional vector space over any field.

Theorem 12.5 (Rational Canonical Form Theorem) Let V be finite-dimensional
over a field F , and let T : V → V be a linear map. Let the minimal polynomial mT (x)
factorize as

mT (x) =
t∏
i=1

fi(x)ki , (20)

where f1(x), . . . , ft(x) ∈ F [x] are distinct irreducible polynomials. Then there exists a
basis B of V such that

[T ]B = C
(
f1(x)k11

)
⊕ · · · ⊕ C

(
f1(x)k1r1

)
⊕ · · ·

⊕ C
(
ft(x)kt1

)
⊕ · · · ⊕ C

(
ft(x)ktrt

)
,

(21)

where for each i,
ki = ki1 ≥ · · · ≥ kiri .

The numbers ri and ki1, . . . , kiri are uniquely determined by T .
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Corollary 12.6 If A is an n× n matrix over a field F , with minimal polynomial as in
(20), then A is similar over F to a unique matrix of the form (21).

Definition In the situation of Corollary 12.6, we call the matrix (21) the Rational
Canonical Form (RCF) of A.

Proof of Theorem 12.5

Let T : V → V be as in the hypothesis of the theorem. By the Primary Decomposi-
tion Theorem 10.1, if we let Vi = kerfi(T )ki for 1 ≤ i ≤ t, then

V = V1 ⊕ · · · ⊕ Vt,

where each restriction TVi has minimal polynomial fi(x)ki . By Corollary 12.3, each Vi
has a basis Bi such that

[TVi ]Bi = C
(
fi(x)ki1

)
⊕ · · · ⊕ C

(
fi(x)kiri

)
,

where ki = ki1 ≥ · · · ≥ kiri , and the numbers ri and ki1, . . . , kiri are unique. Hence if B
is the basis B1 ∪ · · · ∪ Bt of V , then [T ]B is as in (21) in the statement of the theorem,
with uniqueness. �

Remarks (1) The polynomials fi(x)kij are called the elementary divisors of T .

(2) There is another version of the RCF Theorem: it states that every n× n matrix
over F is similar to a unique matrix of the form

C(g1)⊕ · · · ⊕ C(gk),

where gi(x) ∈ F [x] are monic polynomials such that gi|gi+1 for all i. This can be deduced
from Theorem 12.5 using the fact that if f(x) and g(x) are coprime polynomials in F [x],
then

C(f)⊕ C(g) ∼ C(fg)

(see Q of Sheet 7).

We shall close this chapter by first giving a nice application of the RCF Theorem
to a topic in group theory, and then discussing how to compute the RCF of any given
matrix.

An application to group theory

Recall the general linear group GL(n, F ) is the group of all invertible n×n matrices
over a field F (where the binary operation is of course matrix multiplication). Let
G = GL(n, F ) and let g ∈ G. Using the symbol ∼ as usual for the relation of similarity
of matrices, the similarity class of g is

[g] = {y ∈ G : y ∼ g}
= {y ∈ G : y = x−1gx for some x ∈ G}.

In the language of group theory, this is also called the conjugacy class of g in G.

When studying a group, one of the first things one needs to understand is its conju-
gacy classes. For the group GL(n, F ), this problem is solved by the RCF Theorem and
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its corollary 12.6, which impies that each conjugacy class has a unique representative
that is an RCF matrix. In particular, the total number of conjugacy classes of GL(n, F )
is equal to the number of distinct RCFs of invertible n× n matrices over F .

Example Let
G = GL(3,F2),

the group of all invertible 3× 3 matrices over the field F2 = {0, 1}. Let us compute the
number of conjugacy classes of G.

The irreducible polynomials in F2[x] of degree at most 3 are

x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1.

The possible characteristic polynomials of elements of G are products of these irre-
ducibles that have total degree 3, but with no factor x (as matrices in G are invertible).
There are four such polynomials, listed in column 1 of Table 1 below. The possible
minimal polynomials divide these, and have the same irreducible factors; there are six
possible minimal polynomials, listed in column 2 of the table. For each possible minimal
polynomial, Corollary 12.6 shows that there is only one RCF matrix, as listed in column
3 of the table. We conclude that GL(3,F2) has 6 conjugacy classes, and representatives
of each of these classes are give by the matrices in column 3.

Table 1: Conjugacy classes of GL(3,F2)

char. poly. possible min. polys. RCF

(x+ 1)3 (x+ 1), (x+ 1)2, (x+ 1)3 I,

 0 1 0
1 0 0
0 0 1

 ,

 0 0 1
1 0 1
0 1 1


(x+ 1)(x2 + x+ 1) (x+ 1)(x2 + x+ 1)

 1 0 0
0 0 1
0 1 1


x3 + x+ 1 x3 + x+ 1

 0 0 1
1 0 1
0 1 0


x3 + x2 + 1 x3 + x2 + 1

 0 0 1
1 0 0
0 1 1



How to compute the RCF

Let T : V → V have characteristic and minimal polynomials

cT (x) =
t∏
i=1

fi(x)ni , mT (x) =
t∏
i=1

fi(x)ki ,

where f1(x), . . . , ft(x) ∈ F [x] are distinct irreducible polynomials. To compute the RCF,
it is enough to know, for each i = 1, . . . , t, the values of

rank (fi(T )r) (1 ≤ r ≤ ki),

since then the RCF can be calculated by the method given in the last part of the proof
of Theorem 12.2 (the proof of the uniqueness part (2) of the theorem).
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But often much less information than this is needed. Here is an example.

Example Let A be a 15 × 15 matrix over F2, and suppose we are given the following
information:

(1) cA(x) = (x+ 1)5(x2 + x+ 1)5

(2) mA(x) = (x+ 1)3(x2 + x+ 1)2

(3) rank(A+ I) = 13

(4) rank(A2 +A+ I) = 9.

Compute the RCF of A.

Answer Let V = F15
2 and denote the map v → Av also by A.

By the Primary Decomposition Theorem, we know that V = V1 ⊕ V2, where V1 =
ker(A+I)3, V2 = ker(A2+A+I)2, of dimensions 5, 10 respectively (using the information
in (1) and (2)).

By (2), the RCF of the restriction AV1 is either

(a) C(x+ 1)3 ⊕ C(x+ 1)2, or (b) C(x+ 1)3 ⊕ C(x+ 1)⊕ C(x+ 1).

By (3), rank(AV1 + IV1) = 3, so there are 2 blocks. Hence case (a) holds.

By (2), writing f(x) = x2 + x+ 1, the RCF of AV2 is either

(c) C(f2)⊕ C(f2)⊕ C(f), or (b) C(f2)⊕ C(f)⊕ C(f)⊕ C(f).

By (4), rank(A2
V2

+AV2 + IV2) = 4, so (c) holds.

Hence the RCF of A is

C(x+ 1)3 ⊕ C(x+ 1)2 ⊕ C(f2)⊕ C(f2)⊕ C(f),

where f(x) = x2 + x+ 1.

13 The dual space

In this chapter we begin the geometric part of the course – inner product spaces, bilinear
forms etc, as sketched in the Introduction. An important tool in this theory is the notion
of a dual space, which we introduce here.

Definition Let V be a vector space over a field F . A linear functional on V is a linear
map φ : V → F , ie. a map such that

φ(αv1 + βv2) = αφ(v1) + βφ(v2) ∀vi ∈ V, α, β ∈ F.

Examples (1) Let V = Fn and define πi : V → F by

πi(x1, . . . , xn) = xi.

Then πi is a linear functional, called the ith projection map.

(2) Let V = Mn(F ), the vector space of n × n matrices over F . The trace map
sending a matrix A→ tr(A) for A ∈ V is a linear functional.

(3) The zero map 0 : V → F is a linear functional.
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We can add and scalar multiply linear functionals φ1, φ2 in the usual way: for any v ∈ V
and λ ∈ F ,

(φ1 + φ2)(v) = φ1(v) + φ2(v),
(λφ)(v) = λφ(v).

Definition Let
V ∗ = {φ | φ : V → F a linear functional}.

With the above addition and scalar multiplication, V ∗ is a vector space over F (a routine
exercise for the reader – you need to check all the vector space axioms, what fun). It is
called the dual space of V .

Dimension

Observe that if v1, . . . , vn is a basis of V , and λ1, . . . , λn ∈ F , then there is a unique
φ ∈ V ∗ that sends vi → λi for all i (namely, φ (

∑
αivi) =

∑
αiλi). In the following

proposition, we use the “Kronecker delta” notation δij – you have probably seen this:
δij is defined to be 1 if i = j and 0 if i 6= j.

Proposition 13.1 Let n = dimV , and let B = {v1, . . . , vn} be a basis of V . For each
i = 1, . . . , n, define φi ∈ V ∗ by

φi(vj) = δij for 1 ≤ j ≤ n

(so φi (
∑
αjvj) = αi). Then {φ1, . . . , φn} is a basis of V ∗, called the dual basis of B.

Hence dimV ∗ = n = dimV .

Proof If
∑
λiφi = 0, then for any j we have 0 =

∑
λiφi(vj) = λj . Hence φ1, . . . , φn

are linearly independent. To see then they span V ∗, let σ ∈ V ∗ and observe that

σ =
n∑
i=1

σ(vi)φi,

since both sides give the same value when applied to any basis vector vj . �

Examples (1) Let V = Fn with standard basis e1, . . . , en. The dual basis is π1, . . . , πn,
where πi is the projection map defined in Example (1) above.

(2) Let V = R2, with basis v1 = (2, 1), v2 = (3, 1). The dual basis is φ1, φ2 where

φ1(x1, x2) = −x1 + 3x2, φ2(x1, x2) = x1 − 2x2.

Annihilators

Let V be a finite-dimensional vector space over a field F , and V ∗ the dual space.

Definition For a subset X ⊆ V , define the annihilator X0 of X:

X0 = {φ ∈ V ∗ : φ(x) = 0 ∀x ∈ X}.

I leave it as an easy exercise for you check that X0 is a subspace of V ∗.

Proposition 13.2 If W is a subspace of V , then dimW 0 = dimV − dimW .
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Proof Let r = dimW and let w1, . . . , wr be a basis of W . Extend this to a basis of V :

w1, . . . , wr, v1, . . . , vs.

Let the dual basis of V ∗ be φ1, . . . , φr, σ1, . . . , σs. Then each σi ∈W 0.

Claim σ1, . . . , σs is a basis of W 0.

Proof of Claim Obviously σ1, . . . , σs are linearly independent as they are part of a
basis. To show they span W 0, let σ ∈W 0. We can express σ in terms of the dual basis:

σ =

r∑
i=1

λiφi +

s∑
i=1

µiσi.

As σ ∈W 0, we have σ(wj) = 0 for 1 ≤ j ≤ r, so

0 =

r∑
1

λiφi(wj) = λj .

Hence σ =
∑s

i=1 µiσi, showing that σ1, . . . , σs span W 0 and proving the Claim.

The Claim shows that dimW 0 = s = dimV = dimW , completing the proof. �

14 Inner Product Spaces

We now expore the geometry of vector spaces. The geometry of the Euclidean space
Rn or the complex space Cn begins with the definition of the dot product: for vectors
x = (x1, . . . , xn)T , y = (y1, . . . , yn)T ,

x.y =
n∑
1

xiȳi (= xT ȳ).

Our first aim is to extend this notion to arbitrary vector spaces over R or C. To do this
we encapsulate the basic properties of the dot product in some axioms as follows.

Definition Let F = R or C, and let V be a vector space over F . An inner product on
V is a map V × V → F , denoted simply by (u, v) ∈ F for any u, v,∈ V , satisfying the
following properties:

(1) (λ1v1 + λ2v2, w) = λ1(v1, w) + λ2(v2, w),

(2) (w, v) = (v, w),

(3) (v, v) > 0 if v 6= 0,

for all vi, v, w ∈ V and λi ∈ F . We call such a vector space V with an inner product ( , )
an inner product space (real or complex).

Notes Here are some remarks about this definition.

(a) Condition (1) says that the inner product ( , ) is left-linear. Note that by (1) and
(2),

(v, λ1w1 + λ2w2) = λ̄1(v, w1) + λ̄2(v, w2),

so the inner product is right-linear if F = R, but not if F = C.
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(b) By (2) we have (v, v) ∈ R, so condition (3) makes sense.

(c) We have (0, v) = 0 for all v ∈ V (where of course the first 0 is the zero vector and
the second is the zero scalar: this is because (0, v) = (0v, v) = 0(v, v) (using (1)).

(d) If F = R then (2) says (w, v) = (v, w), meaing that the inner product ( , ) is
symmetric.

(e) An elementary but important observation is that if (v, w) = (v, x) for all v ∈ V ,
then w = x (Q on Sheet 8).

Examples (1) The dot product on Rn or Cn is an inner product.

(2) Let V be the vector space over R of continuous functions f : [0, 1]→ R, and for
f, g ∈ V define

(f, g) =

∫ 1

0
f(x)g(x) dx.

This is an inner product on V (exercise).

(3) Let V be the vector space consisting of all m×n matrices over C, and for A,B ∈ V
define

(A,B) = tr (BT Ā).

This is an inner product (Q on Sheet 8).

(4) Let V = R2, and for x, y ∈ V define

(x, y) = x1y1 − x1y2 − x2y1 + 3x2y2

= xT
(

1 −1
−1 3

)
y.

We check that this is an inner product: axioms (1) and (2) are clear, and for (3), if
x 6= 0,

(x, x) = x2
1 − 2x1x2 + 3x2

2 = (x1 − x2)2 + 2x2
2 > 0.

Matrix of an inner product

Let V be a finite-dimensional inner product space, let B = {v1, . . . , vn} be a basis,
and fro 1 ≤ i, j ≤ n define

aij = (vi, vj).

By axiom (2) we have aji = āij , so the n× n matrix A = (aij) satisfies

AT = Ā.

If F = R such a matrix A is symmetric; and if F = C we call such a matrix A a
Hermitian matrix. (We shall use the term Hermitian to cover both cases.) For v, w ∈ V
we have

(v, w) = [v]TBA
¯[w]B,

where as usual [v]B is the coordinate vector of v with respect to B (see Q on Sheet 8).
Hence by axiom (3), we have xTAx̄ > 0 for all nonzero vectors x ∈ Fn.

Definition A Hermitian matrix A is said to be positive-definite if xTAx̄ > 0 for all
nonzero vectors x ∈ Fn (where F = R or C).
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For example, as in Example (4) above, the symmetric matrix

(
1 −1
−1 3

)
is positive-

definite.

In general, the eigenvalues of a Hermitian matrix A are all real, and A is positive-
definite if and only if all its eigenvalues are positive (Q on Sheet 8).

Geometry

Let V be an inner product space over F = R or C. For u, v ∈ V define

the length ||u|| =
√

(u, u),

the distance d(u, v) = ||u− v||.

We say that u is a unit vector if ||u|| = 1.

Here is our first basic geometric result.

Proposition 14.1 For u, v, w ∈ V the following hold.

(1) |(u, v)| ≤ ||u|| ||v|| (Cauchy-Schwarz Inequality)

(2) ||u+ v|| ≤ ||u||+ ||v||

(3) ||u− v|| ≤ ||u− w||+ ||w − v|| (Triangle Inequality).

Proof (1) The result is trivial if v = 0, so assume v 6= 0. Let v′ = v
||v|| , a unit vector,

and let λ = (u, v′). Then

0 ≤ ||u− λv′||2 = (u− λv′, u− λv′)
= ||u||2 + λλ̄||v′||2 − λ(v′, u)− λ̄(u, v′)
= ||u||2 + λλ̄− λλ̄− λ̄λ
= ||u||2 − |λ|2.

Hence

||u||2 ≥ |λ|2 =

∣∣∣∣(u, v

||v||

)∣∣∣∣2 .
Now multiply through by ||v||2 to obtain part (1).

Parts (2) and (3) are simple deductions from (1), set as Q on Sheet 8. �

Dual space

Let V be an inner product space over F = R or C. For v ∈ V define fv : V → F by

fv(w) = (w, v) ∀w ∈ V.

Then fv is linear, so fv ∈ V ∗, the dual space of V .

We are interested in the map V → V ∗ sending v → fv. This map is not linear when
F = C, since fλv = λ̄fv for λ ∈ C. To remedy this, we define another vector space
which we denote by V̄ . The vectors in V̄ are the vectors of V , and addition and scalar
multiplication are defined as follows:

addition in V̄ is the same addition u+ v as in V
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scalar multiplication λ ∗ v in V̄ is different from V : for λ ∈ F , v ∈ V ,

λ ∗ v = λ̄v

(where of course λ̄v is the scalar multiplication in V ).

It is a routine exercise to check that V̄ is a vector space over F of the same dimension
as V (Q on Sheet 8).

Proposition 14.2 Assume V is finite-dimensional, and define π : V̄ → V ∗ by

π(v) = fv ∀v ∈ V.

Then π is a vector space isomorphism.

Proof We first check that π is linear. Clearly fv1+v2 = fv1 + fv2 , so we just need to
check that fλ∗v = λfv for λ ∈ F, v ∈ V : well, for w ∈ V ,

fλ∗v(w) = (w, λ ∗ v)
= (w, λ̄v)
= λ(w, v)
= λfv(w).

Hence fλ∗v = λfv and so π is linear.

Next we show that kerπ = 0: well,

v ∈ kerπ ⇒ fv = 0
⇒ (w, v) = 0 ∀w ∈ V
⇒ (v, v) = 0
⇒ v = 0.

Hence kerπ = 0. As dim V̄ = dimV = dimV ∗, it follows that π is an isomorphism. �

Corollary 14.3 For any f ∈ V ∗, there exists a unique v ∈ V such that f = fv.

Orthogonality

Continue to assume that V is an inner product space over F = R or C. We say the
vectors u, v ∈ V are orthogonal if (u, v) = 0. Note that by axiom (2) of inner product
spaces, (u, v) = 0⇔ (v, u) = 0.

Definition A set of vectors {v1, . . . , vk} is orthogonal if (vi, vj) = 0 for all i, j with
i 6= j. It is orthonormal if it is orthogonal and also ||vi|| = 1 for all i.

Examples (1) e1, . . . , en is an orthonormal basis of Fn.

Here is another orthonormal basis of C2: 1√
2
(1, i), 1√

2
(i, 1).

(2) Let V be the vector space over R of continuous functions f : [0, π] → R, with
inner product

(f, g) =

∫ π

0
f(x)g(x) dx.

The set {1, cosx, cos 2x, . . . , cosnx} is orthogonal (Q on Sheet 8).
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Definition For W ⊆ V , define

W⊥ = {u ∈ V : (u,w) = 0 ∀w ∈W}.

It is a routine exercise to check that W⊥ is a subspace of V .

Example Let V = R3 with the standard inner product (ie. the dot product). If
0 6= w ∈ V , then w⊥ is the plane through 0 perpendicular to w.

Proposition 14.4 Let V be a finite-dimensional inner product space, and let W be a
subspace of V . Then

V = W ⊕W⊥.

Proof Consider the annihilator space W 0 ⊆ V ∗:

W 0 = {f ∈ V ∗ : f(w) = 0 ∀w ∈W}
= {fv ∈ V ∗ : (v, w) = 0 ∀w ∈W} (by Cor. 14.3)
= {fv : v ∈W⊥}.

The last subspace has the same dimension as W⊥, by Prop. 14.2, and hence dimW 0 =
dimW⊥. Therefore by Prop. 13.2,

dimW⊥ = dimV − dimW.

Finally, W ∩W⊥ = 0, since

v ∈W ∩W⊥ ⇒ (v, v) = 0⇒ v = 0.

Hence V = W ⊕W⊥ by Prop. 4.1. �

Here is one of the most fundamental results about inner product spaces.

Theorem 14.5 Let V be a finite-dimensional inner product space.

(1) V has an orthonormal basis.

(2) Any orthonormal set of vectors {w1, . . . , wr} can be extended to an orthonormal
basis of V .

Proof (1) We proceed by induction on n = dimV . The result is true for n = 1, since
in this case V = Sp(v) for a nonzero vector v, hence V has an orthonormal basis v

||v|| .

Now assume the result is true for inner product spaces of dimension ≤ n − 1, and
let n = dimV . Let v1 ∈ V be a unit vector, and let W = Sp(v1). By Prop. 14.4 we
have V = W ⊕W⊥. Now W⊥ is an inner product space of dimension n − 1, so by the
induction hypothesis, W⊥ has an orthonormal basis v2, . . . , vn. Then v1, v2, . . . , vn is an
orthonormal basis of V .

(2) Let W = Sp(w1, . . . , wr). By Prop. 14.4 we have V = W ⊕W⊥, and by (1), W⊥

has an orthonormal basis v1, . . . , vs. Then w1, . . . , wr, v1, . . . , vs is an orthonormal basis
of V . �

Gram-Schmidt Process
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Another way of proving the existence of orthonormal bases is to use the Gram-
Schmidt Process (you saw this in Year 1). This is a process to construct an orthonormal
basis of an inner product space V . The steps are as follows:

Step 1 Start with any basis v1, . . . , vn of V .

Step 2 Let u1 = v1
||v1|| , a unit vector, and define

w2 = v2 − (v2, u1)u1.

Then (w2, u1) = 0. Let

u2 =
w2

||w2||
.

Then {u1, u2} is an orthonormal set of vectors.

Step 3 Let
w3 = v3 − (v3, u1)u1 − (v3, u2)u2

and u3 = w3
||w3|| . Then {u1, u2, u3} is an orthonormal set.

Step 4 Continue this process: at the ith step let

wi = vi − (vi, u1)u1 − · · · − (vi, ui−1)ui−1

and ui = wi
||wi|| . After n steps, end up with an orthonormal basis {u1, . . . , un} with the

property that
Sp(u1, . . . , ui) = Sp(v1, . . . , vi)

for all i = 1, . . . , n.

Note I chose the different method of proof given for Theorem 14.5, for two reasons:

(a) the method shows the basic connection between the inner product and the dual
space

(b) the method (using the correspondence between W⊥ and W 0) can be applied more
generally, when we have a vector space with a bilinear form – we will do later this
in Section 16.

Some applications of orthonormal bases

Orthonormal bases of inner product spaces have many applications. We will give
two major ones.

(1) Fourier coefficients

Given an orthonormal basis, the Fourier coefficients of an arbitrary vector are the
coefficients in its expression as a linear combination of the basis vectors. These can be
computed using the following basic result.

Proposition 14.6 Let V be an inner product space with an orthonormal basis u1, . . . , un,
and let v ∈ V .

(1) Then v =
∑n

i=1 λiui, where λi = (v, ui) (the Fourier coefficients of v).
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(2) ||v||2 =
∑n

i=1 |λi|2.

Proof (1) We know that v =
∑n

j=1 λjuj for some scalars λj . Taking the inner product
of both sides with ui gives

(v, ui) =
(∑

λjuj , ui

)
= λi.

(2) We have

||v||2 =
(∑

λiui,
∑

λjuj

)
=
∑

λiλ̄i =
∑
|λi|2. �

The reason these are called Fourier coefficients is because of the connection of all
this with Fourier series. To decribe this, let V be the vector space over R of continuous
functions f : [0, π]→ R (this is of course infinite-dimensional). As we have seen, V has
an inner product

(f, g) =
2

π

∫ π

0
f(x)g(x) dx.

Then the set of functions

1

2
, cosx, cos 2x, . . . . , cosnx, . . .

is an orthonormal set in V . For f ∈ V , the Fourier coefficients are

λn = (f, cosnx) =
2

π

∫ π

0
f(x) cosnx dx.

Fourier’s famous theorem says that for x ∈ [0, π], the series
∑∞

n=0 λn cosnx is equal to
f(x). We call

∑∞
n=0 λn cosnx the Fourier cosine series for f(x).

(2) Projections

Let V be an inner product space, and let v, w ∈ V \ 0. The projection of v along

w is defined to be the vector λw, where λ = (v,w)
(w,w) : this is the vector we hit when we

drop a perpendicular from v to the line Sp(w). (This is easily seen by drawing a simple
diagram as in lectures, but I am not capable of doing that in Latex.)

More generally, for a subspace W of V , and v ∈ V , we define the projection of v
along W as follows: by Prop. 14.4 we have V = W ⊕W⊥, so we can write

v = w + w′

for unique w ∈W , w′ ∈W⊥. Define πW : V →W by

πW (v) = w.

Definition We call πW the orthogonal projection map along W .

Again, the geometry of this map is rather clear via a simple diagram, as shown in
the lecture.

The projection πW has nice geometrical properties:

Proposition 14.7 Let V,W, πW be as above.

53



(1) Let v ∈ V . Then πW (v) is the vector in W closest to v – in other words, for
w ∈W , the distance ||w − v|| is minimal for w = πW (v).

(2) If dist(v,W ) denotes the shortest distance from v to any vector in W , then

dist(v,W ) = ||v − πW (v)||.

(3) If v1, . . . , vr is an orthonormal basis of W , then

πW (v) =
r∑
j=1

(v, vj) vj .

Proof This is set as Q on Sheet 9. �

Change of orthonormal basis

The change of basis matrix from one orthonormal basis to another has a very special
form, as shown in the next result.

Proposition 14.8 Let V be an inner product space, and let E = {e1, . . . , en} and F =
{f1, . . . , fn} be orthonormal bases of V . Let P = (pij) be the change of basis matrix, so
that for 1 ≤ i ≤ n,

fi =
n∑
j=1

pjiej .

Then P T P̄ = I (where P̄ is the matrix (p̄ij)).

Proof For any r, s we have

(fr, fs) =
(∑n

j=1 pjrej ,
∑n

k=1 pksek

)
=
∑n

j=1 pjrp̄js
= (P T P̄ )rs.

Hence (P T P̄ )rs = δrs, and so P T P̄ = I. �

Definition A real n× n matrix P such thayt P TP = I is called an orthogonal matrix.
A complex n× n matrix P such that P T P̄ = I is called a unitary matrix.

These are very important classes of matrices. Here are two reasons why:

(1) They are the length-preserving maps of Rn and Cn (also called isometries), by which
I mean that

||Pv|| = ||v|| ∀v ∈ Cn ⇔ P is unitary,

with a similar statement for Rn and orthogonal matrices. (See Q on Sheet 9.)

(2) The set of all such isometries forms a group, known as a classical group:

orthogonal group O(n,R) = {P real n× n : P TP = I},
unitary group U(n,C) = {P complex n× n : P T P̄ = I}.

These classical groups play a role in many parts of mathematics. There are some ques-
tions involving them on Sheet 9.
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15 Linear maps on inner product spaces

Recall one of the basic theorems from 1st Year Linear Algebra: if A is a real symmetric
matrix, then there is an orthogonal matrix P such that P−1AP is diagonal. This is
often referred to as the “Spectral Theorem”. Our aim in this chapter is to prove a
generalization of the Spectral Theorem which applies to linear maps on inner product
spaces. First, we need to define the analogue of a symmetric matrix for linear maps. To
do this we will use the following result. As in the previous chapter, our inner product
spaces are always over the field F , where F = R or C.

Proposition 15.1 Let V be a (f.d.) inner product space, and T : V → V a linear map.
Then there is a unique linear map T ∗ : V → V such that for all u, v,∈ V ,

(T (u), v) = (u, T ∗(v)) .

Proof Let v ∈ V . The map h : V → F defined by

h(u) = (T (u), v) ∀u ∈ V

is linear, so h ∈ V ∗. Hence by Corollary 14.3, there is a unique v′ ∈ V such that h = fv′ ,
so that h(u) = (u, v′) for all u ∈ V . Define T ∗ : V → V by letting

T ∗(v) = v′.

Then
(T (u), v) = (u, T ∗(v)) ∀u, v,∈ V.

Finally, we must show that T ∗ is linear: for α, β ∈ F ,

(u, T ∗(αv1 + βv2)) = (T (u), αv1 + βv2)
= ᾱ (T (u), v1) + β̄ (T (u), v2)
= ᾱ (u, T ∗(v1)) + β̄ (u, T ∗(v2))
= (u, αT ∗(v1) + βT ∗(v2)) .

This holds for all u ∈ V . Hence (using Q on Sheet 8), T ∗(αv1+βv2) = αT ∗(v1)+βT ∗(v2).
�

Definition The linear map T ∗ is called the adjoint of T . We say that T is self-adjoint
if T = T ∗.

Example Let V = Rn with the usual inner product (ie. the dot product), and let
T : V → V be the linear map T (v) = Av, where A is a real n × n matrix. Then for
u, v ∈ V ,

(T (u), v) = (Au)T v
= uTAT v
=
(
u,AT v

)
.

Hence T ∗(v) = AT v, and T is self-adjoint iff A = AT . ie. A is a symmetric matrix.

The last example generalizes to arbitrary inner product spaces:

Proposition 15.2 Let V be an inner product space with orthonormal basis E = {v1, . . . , vn}.
Let T : V → V be a linear map, and let A = [T ]E. Then

[T ∗]E = ĀT .
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Proof By Prop. 14.6,

T (vi) =
n∑
j=1

(T (vi), vj) vj .

Hence the ij-entry of the matrix A = [T ]E is

aij = (T (vj), vi) .

Therefore, if we let B = [T ∗]E , we have

bij = (T ∗(vj), vi)

= (vi, T ∗(vj))

= (T (vi), vj)
= aji.

Hence [T ∗]E = ĀT . �

By the proposition, if T = T ∗ and A = [T ]E , then A = ĀT . Hence if the field F = R,
then A is real symmetric; and if F = C, then A is a complex Hermitian matrix.

Here is the main result of this chapter.

Theorem 15.3 (Spectral Theorem) Let V be an inner product space, and let T :
V → V be a self-adjoint linear map. Then V has an orthonormal basis of T -eigenvectors.

Corollary 15.4 (1) If A is an n× n real symmetric matrix, there exists an orthogonal
matrix P such that P−1AP is diagonal.

(2) If A is an n × n complex Hermitian matrix, there exists a unitary matrix P such
that P−1AP is diagonal.

Proof Apply Theorem 15.3 to the linear map defined by T (v) = Av for v ∈ V = Fn.
�

For the proof of the Spectral Theorem, we need the following lemma.

Lemma 15.5 Let T : V → V be self-adjoint.

(1) The eigenvalues of T are all real.

(2) Eigenvectors for distinct eigenvalues are orthogonal to each other.

(3) If W ⊆ V is T -invariant, so is W⊥.

Proof (1) Let v be an eigenvector with T (v) = λv. Then as T = T ∗, we have

(T (v), v) = (v, T ∗(v)) = (v, T (v))
⇒ (λv, v) = (v, λv)
⇒ λ(v, v) = λ̄(v, v)
⇒ λ = λ̄ (as (v, v) > 0).

(2) Let T (u) = λu, T (v) = µv with λ 6= µ (and both real, by (1)). Then

(T (u), v) = (u, T (v)) ⇒ (λu, v) = (u, µv)
⇒ λ(u, v) = µ(u, v) (as µ ∈ R)
⇒ (u, v) = 0 (as λ 6= µ).
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(3) Let x ∈W⊥. Then for w ∈W ,

(w, T (x)) = (T (w), x) (as T = T ∗)
= 0 (as T (w) ∈W ).

Hence T (x) ∈W⊥. �

Proof of Theorem 15.3

The proof proceeds by induction on n = dimV , the case n = 1 being trivial.

Let T : V → V be self-adjoint. By Lemma 15.5(1), T has a real eigenvalue λ. Let
u1 be a unit eigenvector with T (u1) = λu1, and define W = Sp(u1). Then dimW⊥ =
n− 1, and W⊥ is T -invariant by Lemma 15.5(3). The restriction TW⊥ is self-adjoint (as
(T (u), v) = (u, T (v)) for all u, v ∈W⊥). Hence by the induction hypothesis, W⊥ has an
orthonormal basis of T -eigenvectors u2, . . . , un. Then u1, u2, . . . , un is an orthonormal
basis of V consisting of T -eigenvectors. This completes the proof by induction. �

There is a simple algorithm for computing an orthonormal basis of eigenvectors for
a self-adjoint linear map T :

Step 1 Compute the eigenspaces Eλi of T .

Step 2 Use Gram-Schmidt to find an orthonormal basis Bi of each Eλi .

Step 3 By Lemma 15.5(2), for i 6= j, the eigenspaces Eλi and Eλj are orthogonal to each
other. Hence the union of the bases Bi is an orthonormal basis of V .

You will find questions on Sheet 9 where you can use this algorithm.

16 Bilinear and Quadratic Forms

In this chapter we shall define and study some analogues of inner products over arbitrary
fields. Since the axiom (v, v) > 0 does not make sense over an arbitrary field, we drop
this condition.

Definition Let V be a vector space over a field F . A bilinear form on V is a map
( , ) : V ×V → F (ie. (u, v) ∈ F for all u, v ∈ V ) which is both left-linear and right-linear;
in other words, for any α, β ∈ F

(αv1 + βv2, w) = α(v1, w) + β(v2, w), and
(v, αw1 + βw2) = α(v, w1) + β(v, w2).

Examples (1) V = Rn with (u, v) = uT v, the usual dot product.

However, for Cn the dot product (u, v) = uT v̄ is not bilinear as it is not right-linear.

(2) Let V = R2 and define

(u, v) = u1v2 − u2v1 = uT
(

0 1
−1 0

)
v.

This is a bilinear form. Notice that for u = (1, 1)T we have (u, u) = 0, so it is not an
inner product.
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(3) Here is a general example. Let F be any field, let V = Fn, and let A be an n × n
matrix over F . Then

(u, v) = uTAv ∀u, v ∈ V
defines a bilinear form on V . (To get the usual dot product, we take A = I.)

In fact, all bilinear forms on V = Fn arise as in Example (3), as we’ll see next.

Matrices Let ( , ) be a bilinear form on a finite-dimensional vector space V , and let
B = {v1, . . . , vn} be a basis of V . Define the matrix of ( , ) with respect to B to be the
n× n matrix A = (aij), where

aij = (vi, vj).

Then for u, v ∈ V we have
(u, v) = [u]TBA[v]B

(exercise).

We shall focus on two particular types of bilinear forms that appear in many different
parts of mathematics:

Definition A bilinear form ( , ) on V is

symmetric if (v, u) = (u, v) for all u, v ∈ V

skew-symmetric if (v, u) = −(u, v) for all u, v ∈ V .

If ( , ) is symmetric, then defining aij as above, we have aij = (vi, vj) = (vj , vi) = aji,
so the matrix A = AT is symmetric. And if ( , ) is skew-symmetric, then aij = −aji,
so AT = −A and A is a skew-symmetric matrix. For example, the form in Example (2)
above is skew-symmetric.

Observe that if a bilinear form ( , ) is skew-symmetric, then taking u = v we have
(v, v) = −(v, v) for all v ∈ V , so 2(v, v) = 0. Provided 2 6= 0 in the field F , this implies
that (v, v) = 0 for all v ∈ V .

Fields in which 2 = 0 (for example the field F2) are called fields of characteristic
2. In general, the characteristic of a field F is the smallest positive integer n such that
n = 0 in F if such an integer exists; if no such integer exists, we say F has characteristic
0. For example, C and R have characteristic 0, and Fp has characteristic p. Denote by
char(F ) the characteristic of F .

The above observation about skew-symmetric bilinear forms, although elementary,
is important, so we record it in a lemma.

Lemma 16.1 Let V be a vector space over a field F with char(F ) 6= 2, and let ( , ) be
a skew-symmetric bilinear form on V , Then (v, v) = 0 for all v ∈ V .

Orthogonality

In order to bring some geometrical ideas into the picture, we want to define perpen-
dicular spaces W⊥ and so on for a bilinear form. This only makes sense if we have the
condition

(v, w) = 0⇔ (w, v) = 0. (22)

Obviously this condition holds if ( , ) is symmetric or skew-symmetric. Less obviously,
the converse holds:
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Theorem 16.2 A bilinear form ( , ) satisfies the condition (22) if and only if it is sym-
metric or skew-symmetric.

The proof of this is straightforward, but rather long. I have included the theorem to
motivate our focus on symmetric and skew-symmetric forms. A proof can be found in
Theorem 1.17 of some nice online notes of Keith Conrad:

https://kconrad.math.uconn.edu/blurbs/linmultialg/bilinearform.pdf

From now on, we will consider only symmetric and skew-symmetric bilinear forms
( , ) on a finite-dimensional vector space V . As before in our study of inner products,
for W ⊆ V we define

W⊥ = {v ∈ V : (v, w) = 0 ∀w ∈W}.

This is a subspace of V (exercise).

Instead of the inner product axiom (v, v) > 0, we shall frequently impose the following
condition.

Definition A bilinear form ( , ) on V is non-degenerate if V ⊥ = {0} – in other words,
if for any u ∈ V ,

(u, v) = 0 ∀v ∈ V ⇒ u = 0.

Note that V ⊥ = {0} iff the matrix of ( , ) with respect to some basis is invertible (Q
on Sheet 10).

Examples (1) For V = F 2, the bilinear form (u, v) = uT
(

0 1
−1 0

)
v is non-degenerate.

(2) For V = Fn with n ≥ 2, the bilinear form (u, v) =
∑

i,j uivj is degenerate, since

(u, v) = uTAv where A is the matrix with aij = 1 for all i, j.

Dual space

Here is a result for bilinear forms similar to Props. 14.2 and 14.4 for inner products.

Proposition 16.3 Suppose ( , ) is a non-degenerate bilinear form (symmetric or skew-
symmetric) on a finite-dimensional vector space V .

(1) For v ∈ V , define fv ∈ V ∗ by fv(u) = (v, u) for all u ∈ V . Then the map

φ : v → fv (v ∈ V )

is an isomorphism V → V ∗.

(2) For a subspace W of V , we have dimW⊥ = dimV − dimW .

Proof (1) The map φ is linear, and

v ∈ ker(φ)⇔ fv = 0⇔ (v, u) = 0 ∀u ∈ V ⇔ u = 0

(using the fact that ( , ) is non-degenerate for the last deduction). Hence ker(φ) = 0,
and so φ is injective. Since dimV = dimV ∗ by 13.1, it follows that φ is an isomorphism.

(2) As in the proof of Prop 14.4, we have

W 0 = {fv : v ∈W⊥}.
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Hence dimW⊥ = dimW 0 = dimV − dimW by 13.2. �

Note that, unlike the case of inner product spaces, it is not always that case that
V = W ⊕W⊥ for a subspace W . For example, if W = Sp(v), where v is a nonzero vector
v such that (v, v) = 0, then v ∈W ∩W⊥ so V 6= W ⊕W⊥.

Bases

For any inner product on Rn there is an orthonormal basis (by Theorem 14.5), and
the matrix of the inner product with respect to this basis is of course I, the identity.
Obviously there cannot be such a basis in general for a bilinear form – for example, for
a skew-symmetric form the matrix is always skew-symmetric. But can we find a “nice”
basis? We’ll see below that the answer is yes.

First we need to discuss what happens to the matrix of a bilinear form when we
change the basis. Let ( , ) be a bilinear form on V and let B1, B2 be bases of V . Let A
be the matrix of the form with respect to B1. To aid notation, for v ∈ V and i = 1, 2
write [v]Bi = [v]i. If P is the change of basis matrix, so that [v]1 = P [v]2 for all v ∈ V ,
then

(u, v) = [u]T1 A[v]1
= (P [u]2)TA(P [v]2)
= [u]T2 P

TAP [v]2.

Hence the matrix of the form with respect to B2 is P TAP .

Definition Two n× n matrices A,B over F are said to be congruent if there exists an
invertible matrix P over F such that B = P TAP .

If A,B are congruent, the corresponding bilinear forms (u, v)1 = uTAv and (u, v)2 =
uTBv on Fn are said to be equivalent.

Check that congruence is an equivalence relation on n × n matrices. By the above
discussion, our question becomes this: given a matrix A (symmetric or skew-symmetric),
can we find an invertible P such that P TAP is a “nice” matrix? Theorems 16.4 and
16.6 below provide some answers. Perhaps surprisingly, the answer is much more precise
for the skew-symmetric case.

Skew-symmetric bilinear forms

Theorem 16.4 Let V be a finite-dimensional vector space over a field F , where char(F ) 6=
2, and let ( , ) be a non-degenerate skew-symmetric bilinear form on V . Then

(1) dimV is even, and

(2) There is a basis B = {e1, f1, . . . , em, fm} of V such that the matrix of ( , ) with
respect to B is the block-diagonal matrix

Jm =

(
0 1
−1 0

)
⊕ · · · ⊕

(
0 1
−1 0

)
(m blocks), (23)

(so that (ei, fi) = −(fi, ei) = 1 and (ei, ej) = (fi, fj) = (ei, fj) = (fj , ei) = 0 for
all i 6= j).

Corollary 16.5 If A is an invertible skew-symmetric n × n matrix over F , where
char(F ) 6= 2, then n = 2m for some m, and A is congruent to the matrix Jm in (23).
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Another way of stating this is to say that any non-degenerate skew-symmetric bilinear
form on Fn is equivalent to the form

(x, y) = xTJmy = (x1y2 − x2y1) + · · ·+ (xm−1ym − xmym−1).

Proof of Theorem 16.4

By Lemma 16.1, we have (v, v) = 0 for all v ∈ V . Hence dimV > 1, as ( , ) is
non-degenerate. The proof proceeds by induction on n = dimV .

Let e1 ∈ V \ 0. Then (e1, e1) = 0. By 16.3, dim e⊥1 = n − 1, so there exists
f ∈ V \ e⊥1 . Let λ = (e1, f) and f1 = λ−1f . Then (e1, f1) = 1; also (f1, e1) = −1
and (e1, e1) = (f1, f1) = 0. If n = dimV = 2, then e1, f1 is the required basis, so the
induction starts at n = 2. Now suppose n > 2.

Let W = Sp(e1, f1), a 2-dimensional subspace. We claim that W ∩W⊥ = {0}. To
see this, let w ∈W ∩W⊥, and write w = αe1 + βf1. Then

0 = (e1, w) = β, 0 = (f1, w) = −α,

and hence w = 0, proving the claim.

Now dimW + dimW⊥ = n by 16.3, so by the claim, we have

V = W ⊕W⊥.

Therefore, if we restrict the form ( , ) to W⊥ it is non-degenerate, and so by the induction
hypothesis, W⊥ has even dimension and has a basis e2, f2, . . . , em, fm such that the
matrix of the restriction of ( , ) with respect to this basis is

Jm−1 =

(
0 1
−1 0

)
⊕ · · · ⊕

(
0 1
−1 0

)
(m− 1 blocks).

Then e1, f1, e2, f2, . . . , em, fm is the required basis of V , completing the proof by induc-
tion. �

Remark In the literature, a non-degenerate skew-symmetric form on V is often called
a symplectic form. By Theorem 16.4, for any even-dimensional vector space V over any
field of characteristic 6= 2, there is, up to congruence, a unique symplectic form on V .

Symmetric bilinear forms

Theorem 16.6 Let V be a finite-dimensional vector space over a field F , where char(F ) 6=
2, and let ( , ) be a non-degenerate symmetric bilinear form on V . Then V has an
orthogonal basis B = {v1, . . . , vn}, ie. a basis such that (vi, vj) = 0 for i 6= j and
(vi, vi) = αi 6= 0 for all i. The matrix of ( , ) with respect to B is the diagonal matrix
diag(α1, . . . , αn).

Corollary 16.7 If A is an invertible symmetric matrix over a field F , where char(F ) 6=
2, then A is congruent to a diagonal matrix.

Proof of Theorem 16.6

As usual we proceed by induction on n = dimV . The result is clear for n = 1.
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Claim 1 There exists v ∈ V such that (v, v) 6= 0.

Proof Suppose (v, v) = 0 for all v ∈ V . Let u,w ∈ V . Then

(u+ w, u+ w) = 0 ⇒ (u, u) + (w,w) + (u,w) + (w, u) = 0
⇒ 2(u,w) = 0
⇒ (u,w) = 0 (since char(F ) 6= 2).

Hence (u,w) = 0 for all u,w ∈ V , which is a contradiction. Hence Claim 1 is proved.

By Claim 1, we can choose v1 ∈ V such that (v1, v1) 6= 0. Let W = Sp(v1).

Claim 2 We have V = W ⊕W⊥.

Proof Observe that

w ∈W ∩W⊥ ⇒ w = λv1 and (λv1, v1) = λ(v1, v1) = 0⇒ λ = 0.

Hence W ∩W⊥ = 0, and Claim 2 follows.

We can now conclude as in the previous proof. By Claim 2, the restriction of the
form ( , ) to W⊥ is non-degenerate. Hence by the induction hypothesis, W⊥ has an
orthogonal basis v2, . . . , vn. Then v1, v2, . . . , vn is an orthogonal basis of V , completing
the proof by induction. �

Remarks (1) The conclusion of Therorem 16.6 may not hold if char(F ) = 2. For
example, let F = F2 and V = F 2, and for x, y ∈ V define

(x, y) = xT
(

0 1
1 0

)
y = x1y2 + x2y1.

This is a non-degenerate symmetric bilinear form, but there is no orthogonal basis since
(x, x) = 0 for all vectors x ∈ V .

(2) How can we compute an orthogonal basis? Gram-Schmidt does not necessarily work,
since we might start with a basis w1, . . . , wn such that (w1, w1) = 0. The most obvious
algorithm is simply to follow along the lines of the proof of the theorem:

1) find v1 such that (v1, v1) 6= 0

2) compute v⊥1 and find v2 ∈ v⊥1 such that (v2, v2) 6= 0

3) compute Sp(v1, v2)⊥ and find v3 ∈ Sp(v1, v2)⊥ such that (v3, v3) 6= 0

4) carry on choosing vectors like this until we get an orthogonal basis.

Example Let V = F 2 with char(F ) 6= 2, and bilinear form (x, y) = xT
(

0 1
1 0

)
y.

1) Take v1 = (1, 1)T . Then (v1, v1) = 2.

2) Compute v⊥1 = Sp(1,−1)T . Take v2 = (1,−1)T , so (v2, v2) = −2.

Now have orthogonal basis v1, v2. With respect to this basis, the form has matrix(
2 0
0 −2

)
.

By 16.7, to classify symmetric forms (up to congruence), we need to be able to answer
the following question: given diagonal matrices

D1 = diag(α1, . . . , αn), D2 = diag(β1, . . . , βn), (αi, βi ∈ F ),
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are D1 and D2 congruent over F? (ie. does there exist an invertible P over F such
that D2 = P TD1P?) This can be a complicated question, and depends on properties of
the field F . Here is a simple example. We use the notation A ≡ B to mean that A is
congruent to B.

Example Let D1 =

(
1 0
0 2

)
, D2 =

(
1 0
0 1

)
. Then

D1 ≡ D2 over C (for example, take P = diag(1, 1√
2
))

≡ D2 over R
6≡ D2 over Q (Ex)
≡ D2 over F7 (Ex)
6≡ D2 over F3 (Ex)

To discuss this question further, we introduce the next topic.

Quadratic forms

Assume from now on that F is a field with char(F ) 6= 2, and V is a finite-dimensional
vector space over F .

Definition A quadratic form on V is a map Q : V → F of the form

Q(v) = (v, v) ∀v ∈ V,

where ( , ) is a symmetric bilinear form on V . We also say that Q is non-degenerate if
( , ) is non-degenerate.

Remarks (1) We can determine the form ( , ), given the map Q, since for any u, v ∈ V ,

(u, v) =
1

2
(Q(u+ v)−Q(u)−Q(v)) .

(2) On V = Fn, every symmetric bilinear form takes the form

(x, y) = xTAy (x, y ∈ V ),

where A = AT . So for x = (x1, . . . , xn)T , we have

Q(x) = xTAx
=
∑

i,j aijxixj
=
∑n

i=1 aiix
2
i + 2

∑
i<j aijxixj .

This is a general homogeneous quadratic polynomial in x1, . . . , xn (the term “homoge-
neous” means that every term has the same degree, namely 2).

Example For n = 2, V = F 2 and

Q(x1, x2) = ax2
1 + bx1x2 + cx2

2

= xT
(

a b/2
b/2 c

)
x.

If F = R, the equation Q(x1, x2) defines a conic in R2.

Change of variables
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Let V = Fn and Q : V → F a quadratic form, so

Q(x) = xTAx ∀x ∈ V,

where A is symmetric. If we change variables to y = (y1, . . . , yn)T , where x = Py with
P invertible, then

Q(x) = (Py)TA(Py) = yTP TAPy = Q′(y). (24)

If there exists P such that (24) holds, we say the quadratic forms Q and Q′ are equivalent.
Check that this is an equivalence relation on quadratic forms. Note that the congruent
matrices A and P TAP are not in general similar to each other (but they are of course
similar if P happens to be an orthogonal matrix, since then P T = P−1).

Example Consider the quadratic forms Q,Q′ on F 2 defined by

Q(x1, x2) = 4x1x2 = xT
(

0 2
2 0

)
x, Q′(x1, x2) = x2

1 − x2
2 = xT

(
1 0
0 −1

)
.

These are equivalent forms, since

Q(x1, x2) = 4x1x2 = (x1 + x2)2 − (x1 − x2)2 = y2
1 − y2

2 = Q′(y1, y2),

where y1 = x1 + x2, y2 = x1 − x2.

By Theorem 16.6, every non-degenerate quadratic form on Fn is equivalent to a form

Q(x) = xT diag(α1, . . . , αn)x = α1x
2
1 + · · ·+ αnx

2
n. (25)

Using this we can classify (up to equivalence) all quadratic forms over C and R, and also
say something about forms over Q:

Theorem 16.8 Let V = Fn, and let Q : V → F be a non-degenerate quadratic form.

(1) If F = C, then Q is equivalent to the form

Q0(x) = x2
1 + · · ·+ x2

n (x ∈ Cn).

This form has matrix In.

(2) If F = R, then Q is equivalent to a unique form Qp,q, where p+ q = n and

Qp,q(x) = x2
1 + · · ·+ x2

p − x2
p+1 − · · · − x2

p+q (x ∈ Cn).

This form has matrix Ip,q =

(
Ip 0
0 −Iq

)
.

(3) If F = Q, there are infinitely many inequivalent non-degenerate quadratic forms
on Qn.

Proof (1) Start with Q as in (25). Over C, we have

diag(α1, . . . , αn) = P T IP,

where P = diag(
√
α1, . . . ,

√
αn) (all these square roots exist in C). Hence Q is equivalent

to Q0(x) = xT Ix =
∑n

1 x
2
i .
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(2) Again start with Q as in (25). Note that all the diagonal entries αi are nonzero, as
Q is non-degenerate. Re-order the αi’s so that

α1, . . . , αp > 0, αp+1, . . . , αp+q < 0.

Then
diag(α1, . . . , αn) = P T Ip,qP,

where
P = diag(

√
α1, . . . ,

√
αp,
√
−αp+1, . . . ,

√
−αp+q).

Hence Q is equivalent to the form Qp,q defined in part (2).

It remains to prove the uniqueness assertion in part (2). (This is a famous property
of real quadratic forms known as “Sylvester’s Law of Inertia”.) Suppose that

Q ∼ Qp,q ∼ Qp′,q′ ,

where of course ∼ denotes equivalence of quadratic forms. Let ( , ) be the bilinear form
on V corresponding to Q (ie. (x, y) = 1

2(Q(x+ y)−Q(x)−Q(y))). As Q ∼ Qp,q, there
is an orthogonal basis v1 . . . , vn of V such that

(vi, vi) =

{
1, for 1 ≤ i ≤ p
−1, for p+ 1 ≤ i ≤ n.

Likewise, as Q ∼ Qp′,q′ , there is another orthogonal basis w1, . . . , wn such that

(wi, wi) =

{
1, for 1 ≤ i ≤ p′
−1, for p′ + 1 ≤ i ≤ n.

Let
U = Sp(v1, . . . , vp), W = Sp(wp′+1, . . . , wn).

Then

Q(u) = (u, u) > 0 for u ∈ U \ 0,

Q(w) < 0 for w ∈W \ 0.

Hence U ∩W = 0. Consequently

n ≥ dim(U +W ) = dimU + dimW = p+ n− p′.

It follows that p′ ≥ p. Similarly (by a symmetrical argument) we have p ≥ p′. Hence
p′ = p, proving uniqueness.

(3) Let F = Q. By a square-free integer d, we mean an integer that is not divisible by
any integer square (apart from 1) – this amounts to saying that d is a product of distinct
primes. For d a positive square-free integer, define a quadratic form Qd on Qn by

Qd(x) = x2
1 + · · ·+ x2

n−1 + dx2
n (x ∈ Qn).

This form has matrix Ad = diag(1, . . . , 1, d). If Qd ∼ Qd′ , then there exists a rational
invertible matrix P such that

P TAdP = Ad′ .
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Take determinants, to get
(detP )2d = d′.

Hence d′

d is the square of a rational number. Since d and d′ are square-free, this forces
d = d′. We conclude that if d and d′ are square-free with d 6= d′, then Qd 6∼ Qd′ , and
part (3) follows. �

Some applications of bilinear and quadratic forms

Having read through this chapter, you may ask what is the point of all this theory
of bilinear and quadratic forms. The generalised answer is that these occur naturally in
many branches of mathematics. Let me mention just a few here, and leave it at that. A
quick internet search will lead you to many more such instances.

(1) Special relativity The general setting for this theory is Minkowski spacetime,
which is R4 together with the bilinear form (x, y) = x1y1 + x2y2 + x3y3 − x4y4 and
associated quadratic form Q(x) = x2

1 + x2
2 + x2

3 − x2
4.

(2) Number theory A classical question in number theory asks the following. Given a
rational quadratic form Q : Qn → Q, and a rational k, does the equation Q(x) = k have
a rational solution x ∈ Qn? Even more classically, one asks for the integer solutions of
such equations – for example the Pythagorean equation x2 + y2 = k, or Pell’s equation
x2 − dy2 = 1. There is a huge amount of theory arising from such questions. See for
example the book “Rational Quadratic Forms ” by J W S Cassels.

(3) Classical groups Just as we did for inner product spaces, one can define isometries
of bilinear and quadratic forms and get interesting groups. Here is a quick sketch.

Definition Let f = ( , ) be a non-degenerate symmetric or skew-symmetric bilinear
form on a finite-dimensional vector space V . An isometry of f is a linear map T : V → V
such that

(T (u), T (v)) = (u, v) ∀u, v ∈ V.
Note that T is invertible, since f is non-degenerate. Define further

I(V, f) = {T : T an isometry}.

This is a subgroup of the general linear group GL(V ). (Q on Sheet 10)

We can also define these groups in terms of matrices. Fix a basis B of V , and let A
be the matrix of f with respect to B. If [T ]B = X, then T ∈ I(V, f) iff XTAX = A
(Sheet 10). Hence I(V, f) is isomorphic to a group of matrices:

I(V, f) ∼= {X ∈ GL(n, F ) : XTAX = A}.

If f is skew-symmetric, there is only one form (up to equivalence) by Theorem 16.4,
and so we get one isometry group – the classical symplectic group Sp(V, f).

If f is symmetric, there are in general many possible forms (see Theorem 16.8), and
the corresponding isometry groups are the classical orthogonal groups O(V, f).

These families of classical groups (together with the ones we saw earlier in Chapter
14) play a huge role in various parts of mathematics such as geometry, algebra and
number theory. I hope you will see some of them again in your future studies.

That is the end of the course. Thank you for your attention, hope you enjoyed it!
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