Multivariable Calculus + Differential Equations Concise
Notes

MATH50004

Year 2 Content

Arnav Singh

o

@

Colour Code - Definitions are green in these notes, Consequences are red and Causes are blue

Content from MATH/0002 assumed to be known.

Mathematics
Imperial College London
United Kingdom
April 5, 2022



Contents

I Term 1
1 Vector Calculus
1.1 Prelim . . . . o o e e e e
1.2 Gradient, Div, and Curl . . . . . . . . . e
1.3 Divergence & Curl . . . . . . . e e
1.4 Operations with Grad operator . . . . . . . . . . . . . e
1 Integration
1.5 Path Integrals . . . . . . . . L o e e
1.6 Surface Integrals . . . . . . . . . . L e
1.6.2 Typesof Surfaces . . . . . . . . . . . e e e e e
1.6.3 Evaluating surface integrals for plane surfaces in x-y plane . . . . . . . . .. .. ... ... .......
1.6.5 Projection of an area onto a plane . . . . . . . . . ..
1.6.6 The Projection Theorem . . . . . . . . . . . . e e
1.7 Volume Integrals . . . . . . . . . . . e
1.8 Results relating line,surface and volume integrals . . . . . . . . .. ... oo
1.8.1 Green’s Theorem in the plane . . . . . . . . . . . . . e e e
1.8.2 Vector forms of Green’s Theorem . . . . . . . . . . . . . . e
1.8.4 Green’s Theorem in multiply-connected regions . . . . . . . . . . . . . ... ...
1.8.5  FLux . . . o e e e e
1.8.6 The divergence theorem . . . . . . . . . e e
1.8.7 The Divergence theorem in more complicated geometries. . . . . . . . .. ... ... . oL
1.8.8 Green’sidentity in 3D . . . . ... e
1.8.9 Green’s identities in 2D . . . . . . L. L e
1.8.10 Gauss’ Flux Theorem . . . . . . . . . . e e e e
1.8.11 Stokes Theorem . . . . . . . . . . e e e
1.9 Curvilinear Coordinates . . . . . . . . . . 0 e e e e e e e e e e e e
1.9.1 Intro + Definition . . . . . . . . . L e e e e
1.9.2 Pathelement . . . . . . . . e e e
1.9.3 Volume Element . . . . . . . . . . e e
1.9.4 Surface element . . . . . . . .. e e e e e e
1.9.5 Properties of various orthogonal coordinates . . . . . . . .. .. ... L L oo
1.9.6 Gradient in orthogonal curvilinear coordinates . . . . . . . . . . . ..o Lo
1.9.7 Expressions for unit vectors . . . . . . . .o
1.9.8 Divergence in orthogonal curvilinear coordinates . . . . . . . . . . . . .. oo
1.9.9 Curl in orthogonal curvilinear coordinates . . . . . . . . . . . . . ...
1.9.10 The Laplacian in orthogonal curvilinear coordinates . . . . . . . ... ... ... ... ... ....
1.10 Changes of variables in surface integration . . . . . . . . . . . ... Lo

w

s s W W

NeRNoRN-RoNEN EES BEN IR I e N« NG B e )|



IT Term 2

1 Introduction

1.1
1.3

ODEs and initial value problems . . . . . . . . .. L
Visualisations . . . . . . . . . e e e e e
1.3.1 Solution portrait . . . . . . . . . . L e
1.3.2 Phase Portraits . . . . . . . . .. e

2 Existence & Uniqueness

2.1 Picard iterates . . . . . . . . e e e e e e
2.2 Lipschitz Continuity . . . . . . . . . . . e

2.2.1 Lipschitz Continuity and MVT . . . . . . . . .0

2.2.2  Lipschitz Continuity and Mean Value Inequality . . . . . . . ... .. ... .. .. ... ...
2.3 Picard-Lindelof Theorem . . . . . . . . . . . . e e e e e e e
2.4 Maximal Solutions . . . . . . . . . e e e e e e
2.5 General solutions and flows . . . . . ...

2.5.1 General solutions . . . . . . . ... e e e

2.5.2 Flows . . . . e e

3 Linear Systems
3.1 Matrix exponential function . . . . . . ...
3.2 Planar linear systems . . . . . . . . oL e e e e e e e
3.3 Jordan Normal Form . . . . . . . . . . . . e e e
3.4 Explicit representation of matrix exponential function . . . . . . . . ... .. L L
3.5 Exponential growth behaviour . . . . . . . . L0 oL
3.6 Variation of constants formula . . . . . . . . . L e e
4 Non-linear systems

4.1 Stability . . . . .. e

4.1.1 Basic definitions . . . . . . . . L e e e e e e e

4.1.3 Hyperbolicity . . . . . . . . e e

4.1.5 Stable and unstable sets, invariant sets . . . . . . . . ...
4.2 Limit SetS . . . . . e e e e
4.3 Lyapunov functions . . . . . . . . L e e
4.4 Poincaré-Bendixson Theorem . . . . . . . . . . L e e e e e

16

16
16
16
16
17

17
17
18
18
18
19
20
20
20
21

21
21
22
26
27
27
28



Part 1
Term 1

1 Vector Calculus

1.1 Prelim

Definition 1.1.1 - Einstein Summation Convention

3
a;T; = 2 xX;

i=1

Definition 1.1.2 - The Kronecker delta

1 oo
bij = { Y
0, i#]
Definition 1.1.3 - The Permutation Symbol

0, if any 2 elements 1, j, k equal
€k = 4 1, if 7, 7, k a cyclic permutation of 1,2, 3

—1, if 4,4,k an acyclic permutation 1, 3,2
Formula - Relation between Kroenecker Delta and Permutation Symbol
€ijk€kim = 0j10km — OjmOkl
€ijk€itm = 0510km — OjmOkl
Definition 1.1.4 - Vector Products
Here are some identities:
e a-b= aibi

° [a X b]Z = eijkajbk

i j ok
eaxb=|a ax az|=[axDb];=e€y,ra;by
b1 by b3

e a-(bxc)=(axb) c=e¢jrabjc

eax(bxc)=(a-c)b—(a-b)c=[ax (bxc)];=(a-c)b; —(a-b)c



1.2 Gradient, Div, and Curl

Definition 1.2 - Gradient, Directional Derivatives
¢ = constant, defines a surface in 3D, varying the constant yields a family of surfaces.
5@5 o 6 9 0p  dp o
=V=(—,—,— Vo=—+—+ -+
On (530 oy (52) =Vé or  dy Oz
Thus, directional derivative towards s = @ =Vo¢-8
In cylindrical coordinates r,0, z parametrlzed by z = rcosf, y = rsind yields V¢ = 22 606 | |00

=I5+ 05

Definition 1.2.3 - Tangent Plane to ¢(P)
(r—rp) - (Vo)p =

0
(gf)P(JU—fﬂP)-&- (gi)lj(y—yﬂ‘*‘ (gf)lg(z—zp) =

1.3 Divergence & Curl

Definition 1.3.1 - Divergence and Curl
A a vector function of position

0A;  dAs  $As

DivA=V-A= §—x+@+5—zwherez4 Al + Aoj + Ask
Curl A=V xA= <5g{;"i§> <5;;,5;;> R(‘?j%)
Definition - Laplacian Operator
V3¢ = div(Ve) = 52—¢ + &4 + &e

ox?  Oy? 622

1.4 Operations with Grad operator
Resulting Equalities
(i) V(g1 + ¢2) = Vo1 + Vo
(i) div (A + B) = div A + div B
(ifi) curl (A + B) = curl A + curl B
V(oy) = ¢Vip + V¢
iv(pA) = ¢ div A + V- A

)

)

)

(iv)

(v) d

(vi) curl(dA) = ¢ curl A + Vo x A
(vii) div(A x B) =B-curl A — A - curl B

(viii) curl(A x B) = (B-V) A—BdivA—(A-V)B+A divB
(ix) V(A -B) = (B-V)A+(A-V)B+B x curl A + A x curl B
(x) curl (Vo) =0

(xi) curl (curl A) = V(div A) — V2A

(xii) div (curl A) =0



1 Integration

Definition 1.4.6 - Scalar and Vector Fields

If at each point of region V, scalar function ¢ defined - ¢ a scalar field over V'

Similarly if vector function A defined Vv € V', A a vector field.

If curl A =0, A is an irrotational vector field. If div A = 0, A a solenoidal vector field

1.5 Path Integrals
Definition 1.5.1 - Definition of a Path Integral

N
lim Z fnosn = J fds = f F. er F -t ds where { is the normalized vector tangent to the path
n—0o0

n=1 8l Y Y

Definition 1.5.3 - Conservative forces

If F = V¢ for a differentiable scalar function ¢, F' is said to be a conservative field, which has the following
properties:

| B = o) - ot

Result independent of path joining A and B, in particular for 4 a closed curve (B = A) We have:

§F~dr=0

Y

Call this a circulation of F around v
If a vector field F s.t §’v F - dr =0, for any closed curve v say F a conservative field, if F = V¢ = F conservative.
If F conservative = can always find differentiable scalar function ¢ s.t F= V¢, call ¢ the potential of field F

Definition 1.5.4 - Calculation of Path Integrals

When F = F(z,y, z) and the path v can be parametrized by (z(t),y(t), 2(t)), then:

1.6 Surface Integrals
Definition 1.6.1 - Surface Integral
Consider a surface S,where we find the surface integral of f = f(P) over S.

Dividing S into small elements of area 4.5;, with f; the values of f at typical points P; of 4.5;
The surface integral of f over S is

N
Lde: Jim Y £.S,
max(8S,)—0n=1

f may be a vector or a scalar.



1.6.2 Types of Surfaces

Figure 1: Closed Surface Figure 2: Open Surface Figure 3: Convex Surface Figure 4: Non-Convex Surface

Definitions

1. Closed Surface - Divides 3D space into 2 non-connected regions; interior and exterior.

2. Open Surface - Does not divide 3D space into 2 non-connected regions - has a rim which can be represented by closed
curve.
Can think of closed surfaces as sum of 2 open surfaces.

3. Convex Surface - A surface which is crossed by a straight line at most twice

1.6.3 Evaluating surface integrals for plane surfaces in x-v nlane

4

7/ b
5 = F;'Cx)

dS infinitesimal area —> think of as approx. plane.
Vector areal element dS is the vector ndS for n the unit normal vector to dS.
For a plane lying in z = 0, we can say dS = dzdy

For a rectangle, x = a,b and y = ¢, d circumscribing convex S. We let

_ ) Fi(z) upper half ADB
| Fy(z) lower half ACB

y=Fi(z b
Area of S = j ds = j j dydx = J [Fi(x) — Fy(z)]dx
=Fs(x) e

a

r=b py=Fi(z
f fds = J J f(z,y)dydx
FQ(Z

_ [Gi(x) right half CBD
Go(z) left half CAD

For f(z,y) a function of position

Equivalently;

Area of S = J ds = J G1(y) — Ga(y)dy

des f r a f(z,y)dzdy



1.6.5 Projection of an area onto a plane

x>

Figure 9: Left; Projection of plane area S onto x — y plane
Figure 9: Right; Projection of curved surface S onto x — y plane

d¥

ds = ——
[0 K|

1.6.6 The Projection Theorem
P a point on surface S, which at no point is orthogonal to k

Lf@MS=Ljun“dy

-k

For a projection of S onto z = 0, with i normal to §
For S given by z = ¢(x,y)

Lf@wwﬂS=£Lﬂ%%MLw)AA

Projecting onto x =0 or y =0

[Lrras = [ sy o)L~ [ o) E
s . Bl s, B3]

Yz, projection onto x = 0, ¥y, projection onto y = 0

1.7 Volume Integrals

Definition 1.7.1 - Volume Integral
Considering a volume 7, split into N subregions, {§7;}, with {P;} typical points of {7;}.

N
L fdr = lim D F(P)o

max(d7;)—01=1
In Cartesian coordinates, the volume element dr = dxdydz

1.8 Results relating line,surface and volume integrals
1.8.1 Green’s Theorem in the plane

R a closed plane region bounded by a simple plane closed convex curve in  — y plane.
L, M continuous functions of x,y with continuous derivatives throughout R. Then:
oM 0L

3€(L de + M dy) = JR(a—x - a—y)dazdy,
c

For C' the boundary of R described in the counter-clockwise sense.



1.8.2 Vector forms of Green’s Theorem

(i) 2D Stokes Theorem
Let F = Li+ Mj and dr = dzi + dyj. Then

curl F = <6M GL)

oy
Over region R write dxdy = dS.

§F~dr=f k - curl F'dS
R
C

:f curl F-dS,  dS =kdS
R

(i) Divergence Theorem in 2D

Let F = Mi— Lj. Then
oM 0L
divF=— - —
v or oy

So we can rewrite Green’s Theorem as
f div Fdxdy = %F -nds
R
c

Green’s Theorem holds for more complicated geometries too, if C not convex we can see it as the composition of 2 or more

simple convex closed curves.
Joining A, A’ form C7,C5 enclosing Ry, Ry s.t Ry + Ry = R

A
C
A/
A A
¥
A’ A’

Figure 13: A non-convex boundary

c

1 Ca
A
JoJont]
AXA A’
Cy
A/
J=Jo.t]
A'Y A A
Co

\(fF-drziF-dr—l—fj;F-dr:J curl F - dS
R
c



1.8.4 Green’s Theorem in multiply-connected regions

Figure 14: Left; Doubly- and triply- connected regions

Figure 14: Right; Green’s Theorem in multiply-connected regions

R simply-connected if any closed curve in R can be shrunk to a point without leaving R.
For 2D any region with a hole in it; not simply connected, we say it is multiply-connected
Green’s theorem still holds in multiply-connected regions. C' interpreted as the entire inner and outer boundary.

For doubly-connected region, describe outer C anti-clockwise, C clockwise, and join them via A on Cy and B on C}
R now a simply connected region bounded by (Co + AB + C; + BA)

churlF~dS: j€+£3+3€+£: (F -dr)
Co Co
JRcurlelS: ff+§ (F-dr) = fF~dr

CU C1
Where C = Cy + C;

1.8.5 Flux

If S is a surface then the flux of A across S is defined as

JA~ﬁdS
s

If S a closed surface then by convention draw unit normal fi out of S.

1.8.6 The divergence theorem

If 7 the volume enclosed by a closed surface S with unit outward normal fi and A is a vector field with continuous derivatives
throughout 7, then:

J A -1ndS = f divAdr
S T



1.8.7 The Divergence theorem in more complicated geometries

S

>

Figure 17: The divergence theorem for a non-convex surface

(i) Non-convex surfaces non-conver surface S can be divided by surfaces(s) o into 2 (or more) parts S and Se which
together with o form convex surfaces S1 + 0,52 + o/
Applying divergence theorem to the convex parts, upon addition yields the same result as before.

(ii) A region with internal boundaries
(a) Simply-connected regions - e.g space between concentric spheres..

s»

3(1)

Figure 18: Simply-connected regions

Given interior surface S; and outer surface S,. A plane II cutting both S,,.S;, divides S,,.S; into open Sf(,l), S((,Q)
and Si(l), Si(z) respectively.

Apply divergence theorem to 71,7 bounded by closed SV 4 Si(l) + 1 and S + 552) + II. Upon addition
contribution from II cancels.

f A -ndS = j A -1dS = J divAdr + f divAdr = j divAdr
So+S; S T1 T2 T

(b) Multiply-connected regions
e.g. region between 2 cyclinders.

Figure 18: Multiply-connected regions

Given interior surface S; and outer surface S,, linked by plane II.
Consider the closed surface, enclosing simply connected region 7

S;+ side 1 of IT + S, + side 2 of II

Applying divergence theorem to 7. Once again gives

J A -1dS = J divAdr
So+S; T

10



1.8.8 Green’s identity in 3D

For ¢ and v 2 scalar fields with continuous derivatives. We consider A = ¢V, for which we have
divA = ¢V*) + (Vo) - (V)

A= o(Ty) m=05"

Green’s first identity

L {¢a:f} ds = LW% + (Vo) - (Ve)dr

f {qzs(w—w }ds f SV — Vs

Green’s Second identity

1.8.9 Green’s identities in 2D

Divergence theorem in 2D: {, divFdzdy = §, F - fids
Giving the following Green’s identities:

0
foSds = | (692 + (Vo) - (Vo)dody
C

and
floge vt | as = [ Tov2u - vvo] doay
2 R

SR OV dedy = §C q‘)%ds — SR(V’I/}) - (V@)dzdy - Looks like Integration by parts

1.8.10 Gauss’ Flux Theorem
Let S a closed surface with outward unit normal f and let O the origin of the coordinate system.
A = % Then:
n-r )0, if O is exterior to S
g e 47, if O interior to S

1.8.11 Stokes Theorem

>

\,-.,,‘,__

\

iy
/2/

x

Q/\

Figure 20: Diagram for proof of Stokes’” Theorem

Suppose S is open surface with simple closed curve v forming its boundary.
A a vector field with continuous partial derivatives, Then:

§A~dr = J curlA - 1dS
s
This holds for any open surface with v as a boundary.

11



Theorem
For A continuously differentiable and simply connected region:

fﬁ A . dr =0 < curlA =0, throughout region for which ~ is drawn
l

A conservative

1.9 Curvilinear Coordinates
1.9.1 1Intro + Definition

Consider generally cartesian coordinates: (x1,x2,x3) with each expressible as single-valued differentiable functions of the
new coorinates (uq, us, u3)
z; = xi(u1, ug, u3)
6xi 8331 8u1 axl 6u2 6xi 8u3
— by =
(9xj

6u1 (%cj 6u2 @ 6u3 a

With the following matrix equation

é’xl/é’ul al‘l/aUQ 6.1‘1/6’(1,3 é’ul/axl 6u1/6x2 3’&1/6.%‘3
6x2/6u1 6x2/0u2 63:2/6u3 Buz/éxl 8u2/8x2 8u2/8x3 =7
(}ng/(}ul 6:1:3/(9UQ Oxg/ﬁu;z, (}Ug/(?l’l 81@,/8952 (}Ug/(}l’g

Or more succinctly
J(y)  J(ug) =1

We say J(z,) the Jacobian matrix for the (x,x2,x3) system.

det (J(xy)) #0 = J(u,) exists

det(J(x4)) = goarrgey

We say (u1,us,us) define a curvilinear coordinate system.
With each u; = constant, defining a family of surfaces, with a member of each family passing through each P(x,y, z)
Let (a3, a2, d3) unit vectors at P in the direction normal to u; = u;(P), s.t u; increasing in the direction &;

& — Vui
e |Vui|

if we have that (dy,d2, d3) mutually orthogonal = orthogonal curvilinear coordinate system.

or
aui

= &h;
For which we define h; = |0r/du;|. We call these the length scales

1.9.2 Path element
r = r(uy, us, u3) path element dr given by

or or or
dr = —d —d —d
g 6u1 U+ 6u2 Uz + 6U3 s

= hidu1€1 + haodusés + hydus€s
For an orthongal system
(ds)? = (dr) - (dr) = hy(duy)? + ha(duz)? + ha(dus)?
Vui
|Vui\

ei:&i:

1.9.3 Volume Element

dr = (hldul)(thUQ)(hgdU3)
= hlhghgduldUQdU3

12



1.9.4 Surface element

For w; constant.
ds = thgdUQdUg

similarly for uso, us

1.9.5 Properties of various orthogonal coordinates

(i) Cartesisan coordinates (z,v, z)

dr = dxdydz dr = dai + dyj + dzk
(ds)? = (dr) - (dr) = (dz)? + (dy)* + (dz)?

We have hl = hg = hg

(ii) Cylindrical polar coordinates (r, ¢, z)
Related to cartesian by
r=rcosf y=rsing z=2z

0 . - . R . 0 0
% = (%)1 + (%)_} + (a—i)k = (cos ¢)i+ (sin9)j (67112) : ((97;) =0
or or. Oy 07 - : : ory 0
é - (ﬁ)l + (%)J + (%)k = —(rsin¢g)i+ (rcos )] ((97:) : (87;) =0
or = or or
P =k (@)'(g) =0

Yielding length and volume elements:
(ds)? = (dr)? + r2(d¢)? + (dz)®>  dr = rdrdedz
(iii) Spherical polar coordinates (7,0, ¢)

Related to cartesian by:
r=rsinfcos¢ y=rsinfsing 2z =rcosb

or . : . . 2 - or or _

= (sinf cos ¢)i + (sinfsin ¢)j + (cos )k (5) : (@) =0 hy

o R L )
%=(TCOSHCOS¢)1+(TCOS@SlHqﬁ)_]+(—TSIH9)k (67’) (6¢)_0 hy = |—| =
2—; — (—rsin@sin ¢)i + (rsinf cos ¢)j + (0)k (%) . (%) =0 hs = |—

Volume element:

dr = r?sin 0drdfdeo

1.9.6 Gradient in orthogonal curvilinear coordinates

Let V& = A&7 + Aoég + \3é3.
In a general coordinate system for A;s to be found.

dr = hldulél + thUQéQ + h3dU3é3

0

i i Ydug + (=—)dus

d
&ul) b1+ (6u2

8u3
_ 09 o9 9
= (% @)dy + (a)dz

= | (V®) - dr = Ahaduy + Aohadus + Ashadus

dd = (

Ydz + (

13

or
h=1Z=1
! |6r|
or
h2:|%|:7"
or
h3=|£\=1
or
1% =
|(3r
|('7‘r|_
o'~ "
|2;|:7“sin9



0®

hi\i =
aui
él (7@ 62 (}@ ég 6<I>
d= L7 =07
— Vv hl 6u1 hg 6u2 + h3 6’&3
(i) Cylindrical polars (r, ¢, 2)
hy =1 .
We have: hQIT:>v=fE+?i+2ﬁ
or  rdp 0z
hy =1
(ii) Spherical polars (1,6, ¢)
hi=1 .
o 00 ¢ 0
We have: hg =1 = — ¢+ 2= -
v ? ) v T(?rJrré’G rsinf 0¢
hs = rsinf

1.9.7 Expressions for unit vectors
Alternatively, unit vectors orthogonal = if we know 2 already then

él = (ég X ég) = h2h3(vu2 X VU3)

1.9.8 Divergence in orthogonal curvilinear coordinates

Suppose we have vector field
A= A& + Aréy + A3é3

1 0 0 0
A= —— Aihoh —(Ashsh Ashih
== V hlhghg{ﬁul( 123)+a (Ashghi) + 6u3(312)}
So we have divergence in other coordinate systems as follows:
(i) Cylindrical polars (r, ¢, 2)
hy =1
1
We have: h2=r=>V-A:%+é+ 04, 8A3
or r r o)
hy =1
(ii) Spherical polars (r, 0, ¢)
hy =1
We have:  hy =7 :>VA*# a( infA;) + a(‘in@A)—&-i(A)
¢ have: 27 " r2gind 8rrs ! ﬁﬁrb 2 é’qﬁr?’
hs = rsinf

1.9.9 Curl in orthogonal curvilinear coordinates

hié1  hots  haés

1 A
curl A = % % e
hahohs W4 104y hgds

(i) Cylindrical polars
1 r rngS k
curlA = — |0/or 0/0¢ 0/0z
"lAa A2 A,

(ii) Spherical polars

1 r ré 7 sin (‘)g%
curl A = (9/(37" 0/0p  0/0z
Ay rA2 rsinfAs

r2sin 0

14



1.9.10 The Laplacian in orthogonal curvilinear coordinates

From the above grad and div;
V20 =V . (VD)

L1 [0 (hehy BN 2 (haha 00N 0 (hahy 00
B h1h2h3 aul h1 (9u1 6u2 h2 (9u2 GU3 h3 (9u3

(i) Cylindrical polars (r, ¢, z)
2p o L]0 (0% 0 (102 0 [ 0®
V(I)_r or \" or +6¢ r o¢ Jr@z "oz

_ e 10® 1% %@
Cor2  ror  r20¢2 022

(ii) Spherical polars (r,6, ¢)

1 (o 0\ 0 B\ o/ 1 b
2 _ - 2 3 el - . = 7 =
V= g {ar <’" bmow) T2 (Smaae) * %6 <sin9 a¢>}

o2 ror r2 00 12002  r2sin?@ 0¢?

1.10 Changes of variables in surface integration
Suppose we have surface S, parametrized by quantities u,us. We can write:
r=x(ui,u2), y=yu,u2), z==z(u,usz)

Consider surface to be comprised of arbitrarily small parallelograms, its sides given by keeping either u; or us

0 0
dS = Area of parallelogram with sides q—rdul and —rduQ
ouy Ouo
= ‘J|dU1dUQ
Vector Jacobian J given by J = ddTrl X dd—J?.

Useful in substitution of surface integrals:
fs f(z,y,2)dS = L F(uy,uz)|J|dudug
Fur,uz) = f(x(ur,uz),y(u, uz), z(u1, u2))
For S a region R in the x — y plane we can write:
Lﬂ%@M@:LfWMWWMﬂ%MWMM

dr

_,dr dr _|0x/0ur  dx/0us
3] = | % | = det((2)) =

Oy/ouy  0y/0ugy
For a surface described by z = f(x,y). We have = uy,y = ug and r = (x,y, f(z,y))
We have:

or or % ﬁfa
o or . of-
2 oy T~
0 0 i k
= Z=|l1 0 offor
Oul 6u2
0 1 adf/oy

~VI+[VIP
So we have area of surface given by

J V14|V f|2dzdy
2

for the projection of S onto the = — y plane.

15



Part II
Term 2

1 Introduction

1.1 ODEs and initial value problems
Definition 1.2. Ordinary differential equation

Consider d € N an open set D c R x R% and function f: D — R? Call

= f(t,x)
a d-dimensional (first-order) ordinary differential equation
Differentiable function A : I — R? on interval I — R a solution to a differential equation if (¢, A\(t)) € D and
At) = ft,\(t) Vtel

Say ODE autonomous if of form

&= f(z)
for f: D - R4 D c R?
Proposition 1.3.
D c R open. f: D — R? with autonomous ODE

&= f(z)

= 7 constant solution A : R — R? with a € R? at \(t) = a < f(a) = 0Vt
Definition 1.4. Initial value problem

deNopen Dc R xR? f:D—R%
Call the following pair a initial value problem

&= f(t,x) and z(tg) = xo
—_—— —_—
ODE Initial condition

Solutions s.t A : I — R? with ¢ in interior of I and \(ty) = o

1.3 Visualisations
1.3.1 Solution portrait
f:DcRxR— R? with & = f(t,z)
Graph of solutions given by
Solution Curve: G(\) = {(t,\(t)):te [} c R x R?¢

derivative of curve at point ¢y € I is
d .
2 EAO)|i=to = (£, Alto)) = (1, f(to, Alto))

Vector field a map (t,z) — (1, f(¢,z)), defined on D

Solution Curves are tangential to vector field.
Solution portrait given by visualisations of several solution curves in both

(t,z) —space and x — space
—_— ~—

extended phase space phase space
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1.3.2 Phase Portraits

Autonomous differential equations not dependent on time. Visualisations in phase-space alone suffice.
Proposition 1.9.(Translation invariance)

A: 1 — R a solution to & = f(x)
— VreRpu: I —>R¥where I = {teR:t+ 7€}
u(t) = At + 1), Vt e I also a solution to this differential equation.

2 Existence & Uniqueness

2.1 Picard iterates

Proposition 2.1. - (Reformation as integral equation)

Consider initial value problem & = f(t,z), x(to) = zo

for f: D < R x R* — R? continuous and (tg, o) € D

A: I — R? a function on interval I s.t to € I and {(t,\(t)) :te [} = D
Following are equivalent:

(i) A solves initial value problem
A() = F( A1), Vie T
)\(to) = X0

(ii) A continuous and
t

At) =z + J f(s,A(s))ds Vel

to

Higher dimensional derivative

for g : R — R4

1

Sto g1(s)ds

L g(s)ds = :
’ Sfo ga(s)ds

Definition 2.2. (Picard iterates)

Consider initial value problem; & = f(¢,z) z(tp) = x¢ and chosen interval J s.t tg € J

Define initial function:
Ao(t) =T Vte J

and inductively the Picard iterates:
t
Ant1(t) == 20 + J f(s,An(s))ds Vte JVneNg
to
If (A,) uniformly convergent sequence with limit Ao, obtain:

Ao (t) = a0 + f F(s, A (s))ds Ve € T

= Ay a solution to integral equation == solves initial value problem

17



2.2 Lipschitz Continuity

Definition
Space of continuous functions on compact interval J := C°(J,R%)
This a complete normed vector space under supremum norm. (Banach Space)

Definition 2.4. (Normed Vector Space)

Norm on a vector space V orer R amap ||-|| : V - R, s.t
i) ||l=0 < z=0
@) (Il =[-1ll, Vae R,z eV

(i) [+yll < [ +1I|

Normed vector space V' complete if every cauchy sequence converges in V'
Call a complete normed vector space a Banach Space

Definition 2.5. (Continuous + Lipschitz continuous functions)

X < normed vector space (V,||-||v)
Y < normed vector space (W, ||-||w)
We say a function f: X - Y

(i) Continuous if
Vre X,e>0,36>0,|-zllv <d = |(z) — f(Z)|lw <€

(ii) Lipschitz Continuous if
3K > 0,](@) — f@)llw < K|—ally Yo,z e X

Call K a Lipschitz Constant

Lipschitz continuous == Continuous

2.2.1 Lipschitz Continuity and MVT
Theorem 2.0. (Mean Value Theorem)

I compact interval, f continuously differentiable
Ve,yel, 3¢ € (z,y) s.t
f@) = fly) = f' )z —y)

= f’ bounded == f Lipschitz continuous
2.2.2 Lipschitz Continuity and Mean Value Inequality
Definition 2.7. (Operator norm of a matrix)

For given matrix A € M, (R) Operator norm:

Il = sup o= sup
zeR™\{0} H zeR™\{0}

45 =
T~ cenbios

Theorem 2.1. (Mean Value Inequality)

Consider open set D ¢ R™ with f: D — R™ continuously differentiable
Va,y € D with [z,y] € D

3 e [z, y] st [(x) = fWI < [ (E)lllz = yll

Vz,y € R™, closed line segment connecting x and y given by
[z,y] ={az+ (1 —a)yeR" : a €[0,1]}

Lemma 2.9. (Triangle-like inequality for integrals)

I c R an interval
f 1 — R™ continuous function

f VttoeI

j 1£(5)]lds
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Corollary 2.10. - (Lipschitz continuous and mean value inequality)

U c R” open. f:U — R™ continuously differentiable
Given compact and convex set C' < U. Restriction is Lipschitz continuous

fle:C —>R™

Convex C means Vz,y, € C closed line segment lies in C' i.e. [z,y] < C

2.3 Picard-Lindel6f Theorem
Theorem 2.11. (Picard-Lindeldf theorem - global version)

Consider ODE & = f(¢,x)
f:R xR - R? continuous, satisfying global Lipschitz condition of the form

ft,x) — ft,y)|| < K|z —y|| VteR,Va,yeR? K >0aconst

Take h = i == every intial value problem z(ty) = ¢ admits a unique solution

)\Z[to—h,t0+h]—>Rd
Definition 2.12.

(i) Globally Lipschitz continuous
if 3K > 0s.t |[f(t,2) = f(t )|l < Klz —yl| V(t,2),(t,y) € D

(ii) Locally Lipschitz continuous
if V(to,xz0) € D and 3 neighbourhood U < D of (tg,zo) and 3L > 0 s.t

1f @t 2) = ft ol < Klle =yl V(E,2),(ty) e U

Theorem 2.13. (Picard-Lindeldf theorem - local version)

D c R x R? open
Consider function f: D — R? continuous and locally Lipschitz continuous.
For fixed (tg,z¢) € D, we have intial value problem. Following 2 hold

(i) Qualitative version
Initial value problem has locally a uniquely determined solution

3h = h(to, xo) s.t. there is exactly one solution on [tg — h,to + h]

(ii) Quantitative version
For some 7,0 take set W™(tg, ) := [to — T,to + 7] x Bs(zo). For Bs(xg) := {z € R? : ||z — 2¢|| < &} - Closed
d—neighbourhood of xg.

Assume W70 (tg, 29) = D, suppose 3K, M > 0 s.t

F () = Ftyll < K|z =yl ¥(E2), (ty) e U

and
[f(t.2)|| < M Y(t,z) e W™ (to, z0)

— there is exactly one solution on [ty — h,to + h] with A(to, zo) 1= min{r, 5%, 2}

Proposition 2.14. - (Continuously differentiable & Lipschitz Continuity)
D c R x R? open. Continuously differentiable function f : D — R?

— f locally Lipschitz continuous w.r.t x
= every intial value problem with differential equation with RHS f solved locally uniquely.

Lemma 2.15. - (Solutions cannot cross)

Let D < R x R? open. f: D — R? continuous and locally Lipschitz continuous w.r.t
Given 2 solutions of & = f(t,z); A: I - R% p:J — R?

Either A(¢t) = u(t) VtelInJor A(t) #u(t) VielnJ
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2.4 Maximal Solutions

Definition 2.16. - (Maximal existence interval)

Consider initial value problem & = f(¢,x), x(ty) = xo Define
o I, (to,xo) := sup{ts = to : there exists solution on [tg,t]}
o [ _(tp,x0) :=sup{t_ <ty : there exists solution on [t_,to]}

Maximal existence interval:
Innax(to, o) := (I-(to, o), I4+(to, o))

Theorem 2.17. (Existence of maximal solution + boundary behaviour)
There exists maximal solution Az : Imaz(to, To) — RY to initial value problem. Having properties:

(1) I+ (l‘,()7 1‘0) finite
Either - maximal solution unbounded for ¢ > t,

sup H)‘maw(t)” =X
te(to, I+ (to,z0))

Or boundary: ¢D of D non-empty and we have

lim  dist ((t, Mmaz(t)),0D) =0
P (( (t)),0D)

(11) I (2507 $0) finite
Either - maximal solution unbounded for ¢ < tg

sup H)\maac(t)H =
te(I-(to,z0),to)

Or boundary: dD of D non-empty and we have

lim  dist ((t, Mmaz(t)),0D) =0
e (( (t)),0D)

Dist function
AcR", dist(-,A) : R" > RS
dist(y, A) := inf{|—a|| :a € A} VyeR"
2.5 General solutions and flows
2.5.1 General solutions

Definition 2.19. (General solution to non-autonomous differential equation)
Consider & = f(t,z). We define
Q= {(t,to,xo) S R1+1+d : (to,l‘o) eDandte Imax(to,xo)}

We say A : Q — R? with \(t,t0,20) := Amaz(t, to, To) a general solution of & = f(t,x)

Solution identity:

o\
%(t,to,xo) = f(t, A(t,to,x0)) V(L to,20) € Q

Proposition 2.21. - (Properties of general solutions)

Consider & = f(t,x), (to,x0) € D = Vs € L ax(to, o) we have

(1) Imaw(sa )\<S7t07.'1,‘0)> = Imaz(tOwTO)
(ii) A(to,to,20) = xo (Initial value property)

(iii) A(¢, s, A(s,to,20)) = A(t, to, €0)VE € Imax(to,2z0) (Cocycle property)
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2.5.2 Flows
Definition 2.22. (Flow of an autonomous differential equation)

Consider & = f(z)
Define for any initial value xg € D
Jmaac(xo) = Imax(O,Io)
o(t,zg) = AM(t,0,20) Yt € Jmaz(xo)

(t,z0) — ¢(t,0,20) called flow of autonomous differential equation
Solution identity:

aa—f(t,xo) = f(p(t,x0)) Vao € D,t€ Jnae(0)

Proposition 2.24 - (Properties of the flow)
Let ¢ be flow of autonomous differential equation. = Va € D we have
() Jmaz(o(t; 7)) = Jmaz(x) =t Yt € Jnaa(@)
(ii) ¢(0,2) =« (Initial value property)
(i) o(t, (s, z)) = p(t + s,x) Vt,s with s,t + s € Jpae(z) (Group property)
(iv) (=t ot 2)) =2 V€ Jmas(2)
Definition 2.25. (Orbits (or trajectories))
o flow of autonomous differential equations Vx € D, we have the Orbit through x
O(x) :={p(t,x) € D : t € Jnaz(2)}
With the positive/negative half orbits:
e OF(z):={p(t,z)eD:te Jnu(zx) "R}
o O (z):={p(t,x)e D :te Jye(z) nRy}
Types of orbits

(i) O(z) singleton = f(z) =0 and Jaz(z) =R
Call x the equilibrium

(ii) O(x) closed curve 3t > 0 s.t p(t,x) =z but f(x) #0 = Jpnee(z) = R, call x periods with O(x) periodic orbit
(iii) O(x) not closed curve. function t — @(t, x) injective on Jyqq ()

Proposition 2.27. - (Orbits of one-dimensional differential equation)
Consider ¢ = f(x) where d = 1

— all solutions monotone, # periodic orbits

= trajectory either an equilibrium or non-closed curve

3 Linear Systems

3.1 Matrix exponential function

Consider linear differential equation
& =Azr AeR™d

We have ||Az — Ayl|| < ||4]|||]x — y|| = globally Lipschitz continuous with constant || A|]|

Solution to every intial value problem exists and are unique.
— generates globally defined flow ¢ : R x R? — R¢

Picard iterates for local solutions
Ao(t) = l'ovt eJ

n k ok
Ans1 = PO) () = 0 + § An(5)ds = A\, = Sp_y B0
= Ax(t) = p(t, z0)eM a0
We have the series converge whenever |t| < h for some h > 0
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Definition 3.1. (Matrix exponential function)

= K
Lemma 3.1.
IBC| < [IBJ[l|C]
Proposition 3.2. - (Existence of matrix exponential)
Matrix B € R¥*4
S 1 dxd
et

exists
Theorem 3.3. (Flow of an autonomous linear differential equation)

Consider & = Az, A e Rdxd
Flow ¢ : R x R? — R? given by
o(t,z) = etz VteR

Proposition 3.4. - (Properties of matrix exponential)
(i) C =T 'BT = e =T71eBT

(i) e = ()"

(iii) BC = CB = B+ = ¢eBe¢
)

(iv) B =diag(Bi,...,By) = P =diag(eP!,... ePr)

3.2 Planar linear systems

Consider & = Az, A € R%2x2
Transform A in Jordan normal form — J = T~ 'AT, T invertible
AT _ TpJtp—1

(C1) A has 2 distinct real eigenvalues, a,be R : J = <g 2)

(C2) A has double real eigenvalues a € R, with 2 linearly independent eigenvectors: J = (8 2)

(C3) A double real eigenvalues with 1 eigenvector : J = <c11 2)

(C4) A has 2 complex eigenvalues a + b, b#0: J = <ch _ab)
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A not singular:
C1

®
<
3
I
D
S o
S

a O
J=<O b> a,be R\{0}, a #b

0
bt

) ViteR
e

Trajectory given O(zo,yo) = {(x,yo(;—o)b/a eR*: = >0)}
Obtaining the following phase portraits:

a<b<0

a<0<b

O<a<bd

Stable knot - 2 tangents

Saddle

Unstable knot - 2 tangents

2N

~
7

0
T

C2

J_<g 2) a € R\{0}

eJt _ eat
0

3t> VieR
e

Trajectory given O(zg,y0) = {(zoe®,yoe®) : t € R} = {(z,242) € R?: = >0}
Obtaining the following phase portraits:

a<0

a>0

Stable knot - many tangents

Unstable knot - many tangents

C3

a

- (5
at

eJt — <€0

Cll) a e R\{0}

at
zn) VteR

a

Traje.ct.ory given O@O,yo) = {(zoe™ + yote™, yoe®) 1 te R} = {({2y + LIn L y) e R?: + > 0}
Obtaining the following phase portraits:

a<0

a>0

Stable knot - 1 tangents

Unstable knot - 1 tangents

Y

Dh/
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C4

7=
eJt_eat<

Trajectory given O(zo,y0) = {e (

2) a e R\{0}

cos(bt)
—sin(bt)

sin(bt)
cos(bt)

):teR}

) VteR

xg cos(bt) + yo sin(bt)
Yo cos(bt) — xo sin(bt)

Obtaining the following phase portraits:

a<0,b>0

a<0,b<0

Stable focus

Stable focus

= =
xr
a=0,b>0 a=0,b<0
Centre Centre
S S
xXr
a>0,b>0 a>0,b<0

Unstable focus

Unstable focus




A singular:
C1 a 0
J = (0 0) a € R\{0}

at
Jt e 0
e _<O 1) VteR

Trajectory given by O(zo,%0) = {(e**xq,y0) : t € R}
Obtaining the following phase portraits:

a<0 a>0

C2

Trivially whole space is equilibria

C3
J= (g (1)> a € R\{0}

g (1 ¢t
e (0 1 VteR

Trajectory given by O(zg, o) = e”t (zo> {(zo + tyo,yo) : t € R}
0
Obtaining the following phase portraits:

N @eeecccecccc0c0000000

<

C4
Can’t happen as a 2D matrix of real eigenvalus can’t have eigenvalue of 0.



Remark 3.5 - (Meaning of real + imaginary parts of e.vals of A)

(i) Rate of exponential growth
Re[e.val] - determines rate of exponential growth behaviour of solution

A(t) = et (”;g)

at

Obtain exponential growth rate for u(t) = e

Ine

lim =a
t—0 t
Lyapunov exponent
For solution A\ with initial condition (zg,%0) # (0,0)
o In | A(¢
p(Y) = Jim 2O

We have a solution  decay if oyyqp < 0, grow if oyyap > 0

(ii) Rate of Rotation
Solution rotates is e.vals not real.
For a + bi an e.val

e |b| - speed of rotation

e sign(b) - orientation of rotation b>0 = Q,b<0 = QO

3.3 Jordan Normal Form

Theorem 3.6 - Complex Jordan Normal Form

A e R4 3T e¥xd gt we get

J1 0
J:=T'AT =
0 JIp
With Jordan blocks
pi 1 0 0
0 p; 1 0
Jj= forall je{1,...,p}
0 Pj 1
0 O 0 pj
For p;,j € {1,...,p} complex e.vals of A
Theorem 3.7 - Real Jordan Form
AeRdxd JT e Réxd gt
J1 0
J =T 'AT =
0 JIp
Jj as in 3.6 if p; real
if p; complex =
C; I 0 0
0 Cy I 0
J : b a; b _ ;
= .. wit Cj = bj a pj = aj -|-ij
0 C; I
0 0 0 C;
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3.4 Explicit representation of matrix exponential function

Ae Rdxd
Ji 0
Assume invertible T' € R%*? transforms A into real J := T~ ' AT =
0 JIp
elit 0
—_ eAt :TeJtT—l =T T—l
0 ert
Proposition 3.8
AeR™ J; je{l,...,p}
Jordan blocks for real Jordan normal form with eigenvalues p;
(i) pj real
2 tdi!
P e ey
. o1t ;
exp = P .
! 0 / 7
4
0 ,
& 0 0 0 1
(11) pj =a; + ibj €
G(t) tG(t) LG A9 G(t)
C; I 0 2 (d;—1)!
oo 0  G(t) tG(t) :
exp ty =e%t ) .2
. IQ . 5G(t)
0 C; 0 G(t) tG(t)
0 0 0 G(t)
B cos (b;t)  sin(b;t)
Where G(t) = ( —sin(b;t) cos (bt) vt eR
3.5 Exponential growth behaviour
Definition 3.2.
Spectrum of A
AeR™® ¥(A) = {Re(p) : peval of A} = {s1,...,5,}

For # = Az we have decomposition
RE=F® - ®DE,

E; invariant

e relk; — o(t,x)e E; VteR

e I E EJ\{O} —— O'lyap(sp(.7x)) = hmt*}oo “W(ivw)“ =s;
Definition 3.3.

semi-simple eigenvalue

If all Jordan blocks associated to eval in real Jordan normal form are:

- 1 dim. for real e.val

- 2 dim. for non-real e.val

Proposition 3.9 - Exponential estimate for matrix exponential function

A e R¥? Choose v > max ¥(A)
If all e.vals p with Re(p) = max X(A), semi-simple = take v = max ¥(A)

— 3K > 0s.t|e| < Ke?* Vt=0
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3.6 Variation of constants formula

Proposition 3.10 - (Variation of constants formula)

General solution to & = Az + g(t) given by

¢
At to, o) = eAt=to) gy 4 j eA(tfs)g(s)ds Vit to e I,xo € RY
to

4 Non-linear systems

4.1 Stability
4.1.1 Basic definitions

Definition 4.1.

2* an equilibrium of = f(x) = f(z*) =0

(i) a* stable if Ve > 0,36 > 0 s.t
[o(t,z) —z*| <e Vxe Bs(x™)andt >0
(ii) z* unstable if not stable
(iii) z* attractive if 3§ > 0 s.t
tlim o(t,z) = x* Ve Bs(z™)
—0
(iv) x* asymptotically stable if 2* stable and attractive

(v) z* exponentially stable if 36 > 0, K > 1 and v < 0 s.t

lo(t, ) — 2*| < Ke'|

(vi) z* repulsive if 3§ > 0 s.t limy_,_o, p(t,2) = 2*, Vo € Bs(a™*)

INSERTFIGURESHERE

Definition 4.4. (Homoclinic and heteroclinic orbits)

i = f(x) f: D c R - R? locally Lipschitz continuous, with flow ¢

open

Orbit O(z) for some x € D

(i) Homoclinic orbit if 3 equilibrium z* € D\{z} s.t

. R . ok
tll)rglo o(t,x) = 2™ and tl}r_noo p(t,z) =2x

ii) Heteroclinic orbit if 3 2 distinct equilibria ¥ # x4 s.t
1 2

: — * : — ES
Jim (¢, 2) = 2y and lim o(t,z) = 3

Theorem 4.5. (Stability of linear systems
Consider autonomous linear system, & = Az, A € R4*4

Have trivial equilibrium z* = 0

(i) stable <=
- Re(p) <0 Vp e.vals of A
- e.val p semi-simple V e.vals p of A with Re(p) =0

(ii) exponentially stable <= Re(p) <0V e.vals p of A
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4.1.3 Hyperbolicity
Definition 4.7.

A e R4 hyperbolic if Re(\) # 0 VA e.vals of A

Equilibrium z* of differential equation # = f(x) f : D < R? — R? continuously differentiable, is hyperbolic if matrix
f'(z*) e R4 hyperbolic.

Lemma 4.9 - Gronwall Lemma

Consider continuous function « : [a,b] — R, let ¢,d =0

Assume u satisfies implicit inequality
t

0 <ult) < c+dJ w(s)ds ¥t e [a, ]

a

Theorem 4.10. (Linearised stability)

i = f(z) f: D c RY - R? continuously differentiable.
-
open
Assume z* equilibrium of above s.t ¥V e.vals A € of linearisation of f/(z*) € R?”*?¢ we have Re(\) <0 = z* is exponentially
stable.

4.1.5 Stable and unstable sets, invariant sets

Definition 4.12. (Stable + unstable set)

i = f(z) f: D c RY— R? locally lipschitz continuous, with flow ¢ and equilibria z*
open

Stable set of z*
W (z*)={zxeD: tlim o(t,z) = z*}
—00

Unstable set of z*
W(z*)={zreD: tlir_noc o(t, ) = z*}
Definition 4.15. (Invariance)

i = f(x) f: D c R - R? locally lipschitz continuous..

open

(i) positively invariant if Vo € M, 0% (z) ¢ M
(ii) negatively invariant if Ve € M,0 (z) c M
(i) invariant if Vo € M,0(z) ¢ M

4.2 Limit Sets

Definition 4.16. (Omega and alpha limit sets)
i = f(z) f: D c R - R? locally lipschitz continuous, with flow ¢,z € D
open

1. 4, € D an omega limit point of z
If 3 sequence {t,}nen s.t lim, o t, = 00 and

lim o(t,,x)

n—o0

Ty
w(z)= {all omega limit points of x}

2. T4 € D an alpha limit point of z
if 3 sequence {t,}nen 8.t lim, o ¢, = —00 and
T = lim o(ty, )

n—0o0

a(x)= {all alpha limit points of z}
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Proposition 4.19 - (Alternative characterisation of limit sets)

o flow of differential from above x € D

w(z) = () 07 (o(t, 2))

t=0
a(@) = | JO (pt.2))
t<0

Proposition 4.21 - (properties of w, o limit sets)

t=f(z) f:Dc R? — R? locally lipschitz continuous, z € D
open
(i) w(x) invariant
if O (z) bounded and Ot(z) € D = w(x) # & compact

(ii) a(z) invariant if O~ (x) bounded and O~ (x) ¢ D = a(x) # & compact

4.3 Lyapunov functions

Definition 4.22. (Orbital derivatives)

t=f(z) f:Dc R? — R? locally lipschitz continuous
open

V' : D — R continuosly differentiable function.

Define orbital derivative V of V'

D

d
Vir) = V(@) ) = ) o

i=1 v

(z)fi(x)

o))

V'(x) € R4 the gradient of V at z € D
V describes derivative of V' along solution yu : ID of & = f(z)

Definition 4.24. (Lyapunov functions)

i = f(zx) f: D c RY - R? Locally Lipschitz continuous.

open
V' : D — R continuously differentiable function

V a Lyapunov function if V(X) <0 Vz e D

Remark.
Lyapunov function decrease along solutions

V(e(t,z)) < V(z) Vt € [0,sup Jmaxz(x))

Proposition 4.25. - (Sublevel sets of Lyapunov functions are positively invariant)
i = f(z) f: D c RY - R? Locally Lipschitz continuous, with Lyapunov function V : D — R
-
open
Any sublevel set of form
Se:={reD:V(z)<c}, ceR

is positively invariant
Theorem 4.26. (Lyapunov’s direct method for stability)

i = f(z) f: D c RY - R? Locally Lipschitz continuous, z* an equilibria and V : D — R lyapunov funtion s.t

open
V(z*)=0,V(z) >0Vxe D\{z*} = z* stable
Theorem 4.28. (La Salle’s invariance principal)

i = f(x) f: D cR? - R? Locally Lipschitz continuous, with Lyapunov function V : D — R

open

w(z)c{yeD:V(y) =0} VzeD
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Corollary 4.30 - (Reformation of La Salle’s invariance principle)

i = f(z) f: D c R - R? Locally Lipschitz continuous, with Lyapunov function V : D — R

open

Vi € Dw(z) c largest invariant subset of {y € D : V(y) = 0}

=J invariant subsets of {yeD:V(y):O}
Theorem 4.31. (Lyapunov’s direct method for asymptotic stability)

i = f(x) f: D c R - R? Locally Lipschitz continuous, z* € D,V : D — R Lyapunov function s.t

V(z*) =0 and V(x) > 0 Vz € D\{z*}
V(z*) = 0and V(z) < 0 Vz e D\{z*}

= o™ asymptotically stable

Corollary 4.33 - (Sublevel sets of Lyapunov functions are subsets of domain of attraction)
t=f(z) f:Dc R? — R? Locally Lipschitz continuous, z* € D,V : D — R Lyapunov function

open
Consider sublevel sets of Lyapunov function V'

Se={reD:V(z)<c}Yc>0

= S, subset of domain of attraction W*(z*) if S. € D compact

4.4 Poincaré-Bendixson Theorem

Theorem 4.34. (Poincare-Bendixson Theorem

i = f(x) f: D c R? - R? with flow ¢ continuously differentiable.
- —
open
Assume for some z € D,O0" (z) € K compact < D
K containing not more than finitely many equilibria.

One of the following 3 hold for w(z)
(i) w(x) a singleton, consisting of an equilibrium
(ii) w(z) a periodic orbit

(iii) w(z) consists of equilibria + non-closed orbits
non-closed orbits in w(x) converge forward and backward in time to equilibria in w(z)
= either homoclinic or heteroclinic orbits.

Corollary 4.35 - (Ezistence of a periodic orbit)
i = f(x) f: D c R? - R? continuously differentiable with flow (.
open

Assume for z € D, O"(z) € K compact ¢ D
D not containing an equilibrium = w(z) periodic orbit.
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