$\begin{array}{c} \mbox{Multivariable Calculus} + \mbox{Differential Equations Concise} \\ \mbox{Notes} \end{array}$

MATH50004

Year 2 Content

Arnav Singh

Colour Code - Definitions are green in these notes, Consequences are red and Causes are blue Content from MATH40002 assumed to be known.

> Mathematics Imperial College London United Kingdom April 5, 2022

Contents

Ι	Te	rm 1		3
1	Vect 1.1 1.2 1.3 1.4	tor Ca Prelim Gradie Diverg Opera	lculus a ent, Div, and Curl gence & Curl tions with Grad operator	3 3 4 4 4
1	Inte	gratio	n	5
	1.5	Path I	ntegrals	5
	1.6	Surfac	e Integrals	5
		1.6.2	Types of Surfaces	6
		1.6.3	Evaluating surface integrals for plane surfaces in x-y plane	6
		1.6.5	Projection of an area onto a plane	7
		1.6.6	The Projection Theorem	7
	1.7	Volum	e Integrals	7
	1.8	Result	s relating line, surface and volume integrals	7
		1.8.1	Green's Theorem in the plane	7
		1.8.2	Vector forms of Green's Theorem	8
		1.8.4	Green's Theorem in multiply-connected regions	9
		1.8.5	Flux	9
		1.8.6	The divergence theorem	9
		1.8.7	The Divergence theorem in more complicated geometries	10
		1.8.8	Green's identity in 3D	11
		1.8.9	Green's identities in 2D	11
		1.8.10	Gauss' Flux Theorem	11
	1.0	1.8.11	Stokes Theorem	11
	1.9	Curvil	inear Coordinates	12
		1.9.1	Intro + Definition	12
		1.9.2		12
		1.9.3	Volume Element	12
		1.9.4	Surface element	13
		1.9.5	Properties of various orthogonal coordinates	13
		1.9.0	Gradient in orthogonal curvilinear coordinates	13
		1.9.7	Expressions for unit vectors	14
		1.9.0	Curl in orthogonal curvilinear coordinates	14
		1.9.9	The Laplacian in orthogonal curvilinear coordinates	14 15
	1 10	1.9.10 Chang	The Laplacian in orthogonal curvinnear coordinates	10 15
	1.10	Unang		10

II Term 2

1	Int 1 1.1 1.3	roduction ODEs and initial value problems Visualisations 1.3.1 Solution portrait 1.3.2 Phase Portraits	16 16 16 16 17
2	Exi	stence & Uniqueness	17
-	2.1	Picard iterates	17
	2.1	Linschitz Continuity	18
	2.2	2.2.1 Lipschitz Continuity and MVT	18
		2.2.1 Expeditz Continuity and Moan Value Inequality	18
	9 2	2.2.2 Experintz Continuity and Mean Value inequality	10
	2.5	Maximal Solutions	19
	2.4 2.5	Concern colutions and flows	20
	2.0	QETAL Concerct colutions	20
		2.5.1 General solutions	20
		2.3.2 FIOWS	21
3	Lin	ear Systems	21
-	3.1	Matrix exponential function	$21^{$
	3.2	Planar linear systems	$\frac{-1}{22}$
	3.3	Iordan Normal Form	26
	0.0 3.4	Explicit representation of matrix exponential function	20
	0.4 2.5	Explore representation of matrix exponential function	$\frac{21}{97}$
	0.0 2.6	Variation of constants formula	21 20
	3.0		20
4	Nor	n-linear systems	28
	4.1	Stability	28
		4.1.1 Basic definitions	$\frac{-5}{28}$
		4.1.3 Hyperbolicity	29
		4.1.5 Stable and unstable sets invariant sets	20
	42	Limit Sets	$\frac{23}{20}$
	43	Lyapunov functions	30
	4.0	Dingará Bandiyson Theorem	21
	7.7		01

16

Part I Term 1

1 Vector Calculus

1.1 Prelim

Definition 1.1.1 - Einstein Summation Convention

$$a_i x_i = \sum_{i=1}^3 x_i$$

Definition 1.1.2 - The Kronecker delta

$$\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Definition 1.1.3 - The Permutation Symbol

$$\epsilon_{ijk} = \begin{cases} 0, & \text{if any 2 elements } i, j, k \text{ equal} \\ 1, & \text{if } i, j, k \text{ a cyclic permutation of } 1, 2, 3 \\ -1, & \text{if } i, j, k \text{ an acyclic permutation } 1, 3, 2 \end{cases}$$

Formula - Relation between Kroenecker Delta and Permutation Symbol

$$\epsilon_{ijk}\epsilon_{klm} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}$$
$$\epsilon_{ijk}\epsilon_{ilm} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}$$

Definition 1.1.4 - Vector Products Here are some identities:

- $\mathbf{a} \cdot \mathbf{b} = a_i b_i$
- $[\mathbf{a} \times \mathbf{b}]_i = \epsilon_{ijk} a_j b_k$

•
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \Rightarrow [a \times b]_i = \epsilon_{ijk} a_j b_k$$

- $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \epsilon_{ijk} a_i b_j c_k$
- $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c} \Rightarrow [\mathbf{a} \times (\mathbf{b} \times \mathbf{c})]_i = (\mathbf{a} \cdot \mathbf{c})b_i (\mathbf{a} \cdot \mathbf{b})c_i$

1.2 Gradient, Div, and Curl

Definition 1.2 - Gradient, Directional Derivatives

 $\phi = \text{constant}$, defines a surface in 3D, varying the constant yields a family of surfaces.

$$\hat{\mathbf{n}}\frac{\partial\phi}{\partial n} = \nabla = \left(\frac{\delta}{\delta x}, \frac{\delta}{\delta y}, \frac{\delta}{\delta z}\right) \Rightarrow \nabla\phi = \frac{\delta\phi}{\delta x} + \frac{\delta\phi}{\delta y} + \frac{\delta\phi}{\delta z}$$

Thus, directional derivative towards $\mathbf{s} = rac{\delta \phi}{\delta s} =
abla \phi \cdot \mathbf{\hat{s}}$

In cylindrical coordinates r, θ, z parametrized by $x = r \cos \theta, y = r \sin \theta$ yields $\nabla \phi = \hat{\mathbf{r}} \frac{\delta \phi}{\delta r} + \frac{\hat{\theta}}{r} \frac{\delta \phi}{\delta \theta} + \mathbf{k} \frac{\delta \phi}{\delta z}$

Definition 1.2.3 - Tangent Plane to $\phi(P)$

$$(\mathbf{r} - \mathbf{r}_p) \cdot (\nabla \phi)_P = 0$$
$$\left(\frac{\delta \phi}{\delta x}\right)_P (x - x_P) + \left(\frac{\delta \phi}{\delta y}\right)_P (y - y_P) + \left(\frac{\delta \phi}{\delta z}\right)_P (z - z_P) = 0$$

1.3 Divergence & Curl

Definition 1.3.1 - Divergence and Curl A a vector function of position

Div
$$\mathbf{A} = \nabla \cdot \mathbf{A} = \frac{\delta A_1}{\delta x} + \frac{\delta A_2}{\delta y} + \frac{\delta A_3}{\delta z}$$
 where $A = A_1 \mathbf{\hat{i}} + A_2 \mathbf{\hat{j}} + A_3 \mathbf{\hat{k}}$
Curl $\mathbf{A} = \nabla \times \mathbf{A} = \mathbf{\hat{i}} \left(\frac{\delta A_3}{\delta y} - \frac{\delta A_2}{\delta z} \right) - \mathbf{\hat{j}} \left(\frac{\delta A_3}{\delta x} - \frac{\delta A_1}{\delta z} \right) + \mathbf{\hat{k}} \left(\frac{\delta A_2}{\delta x} - \frac{\delta A_1}{\delta y} \right)$

Definition - Laplacian Operator

$$\nabla^2 \phi = \operatorname{div}(\nabla \phi) = \frac{\delta^2 \phi}{\delta x^2} + \frac{\delta^2 \phi}{\delta y^2} + \frac{\delta^2 \phi}{\delta z^2}$$

1.4 Operations with Grad operator

Resulting Equalities

- (i) $\nabla(\phi_1 + \phi_2) = \nabla\phi_1 + \nabla\phi_2$
- (ii) div $(\mathbf{A} + \mathbf{B}) = \operatorname{div} \mathbf{A} + \operatorname{div} \mathbf{B}$
- (iii) $\operatorname{curl} (\mathbf{A} + \mathbf{B}) = \operatorname{curl} \mathbf{A} + \operatorname{curl} \mathbf{B}$
- (iv) $\nabla(\phi\psi) = \phi\nabla\psi + \psi\nabla\phi$
- (v) $\operatorname{div}(\phi \mathbf{A}) = \phi \operatorname{div} \mathbf{A} + \nabla \phi \cdot \mathbf{A}$
- (vi) $\operatorname{curl}(\phi \mathbf{A}) = \phi \operatorname{curl} \mathbf{A} + \nabla \phi \times \mathbf{A}$
- (vii) $\operatorname{div}(\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \operatorname{curl} \mathbf{A} \mathbf{A} \cdot \operatorname{curl} \mathbf{B}$
- (viii) curl $(\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} \mathbf{B} \operatorname{div} \mathbf{A} (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A} \operatorname{div} \mathbf{B}$
- (ix) $\nabla (\mathbf{A} \cdot \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} + (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{B} \times \text{curl } \mathbf{A} + \mathbf{A} \times \text{curl } \mathbf{B}$
- (x) curl $(\nabla \phi) = 0$
- (xi) curl (curl \mathbf{A}) = ∇ (div \mathbf{A}) $\nabla^2 \mathbf{A}$
- (xii) div (curl \mathbf{A}) = 0

1 Integration

Definition 1.4.6 - Scalar and Vector Fields

If at each point of region V, scalar function ϕ defined - ϕ a scalar field over V Similarly if vector function A defined $\forall v \in V$, A a vector field. If curl A = 0, A is an irrotational vector field. If div A = 0, A a solenoidal vector field

1.5 Path Integrals

Definition 1.5.1 - Definition of a Path Integral

$$\lim_{n \to \infty} \sum_{n=1}^{N} f_n \delta s_n = \int_{\gamma} f ds \Rightarrow \int_{\gamma} \mathbf{F} \cdot d\mathbf{r} \int_{\gamma} \mathbf{F} \cdot \hat{\mathbf{t}} \, ds \text{ where } \hat{\mathbf{t}} \text{ is the normalized vector tangent to the path}$$

Definition 1.5.3 - Conservative forces

If $F = \nabla \phi$ for a differentiable scalar function ϕ , F is said to be a conservative field, which has the following properties:

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \phi(B) - \phi(A)$$

Result independent of path joining **A** and **B**, in particular for γ a closed curve ($B \equiv A$) We have:

$$\oint_{\gamma} \mathbf{F} \cdot d\mathbf{r} = 0$$

Call this a **circulation of F** around γ

If a vector field \mathbf{F} s.t $\oint_{\gamma} F \cdot dr = 0$, for any closed curve γ say \mathbf{F} a conservative field, if $\mathbf{F} = \nabla \phi \implies \mathbf{F}$ conservative. If \mathbf{F} conservative \implies can always find differentiable scalar function ϕ s.t $\mathbf{F} = \nabla \phi$, call ϕ the **potential of field F**

Definition 1.5.4 - Calculation of Path Integrals

When $\mathbf{F} = \mathbf{F}(x, y, z)$ and the path γ can be parametrized by (x(t), y(t), z(t)), then:

$$\mathbf{r} = x(t)\mathbf{\hat{i}} + y(t)\mathbf{\hat{j}} + z(t)\mathbf{\hat{k}} \Rightarrow d\mathbf{r} = \frac{dx}{dt}\mathbf{\hat{i}} + \frac{dy}{dt}\mathbf{\hat{j}} + \frac{dz}{dt}\mathbf{\hat{k}}$$
$$\implies \int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \left(\mathbf{F}_1 \frac{dx}{dt} + \mathbf{F}_2 \frac{dy}{dt} + \mathbf{F}_3 \frac{dz}{dt}\right) dt$$

1.6 Surface Integrals

Definition 1.6.1 - Surface Integral

Consider a surface S, where we find the surface integral of f = f(P) over S. Dividing S into small elements of area δS_i , with f_i the values of f at typical points P_i of δS_i The surface integral of f over S is

$$\int_{S} f dS = \lim_{\substack{N \to \infty \\ max(\delta S_n) \to 0}} \sum_{n=1}^{N} f_n \delta S_n$$

f may be a vector or a scalar.

Figure 1: Closed Surface Fi

Figure 2: Open Surface

Figure 3: Convex Surface Figure 4: Non-Convex Surface

Definitions

- 1. Closed Surface Divides 3D space into 2 non-connected regions; interior and exterior.
- 2. **Open Surface** Does not divide 3*D* space into 2 non-connected regions has a rim which can be represented by closed curve.

Can think of closed surfaces as sum of 2 open surfaces.

3. Convex Surface - A surface which is crossed by a straight line at most twice

1.6.3 Evaluating surface integrals for plane surfaces in x-v plane

dS infinitesimal area \implies think of as approx. plane.

Vector areal element dS is the vector $\hat{\mathbf{n}}dS$ for $\hat{\mathbf{n}}$ the unit normal vector to dS. For a plane lying in z = 0, we can say dS = dxdy

For a rectangle, x = a, b and y = c, d circumscribing convex S. We let

$$y = \begin{cases} F_1(x) & \text{upper half ADB} \\ F_2(x) & \text{lower half ACB} \end{cases}$$

Area of
$$S = \int_{S} dS = \int_{x=a}^{x=b} \int_{y=F_2(x)}^{y=F_1(x)} dy dx = \int_{a}^{b} [F_1(x) - F_2(x)] dx$$

For f(x, y) a function of position

$$\int_{S} f dS = \int_{x=a}^{x=b} \int_{y=F_{2}(x)}^{y=F_{1}(x)} f(x,y) dy dx$$

Equivalently;

$$x = \begin{cases} G_1(x) & \text{right half CBD} \\ G_2(x) & \text{left half CAD} \end{cases}$$

Area of
$$S = \int_{S} dS = \int_{c}^{a} G_{1}(y) - G_{2}(y) dy$$

$$\int_{S} f dS = \int_{y=c}^{y=d} \int_{x=G_{2}(x)}^{x=G_{1}(x)} f(x, y) dx dy$$

Figure 9: Left; Projection of plane area S onto x - y plane Figure 9: Right; Projection of curved surface S onto x - y plane

$$dS = \frac{d\Sigma}{|\hat{\mathbf{n}} \cdot \hat{\mathbf{k}}|}$$

1.6.6 The Projection Theorem

P a point on surface S, which at no point is orthogonal to \mathbf{k}

$$\int_{S} f(P) dS = \int_{\Sigma} f(P) \frac{dx \, dy}{|\hat{\mathbf{n}} \cdot \hat{\mathbf{k}}|}$$

For a projection of S onto z = 0, with $\hat{\mathbf{n}}$ normal to S For S given by $z = \phi(x, y)$

$$\int_{S} f(x, y, z) dS = \int_{\Sigma_{z}} f(x, y, \phi(x, y)) \frac{dx \, dy}{|\hat{\mathbf{n}} \cdot \hat{\mathbf{k}}|}$$

Projecting onto x = 0 or y = 0

$$\int_{S} f(P)dS = \int_{\Sigma_x} f(x, y, \phi(x, y)) \frac{dy \, dz}{|\hat{\mathbf{n}} \cdot \hat{\mathbf{i}}|} = \int_{\Sigma_y} f(x, y, \phi(x, y)) \frac{dx \, dz}{|\hat{\mathbf{n}} \cdot \hat{\mathbf{j}}|}$$

 Σ_x , projection onto $x = 0, \Sigma_y$, projection onto y = 0

1.7 Volume Integrals

Definition 1.7.1 - Volume Integral

Considering a volume τ , split into N subregions, $\{\delta \tau_i\}$, with $\{P_i\}$ typical points of $\{\delta \tau_i\}$.

$$\int_{\tau} f d\tau = \lim_{\substack{N \to \infty \\ max(\delta\tau_i) \to 0}} \sum_{i=1}^{N} f(P_i) \delta\tau_i$$

In Cartesian coordinates, the volume element $d\tau = dxdydz$

1.8 Results relating line, surface and volume integrals

1.8.1 Green's Theorem in the plane

R a closed plane region bounded by a simple plane closed convex curve in x - y plane. L, M continuous functions of x, y with continuous derivatives throughout R. Then:

$$\oint_C (L \, dx + M \, dy) = \int_R (\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}) dx dy,$$

For C the boundary of R described in the counter-clockwise sense.

1.8.2 Vector forms of Green's Theorem

(i) 2D Stokes Theorem Let $F = L\mathbf{i} + M\mathbf{j}$ and $d\mathbf{r} = dx\mathbf{i} + dy\mathbf{j}$. Then

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}\right) \mathbf{k}$$

Over region R write dxdy = dS.

$$\oint_{C} F \cdot dr = \int_{R} k \cdot \operatorname{curl} F dS$$

$$= \int_{R} \operatorname{curl} F \cdot d\mathbf{S}, \qquad d\mathbf{S} = \hat{\mathbf{k}} dS$$
(1)

(ii) Divergence Theorem in 2D Let $\mathbf{F} = M\mathbf{i} - L\mathbf{j}$. Then

div
$$\mathbf{F} = \frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}$$

So we can rewrite Green's Theorem as

$$\int_{R} \operatorname{div} \mathbf{F} dx dy = \oint_{C} F \cdot \hat{\mathbf{n}} ds$$

Green's Theorem holds for more complicated geometries too, if C not convex we can see it as the composition of 2 or more simple convex closed curves.

Joining A, A' form C_1, C_2 enclosing R_1, R_2 s.t $R_1 + R_2 = R$

Figure 13: A non-convex boundary

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \oint_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \oint_{C_{2}} \mathbf{F} \cdot d\mathbf{r} = \int_{R} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

$$\oint_{C_{1}} = \int_{AXA'} + \int_{A'}^{A}$$

$$\oint_{C_{2}} = \int_{A'YA} + \int_{A}^{A'}$$
(2)

1.8.4 Green's Theorem in multiply-connected regions

Figure 14: Left; Doubly- and triply- connected regions

Figure 14: Right; Green's Theorem in multiply-connected regions

R simply-connected if any closed curve in R can be shrunk to a point without leaving R. For 2D any region with a hole in it; not simply connected, we say it is multiply-connected Green's theorem still holds in multiply-connected regions. C interpreted as the entire inner and outer boundary.

For doubly-connected region, describe outer C_0 anti-clockwise, C_1 clockwise, and join them via A on C_0 and B on C_1 R now a simply connected region bounded by $(C_0 + AB + C_1 + BA)$

$$\int_{R} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \left(\oint_{C_{0}} + \int_{A}^{B} + \oint_{C_{0}} + \int_{B}^{A} \right) (\mathbf{F} \cdot d\mathbf{r})$$
$$\int_{R} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \left(\oint_{C_{0}} + \oint_{C_{1}} \right) (\mathbf{F} \cdot d\mathbf{r}) = \left(\oint_{C} \mathbf{F} \cdot d\mathbf{r} \right)$$

Where $C = C_0 + C_1$

1.8.5 Flux

If S is a surface then the flux of A across S is defined as

$$\int_{S} \mathbf{A} \cdot \hat{\mathbf{n}} dS$$

If S a closed surface then by convention draw unit normal $\hat{\mathbf{n}}$ out of S.

1.8.6 The divergence theorem

If τ the volume enclosed by a closed surface S with unit outward normal $\hat{\mathbf{n}}$ and \mathbf{A} is a vector field with continuous derivatives throughout τ , then:

$$\int_{S} \mathbf{A} \cdot \hat{\mathbf{n}} dS = \int_{\tau} div \mathbf{A} d\tau$$

1.8.7 The Divergence theorem in more complicated geometries

Figure 17: The divergence theorem for a non-convex surface

(i) Non-convex surfaces non-convex surface S can be divided by $surfaces(s) \sigma$ into 2 (or more) parts S_1 and S_2 which together with σ form convex surfaces $S_1 + \sigma, S_2 + \sigma/\sigma$

Applying divergence theorem to the convex parts, upon addition yields the same result as before.

(ii) A region with internal boundaries

(a) Simply-connected regions - e.g space between concentric spheres.

Figure 18: Simply-connected regions

Given interior surface S_i and outer surface S_o . A plane Π cutting both S_o, S_i , divides S_o, S_i into open $S_o^{(1)}, S_o^{(2)}$ and $S_i^{(1)}, S_i^{(2)}$ respectively.

Apply divergence theorem to τ_1, τ_2 bounded by closed $S_o^{(1)} + S_i^{(1)} + \Pi$ and $S_o^{(2)} + S_i^{(2)} + \Pi$. Upon addition contribution from Π cancels.

$$\int_{S_o+S_i} \mathbf{A} \cdot \hat{\mathbf{n}} dS = \int_S \mathbf{A} \cdot \hat{\mathbf{n}} dS = \int_{\tau_1} div \mathbf{A} d\tau + \int_{\tau_2} div \mathbf{A} d\tau = \int_{\tau} div \mathbf{A} d\tau$$

(b) *Multiply-connected regions* e.g. region between 2 cyclinders.

Figure 18: Multiply-connected regions

Given interior surface S_i and outer surface S_o , linked by plane Π . Consider the closed surface, enclosing simply connected region τ

 S_i + side 1 of Π + S_o + side 2 of Π

Applying divergence theorem to τ . Once again gives

$$\int_{S_0+S_i} \mathbf{A} \cdot \hat{\mathbf{n}} dS = \int_{\tau} div \mathbf{A} d\tau$$

1.8.8 Green's identity in 3D

For ϕ and ψ 2 scalar fields with continuous derivatives. We consider $\mathbf{A} = \phi \nabla \psi$, for which we have

$$div\mathbf{A} = \phi\nabla^2\psi + (\underline{\nabla}\phi)\cdot(\underline{\nabla}\psi)$$
$$\hat{\mathbf{n}} \cdot \mathbf{A} = \phi(\underline{\nabla}\psi)\cdot\hat{\mathbf{n}} = \phi\frac{\partial\psi}{\partial n}$$

Green's first identity

$$\int_{S} \left\{ \phi \frac{\partial \psi}{\partial n} \right\} dS = \int_{\tau} \phi \nabla^{2} \psi + (\underline{\nabla} \phi) \cdot (\underline{\nabla} \psi) d\tau$$

Green's Second identity

$$\int_{S} \left\{ \phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right\} dS = \int_{\tau} \phi \nabla^{2} \psi - \psi \nabla^{2} \phi d\tau$$

1.8.9 Green's identities in 2D

Divergence theorem in 2D: $\int_F div {\bf F} dx dy = \oint_C {\bf F} \cdot {\bf \hat{n}} ds$ Giving the following Green's identities:

$$\oint_C \phi \frac{\partial \psi}{\partial n} ds = \int_R [\phi \nabla^2 \psi + (\nabla \psi) \cdot (\nabla \phi) dx dy]$$

and

$$\oint_C \left[\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right] ds = \int_R \left[\phi \nabla^2 \psi - \psi \nabla^2 \phi \right] dx dy$$

 $\int_{R} \phi \nabla^{2} \psi \, dx dy = \oint_{C} \phi \frac{\partial \psi}{\partial n} ds - \int_{R} (\nabla \psi) \cdot (\nabla \phi) dx dy - \text{Looks like Integration by parts}$

1.8.10 Gauss' Flux Theorem

Let S a closed surface with outward unit normal $\hat{\mathbf{n}}$ and let O the origin of the coordinate system. $\mathbf{A} = \frac{\mathbf{r}}{r^3}$ Then:

$$\int_{S} \frac{\mathbf{\hat{n}} \cdot \mathbf{r}}{r^{3}} = \begin{cases} 0, \text{ if } O \text{ is exterior to } S \\ 4\pi, \text{ if } O \text{ interior to } S \end{cases}$$

1.8.11 Stokes Theorem

Figure 20: Diagram for proof of Stokes' Theorem

Suppose S is **open** surface with simple closed curve γ forming its boundary. A a vector field with continuous partial derivatives, Then:

$$\oint_{\gamma} \mathbf{A} \cdot d\mathbf{r} = \int_{S} curl \mathbf{A} \cdot \hat{\mathbf{n}} dS$$

This holds for **any** open surface with γ as a boundary.

Theorem

For A continuously differentiable and simply connected region:

$$\oint_{\gamma} \mathbf{A} \cdot d\mathbf{r} = 0 \iff curl\mathbf{A} = 0, \text{ throughout region for which } \gamma \text{ is drawn}$$

$$\chi_{\mathbf{A} \text{ conservative}}$$

1.9 Curvilinear Coordinates

1.9.1 Intro + Definition

Consider generally cartesian coordinates: (x_1, x_2, x_3) with each expressible as single-valued differentiable functions of the new coordinates (u_1, u_2, u_3)

$$\begin{aligned} x_i &= x_i(u_1, u_2, u_3) \\ \frac{\partial x_i}{\partial x_j} &= \delta_{ij} = \frac{\partial x_i}{\partial u_1} \frac{\partial u_1}{\partial x_j} + \frac{\partial x_i}{\partial u_2} \frac{\partial u_2}{\partial x_j} + \frac{\partial x_i}{\partial u_3} \frac{\partial u_3}{\partial x_j} \end{aligned}$$

With the following matrix equation

$$\begin{pmatrix} \partial x_1/\partial u_1 & \partial x_1/\partial u_2 & \partial x_1/\partial u_3 \\ \partial x_2/\partial u_1 & \partial x_2/\partial u_2 & \partial x_2/\partial u_3 \\ \partial x_3/\partial u_1 & \partial x_3/\partial u_2 & \partial x_3/\partial u_3 \end{pmatrix} \begin{pmatrix} \partial u_1/\partial x_1 & \partial u_1/\partial x_2 & \partial u_1/\partial x_3 \\ \partial u_2/\partial x_1 & \partial u_2/\partial x_2 & \partial u_2/\partial x_3 \\ \partial u_3/\partial x_1 & \partial u_3/\partial x_2 & \partial u_3/\partial x_3 \end{pmatrix} = I$$

Or more succinctly

$$J(x_u) \cdot J(u_x) = I$$

We say $J(x_u)$ the **Jacobian matrix** for the (x_1, x_2, x_3) system.

$$det (J(x_u)) \neq 0 \implies J(u_x) \text{ exists} \\ det(J(x_u)) = \frac{1}{det(J(u_x))}$$

We say (u_1, u_2, u_3) define a curvilinear coordinate system.

With each u_i = constant, defining a family of surfaces, with a member of each family passing through each P(x, y, z)Let $(\hat{\mathbf{a_1}}, \hat{\mathbf{a_2}}, \hat{\mathbf{a_3}})$ unit vectors at P in the direction normal to $u_i = u_i(P)$, s.t u_i increasing in the direction $\hat{\mathbf{a_i}}$

$$\mathbf{\hat{a}_i} = rac{
abla \mathbf{u_i}}{|
abla \mathbf{u_i}|}$$

if we have that $(\hat{a_1}, \hat{a_2}, \hat{a_3})$ mutually orthogonal \implies orthogonal curvilinear coordinate system.

$$\frac{\partial \mathbf{r}}{\partial u_i} = \hat{\mathbf{e}}_{\mathbf{i}} h_i$$

For which we define $h_i = |\partial \mathbf{r}/\partial u_i|$. We call these the **length scales**

1.9.2 Path element

 $\mathbf{r} = \mathbf{r}(u_1, u_2, u_3)$ path element $d\mathbf{r}$ given by

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial u_1} du_1 + \frac{\partial \mathbf{r}}{\partial u_2} du_2 + \frac{\partial \mathbf{r}}{\partial u_3} du_3$$
$$= h_1 du_1 \hat{e}_1 + h_2 du_2 \hat{e}_2 + h_3 du_3 \hat{e}_3$$

For an orthongal system

$$(ds)^{2} = (d\mathbf{r}) \cdot (d\mathbf{r}) = h_{1}(du_{1})^{2} + h_{2}(du_{2})^{2} + h_{3}(du_{3})^{2}$$
$$\hat{e}_{i} = \hat{a}_{i} = \frac{\nabla \mathbf{u}_{i}}{|\nabla \mathbf{u}_{i}|}$$

1.9.3 Volume Element

 $d\tau = (h_1 du_1)(h_2 du_2)(h_3 du_3)$ $= h_1 h_2 h_3 du_1 du_2 du_3$

1.9.4 Surface element

For u_1 constant.

$$dS = h_2 h_3 du_2 du_3$$

similarly for u_2, u_3

1.9.5 Properties of various orthogonal coordinates

(i) Cartesisan coordinates (x, y, z)

$$d\tau = dx dy dz \qquad d\mathbf{r} = dx \mathbf{\hat{i}} + dy \mathbf{\hat{j}} + dz \mathbf{\hat{k}}$$
$$(ds)^2 = (d\mathbf{r}) \cdot (d\mathbf{r}) = (dx)^2 + (dy)^2 + (dz)^2$$

We have $h_1 = h_2 = h_3$

(ii) Cylindrical polar coordinates (r, ϕ, z) Related to cartesian by

$$x = r\cos\theta \quad y = r\sin\phi \quad z = z$$

$$\frac{\partial \mathbf{r}}{\partial r} = \left(\frac{\partial x}{\partial r}\right)\mathbf{\hat{i}} + \left(\frac{\partial y}{\partial r}\right)\mathbf{\hat{j}} + \left(\frac{\partial z}{\partial r}\right)\mathbf{\hat{k}} = (\cos\phi)\mathbf{\hat{i}} + (\sin\phi)\mathbf{\hat{j}} \qquad \left(\frac{\partial \mathbf{r}}{\partial r}\right) \cdot \left(\frac{\partial \mathbf{r}}{\partial \phi}\right) = 0 \qquad h_1 = \left|\frac{\partial \mathbf{r}}{\partial r}\right| = 1$$
$$\frac{\partial \mathbf{r}}{\partial \phi} = \left(\frac{\partial x}{\partial \phi}\right)\mathbf{\hat{i}} + \left(\frac{\partial y}{\partial \phi}\right)\mathbf{\hat{j}} + \left(\frac{\partial z}{\partial \phi}\right)\mathbf{\hat{k}} = -(r\sin\phi)\mathbf{\hat{i}} + (r\cos\phi)\mathbf{\hat{j}} \qquad \left(\frac{\partial \mathbf{r}}{\partial r}\right) \cdot \left(\frac{\partial z}{\partial \phi}\right) = 0 \qquad h_2 = \left|\frac{\partial \mathbf{r}}{\partial \phi}\right| = r$$
$$\frac{\partial \mathbf{r}}{\partial z} = \mathbf{\hat{k}} \qquad \left(\frac{\partial \mathbf{r}}{\partial \phi}\right) \cdot \left(\frac{\partial \mathbf{r}}{\partial z}\right) = 0 \qquad h_3 = \left|\frac{\partial \mathbf{r}}{\partial z}\right| = 1$$

Yielding length and volume elements:

$$(ds)^2 = (dr)^2 + r^2 (d\phi)^2 + (dz)^2 \qquad d\tau = r dr d\phi dz$$

(iii) Spherical polar coordinates (r, θ, ϕ) Related to cartesian by:

$$x = r\sin\theta\cos\phi$$
 $y = r\sin\theta\sin\phi$ $z = r\cos\theta$

$$\frac{\partial \mathbf{r}}{\partial r} = (\sin\theta\cos\phi)\mathbf{\hat{i}} + (\sin\theta\sin\phi)\mathbf{\hat{j}} + (\cos\theta)\mathbf{\hat{k}} \qquad (\frac{\partial \mathbf{r}}{\partial r}) \cdot (\frac{\partial \mathbf{r}}{\partial \theta}) = 0 \qquad h_1 = |\frac{\partial \mathbf{r}}{\partial r}| = 1$$

$$\frac{\partial \mathbf{r}}{\partial \theta} = (r\cos\theta\cos\phi)\mathbf{\hat{i}} + (r\cos\theta\sin\phi)\mathbf{\hat{j}} + (-r\sin\theta)\mathbf{\hat{k}} \qquad (\frac{\partial \mathbf{r}}{\partial r}) \cdot (\frac{\partial \mathbf{r}}{\partial \phi}) = 0 \qquad h_2 = |\frac{\partial \mathbf{r}}{\partial \theta}| = r$$

$$\frac{\partial \mathbf{r}}{\partial \phi} = (-r\sin\theta\sin\phi)\mathbf{\hat{i}} + (r\sin\theta\cos\phi)\mathbf{\hat{j}} + (0)\mathbf{\hat{k}} \qquad (\frac{\partial \mathbf{r}}{\partial \phi}) \cdot (\frac{\partial \mathbf{r}}{\partial \theta}) = 0 \qquad h_3 = |\frac{\partial \mathbf{r}}{\partial \phi}| = r\sin\theta$$

Volume element:

$$d\tau = r^2 \sin\theta dr d\theta d\phi$$

1.9.6 Gradient in orthogonal curvilinear coordinates

Let $\nabla \Phi = \lambda_1 \hat{\mathbf{e}}_1 + \lambda_2 \hat{\mathbf{e}}_2 + \lambda_3 \hat{\mathbf{e}}_3$. In a general coordinate system for λ_i s to be found.

$$d\mathbf{r} = h_1 du_1 \hat{e}_1 + h_2 du_2 \hat{e}_2 + h_3 du_3 \hat{e}_3$$

$$\begin{split} d\Phi &= \left(\frac{\partial\phi}{\partial u_1}\right) du_1 + \left(\frac{\partial\phi}{\partial u_2}\right) du_2 + \left(\frac{\partial\phi}{\partial u_3}\right) du_3 \\ &= \left(\frac{\partial\phi}{\partial x}\right) dx + \left(\frac{\partial\phi}{\partial y}\right) dy + \left(\frac{\partial\phi}{\partial z}\right) dz \\ &= \boxed{\left(\nabla\Phi\right) \cdot d\mathbf{r} = \lambda_1 h_1 du_1 + \lambda_2 h_2 du_2 + \lambda_3 h_3 du_3} \end{split}$$

$$h_i \lambda_i = \frac{\partial \Phi}{\partial u_i}$$
$$\implies \nabla \Phi = \frac{\hat{\mathbf{e}}_1}{h_1} \frac{\partial \Phi}{\partial u_1} + \frac{\hat{\mathbf{e}}_2}{h_2} \frac{\partial \Phi}{\partial u_2} + \frac{\hat{\mathbf{e}}_3}{h_3} \frac{\partial \Phi}{\partial u_3}$$

(i) Cylindrical polars (r, ϕ, z) $h_1 = 1$

We have:
$$h_2 = r \implies \nabla = \hat{r} \frac{\partial}{\partial r} + \frac{\hat{\phi}}{r} \frac{\partial}{\partial \phi} + \hat{z} \frac{\partial}{\partial z}$$

 $h_3 = 1$

(ii) Spherical polars (r, θ, ϕ) $h_1 = 1$ $\implies \nabla = \hat{r} \frac{\partial}{\partial r} + \frac{\hat{\theta}}{r} \frac{\partial}{\partial \theta} + \frac{\hat{\phi}}{r \sin \theta} \frac{\partial}{\partial \phi}$ $h_2 = r$ We have: $\bar{h_3} = r\sin\theta$

1.9.7 Expressions for unit vectors

$$\hat{\mathbf{e}}_i = h_i \nabla u_i$$

Alternatively, unit vectors orthogonal \implies if we know 2 already then

$$\hat{\mathbf{e}}_1 = (\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_3) = h_2 h_3 (\nabla u_2 \times \nabla u_3)$$

1.9.8 Divergence in orthogonal curvilinear coordinates

Suppose we have vector field

$$\mathbf{A} = A_1 \hat{\mathbf{e}}_1 + A_2 \hat{\mathbf{e}}_2 + A_3 \hat{\mathbf{e}}_3$$
$$\implies \nabla \cdot \mathbf{A} = \frac{1}{h_1 h_2 h_3} \left\{ \frac{\partial}{\partial u_1} (A_1 h_2 h_3) + \frac{\partial}{\partial u_2} (A_2 h_3 h_1) + \frac{\partial}{\partial u_3} (A_3 h_1 h_2) \right\}$$

. .

So we have divergence in other coordinate systems as follows:

(i) Cylindrical polars
$$(r, \phi, z)$$

 $h_1 = 1$
We have: $h_2 = r \implies \nabla \cdot A = \frac{\partial A_1}{\partial r} + \frac{A_1}{r} + \frac{1}{r} \frac{\partial A_2}{\partial \phi} + \frac{\partial A_3}{\partial z}$
 $h_3 = 1$

(ii) Spherical polars (r, θ, ϕ) $h_1 = 1$

We have:
$$\begin{aligned} h_1 &= 1 \\ h_2 &= r \\ h_3 &= r \sin \theta \end{aligned} \Rightarrow \nabla \cdot A &= \frac{1}{r^2 \sin \theta} \left\{ \frac{\partial}{\partial r} (r^2 \sin \theta A_1) + \frac{\partial}{\partial \theta} (r \sin \theta A_2) + \frac{\partial}{\partial \phi} (r A_3) \right\} \end{aligned}$$

1.9.9 Curl in orthogonal curvilinear coordinates

$$curl\mathbf{A} = \frac{1}{h_1h_2h_3} \begin{vmatrix} h_1\hat{e}_1 & h_2\hat{e}_2 & h_3\hat{e}_3\\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3}\\ h_1A_1 & h_2A_2 & h_3A_3 \end{vmatrix}$$

(i) Cylindrical polars

$$curl\mathbf{A} = \frac{1}{r} \begin{vmatrix} \hat{\mathbf{r}} & r\hat{\phi} & \hat{\mathbf{k}} \\ \partial/\partial r & \partial/\partial \phi & \partial/\partial z \\ A_1 & A2 & A_3 \end{vmatrix}$$

(ii) Spherical polars

$$curl\mathbf{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{\mathbf{r}} & r\hat{\phi} & r\sin \theta\hat{\phi} \\ \partial/\partial r & \partial/\partial \phi & \partial/\partial z \\ A_1 & rA2 & r\sin \theta A_3 \end{vmatrix}$$

1.9.10 The Laplacian in orthogonal curvilinear coordinates

From the above grad and div;

$$\nabla^2 \Phi = \nabla \cdot (\nabla \Phi)$$
$$= \frac{1}{h_1 h_2 h_3} \left\{ \frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial \Phi}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_1 h_3}{h_2} \frac{\partial \Phi}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial \Phi}{\partial u_3} \right) \right\}$$

 $\nabla (\nabla x)$

(i) Cylindrical polars (r, ϕ, z)

$$\nabla^2 \Phi = \frac{1}{r} \left\{ \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{\partial}{\partial \phi} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \phi} \right) + \frac{\partial}{\partial z} \left(r \frac{\partial \Phi}{\partial z} \right) \right\}$$
$$= \frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \phi^2} + \frac{\partial^2 \Phi}{\partial z^2}$$

(ii) Spherical polars (r, θ, ϕ)

$$\nabla^2 \Phi = \frac{1}{r^2 \sin \theta} \left\{ \frac{\partial}{\partial r} \left(r^2 \sin \theta \frac{\partial \Phi}{\partial r} \right) + \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{\partial}{\partial \phi} \left(\frac{1}{\sin \theta} \frac{\partial \Phi}{\partial \phi} \right) \right\}$$
$$= \frac{\partial^2 \Phi}{\partial r^2} + \frac{2}{r} \frac{\partial \Phi}{\partial r} + \frac{\cot \theta}{r^2} \frac{\partial \Phi}{\partial \theta} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2}$$

1.10 Changes of variables in surface integration

Suppose we have surface S, parametrized by quantities u_1, u_2 . We can write:

 $x = x(u_1, u_2), \quad y = y(u_1, u_2), \quad z = z(u_1, u_2)$

Consider surface to be comprised of arbitrarily small parallelograms, its sides given by keeping either u_1 or u_2

$$dS = \text{Area of parallelogram with sides } \frac{\partial \mathbf{r}}{\partial u_1} du_1 \text{ and } \frac{\partial \mathbf{r}}{\partial u_2} du_2$$
$$= |\mathbf{J}| du_1 du_2$$

Vector Jacobian J given by $\mathbf{J} = \frac{d\mathbf{r}}{du_1} \times \frac{d\mathbf{r}}{du_2}$. Useful in substitution of surface integrals:

$$\int_{S} f(x, y, z) dS = \int_{S} F(u_1, u_2) |\mathbf{J}| du_1 du_2]$$

 $F(u_1, u_2) = f(x(u_1, u_2), y(u_1, u_2), z(u_1, u_2))$

For S a region R in the x - y plane we can write:

$$\int_{R} f(x,y) dx dy = \int_{R} F(u_1, u_2) |\det(J(x_u))| du_1 du_2$$
$$|\mathbf{J}| = |\frac{d\mathbf{r}}{du_1} \times \frac{d\mathbf{r}}{du_2}| = \det(J(x_u)) = \begin{vmatrix} \partial x/\partial u_1 & \partial x/\partial u_2\\ \partial y/\partial u_1 & \partial y/\partial u_2 \end{vmatrix}$$

For a surface described by z = f(x, y). We have $x = u_1, y = u_2$ and $\mathbf{r} = (x, y, f(x, y))$ We have:

$$\begin{aligned} \frac{\partial \mathbf{r}}{\partial u_1} &= \frac{\partial \mathbf{r}}{\partial x} &= \hat{\mathbf{i}} + \frac{\partial f}{\partial x} \hat{\mathbf{k}} \\ \frac{\partial \mathbf{r}}{\partial u_2} &= \frac{\partial \mathbf{r}}{\partial y} &= \hat{\mathbf{j}} + \frac{\partial f}{\partial y} \hat{\mathbf{k}} \\ |\frac{\partial \mathbf{r}}{\partial u_1} \times \frac{\partial \mathbf{r}}{\partial u_2}| &= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 0 & \partial f / \partial x \\ 0 & 1 & \partial f / \partial y \end{vmatrix} \\ &= \sqrt{1 + |\nabla f|^2} \end{aligned}$$

So we have area of surface given by

$$\int_{\Sigma} \sqrt{1+|\nabla f|^2} dx dy$$

for the projection of S onto the x - y plane.

Part II Term 2

1 Introduction

1.1 ODEs and initial value problems

Definition 1.2. Ordinary differential equation

Consider $d \in \mathbb{N}$ an open set $D \subset \mathbb{R} \times \mathbb{R}^d$ and function $f : D \to \mathbb{R}^d$ Call

 $\dot{x} = f(t, x)$

a d-dimensional (first-order) ordinary differential equation

Differentiable function $\lambda: I \to \mathbb{R}^d$ on interval $I \subset \mathbb{R}$ a solution to a differential equation if $(t, \lambda(t)) \in D$ and

$$\dot{\lambda}(t) = f(t, \lambda(t)) \quad \forall t \in I$$

Say ODE **autonomous** if of form

$$\dot{x} = f(x)$$

for $f: D \to \mathbb{R}^d, D \subset \mathbb{R}^d$ **Proposition 1.3.**

 $D \subset \mathbb{R}^d$ open. $f: D \to \mathbb{R}^d$ with autonomous ODE

 $\dot{x} = f(x)$

 $\implies \exists \text{ constant solution } \lambda : \mathbb{R} \to \mathbb{R}^d \text{ with } a \in \mathbb{R}^d \text{ at } \lambda(t) = a \iff f(a) = 0 \forall t$

Definition 1.4. Initial value problem

 $d \in \mathbb{N}$ open $D \subset \mathbb{R} \times \mathbb{R}^d$, $f : D \to \mathbb{R}^d$. Call the following pair a **initial value problem**

$$\dot{x} = f(t, x)$$
 and $\underbrace{x(t_0) = x_0}_{\text{Initial condition}}$

Solutions s.t $\lambda : I \to \mathbb{R}^d$ with t_0 in interior of I and $\lambda(t_0) = x_0$

1.3 Visualisations

1.3.1 Solution portrait

 $f:D\subset\mathbb{R}\times\mathbb{R}^d\to\mathbb{R}^d$ with $\dot{x}=f(t,x)$ Graph of solutions given by

Solution Curve:
$$G(\lambda) = \{(t, \lambda(t)) : t \in I\} \subset \mathbb{R} \times \mathbb{R}^d$$

derivative of curve at point $t_0 \in I$ is

$$\frac{d}{dt}(t,\lambda(t))|_{t=t_0} = (t,\dot{\lambda}(t_0)) = (1,f(t_0,\lambda(t_0)))$$

Vector field a map $(t, x) \mapsto (1, f(t, x))$, defined on D

Solution Curves are tangential to vector field.

Solution portrait given by visualisations of several solution curves in both

(t, x) - space and x - spaceextended phase space phase space

1.3.2 Phase Portraits

Autonomous differential equations not dependent on time. Visualisations in phase-space alone suffice.

Proposition 1.9. (Translation invariance)

 $\begin{array}{l} \lambda: I \to \mathbb{R}^d \text{ a solution to } \dot{x} = f(x) \\ \Longrightarrow \ \forall \tau \in \mathbb{R}, \mu: \tilde{I} \to \mathbb{R}^d \text{ where } \tilde{I} = \{t \in \mathbb{R}: t + \tau \in I\} \\ \mu(t) = \lambda(t + \tau), \ \forall t \in \tilde{I} \text{ also a solution to this differential equation.} \end{array}$

2 Existence & Uniqueness

2.1 Picard iterates

Proposition 2.1. - (Reformation as integral equation)

Consider initial value problem $\dot{x} = f(t, x), \quad x(t_0) = x_0$ for $f: D \subset \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ continuous and $(t_0, x_0) \in D$ $\lambda: I \to \mathbb{R}^d$ a function on interval I s.t $t_0 \in I$ and $\{(t, \lambda(t)): t \in I\} \subset D$ Following are equivalent:

- (i) λ solves initial value problem $\dot{\lambda}(t) = f(t, \lambda(t)), \ \forall t \in I$ $\lambda(t_0) = x_0$
- (ii) λ continuous and

$$\lambda(t) = x_0 + \int_{t_0}^t f(s, \lambda(s)) ds \ \forall t \in I$$

Higher dimensional derivative for $a \in \mathbb{D}^d$

for $g: \mathbb{R} \to \mathbb{R}^d$

$$\int_{t_0}^t g(s)ds = \begin{pmatrix} \int_{t_0}^t g_1(s)ds \\ \vdots \\ \int_{t_0}^t g_d(s)ds \end{pmatrix}$$

Definition 2.2. (Picard iterates)

Consider initial value problem; $\dot{x} = f(t, x)$ $x(t_0) = x_0$ and chosen interval J s.t $t_0 \in J$ Define **initial function**:

$$\lambda_0(t) \equiv x_0 \quad \forall t \in J$$

and inductively the **Picard iterates**:

$$\lambda_{n+1}(t) := x_0 + \int_{t_0}^t f(s, \lambda_n(s)) ds \quad \forall t \in J \ \forall n \in \mathbb{N}_0$$

If (λ_n) uniformly convergent sequence with limit λ_{∞} obtain:

$$\lambda_{\infty}(t) = x_0 + \int_{t_0}^t f(s, \lambda_{\infty}(s)) ds \ \forall t \in J$$

 $\implies \lambda_{\infty}$ a solution to integral equation \implies solves initial value problem

2.2 Lipschitz Continuity

Definition

Space of continuous functions on compact interval $\mathbf{J} := C^0(J, \mathbb{R}^d)$ This a complete normed vector space under supremum norm. (Banach Space)

Definition 2.4. (Normed Vector Space)

Norm on a vector space V or R a map $||\cdot|| : V \to \mathbb{R}_0$ s.t

- (i) $||| = 0 \iff x = 0$
- (ii) $||| = |\cdot|||, \forall a \in \mathbb{R}, x \in V$
- (iii) $|+y|| \le ||| + |||$

Normed vector space V **complete** if every cauchy sequence converges in V Call a complete normed vector space a **Banach Space**

Definition 2.5. (Continuous + Lipschitz continuous functions)

 $X \subset$ normed vector space $(V, || \cdot ||_V)$ $Y \subset$ normed vector space $(W, || \cdot ||_W)$ We say a function $f : X \to Y$

(i) Continuous if

$$\forall x \in X, \epsilon > 0, \exists \delta > 0, |-\bar{x}||_V < d \implies |(x) - f(\bar{x})||_W < \epsilon$$

(ii) Lipschitz Continuous if

$$\exists K > 0, |(x) - f(\bar{x})||_W \leqslant K |-\bar{x}||_V \ \forall x, \bar{x} \in X$$

Call K a Lipschitz Constant

Lipschitz continuous \implies Continuous

2.2.1 Lipschitz Continuity and MVT

Theorem 2.0. (Mean Value Theorem)

I compact interval, *f* continuously differentiable $\forall x, y \in I, \exists \xi \in (x, y) \text{ s.t}$ $f(x) - f(y) = f'(\xi)(x - y)$ $\implies f' \text{ bounded } \implies f \text{ Lipschitz continuous}$

2.2.2 Lipschitz Continuity and Mean Value Inequality

Definition 2.7. (Operator norm of a matrix)

For given matrix $A \in M_n(\mathbb{R})$ Operator norm:

$$||| = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{|||}{|||} = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \left\| A \frac{x}{|||} \right\| = \sup_{x \in \mathbb{R}^n, |||=1} |||$$

Theorem 2.1. (Mean Value Inequality)

Consider open set $D \subset \mathbb{R}^n$ with $f: D \to \mathbb{R}^m$ continuously differentiable $\forall x, y \in D$ with $[x, y] \subset D$

$$\exists \xi \in [x, y] \ s.t \ |(x) - f(y)|| \le |f'(\xi)|||x - y||$$

 $\forall x, y \in \mathbb{R}^n$, closed line segment connecting x and y given by

$$[x, y] = \{\alpha x + (1 - \alpha)y \in \mathbb{R}^n : \alpha \in [0, 1]\}$$

Lemma 2.9. (Triangle-like inequality for integrals)

 $I \subset R$ an interval $f: I \to \mathbb{R}^m$ continuous function

$$\implies \left| \left| \int_{t_0}^t f(s) ds \right| \right| \le \left| \int_{t_0}^t ||f(s)|| ds \right| \quad \forall t, t_0 \in I$$

Corollary 2.10. - (Lipschitz continuous and mean value inequality)

 $U \subset \mathbb{R}^n$ open. $f: U \to \mathbb{R}^m$ continuously differentiable Given compact and convex set $C \subset U$. Restriction is Lipschitz continuous

 $f|_C: C \to \mathbb{R}^m$

Convex C means $\forall x, y \in C$ closed line segment lies in C i.e. $[x, y] \subset C$

2.3 Picard-Lindelöf Theorem

Theorem 2.11. (*Picard-Lindelöf theorem - global version*)

Consider ODE $\dot{x} = f(t, x)$

 $f: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ continuous, satisfying global Lipschitz condition of the form

$$||f(t,x) - f(t,y)|| \leq K||x - y|| \quad \forall t \in \mathbb{R}, \forall x, y \in \mathbb{R}^d, \ K > 0 \text{ a const}$$

Take $h = \frac{1}{2K} \implies$ every initial value problem $x(t_0) = x_0$ admits a unique solution

$$\lambda: [t_0 - h, t_0 + h] \to \mathbb{R}^d$$

Definition 2.12.

- (i) Globally Lipschitz continuous if $\exists K > 0$ s.t $||f(t,x) - f(t,y)|| \le K||x-y|| \quad \forall (t,x), (t,y) \in D$
- (ii) Locally Lipschitz continuous if $\forall (t_0, x_0) \in D$ and \exists neighbourhood $U \subset D$ of (t_0, x_0) and $\exists L > 0$ s.t

$$||f(t,x) - f(t,y)|| \leq K||x-y|| \quad \forall (t,x), (t,y) \in U$$

Theorem 2.13. (Picard-Lindelöf theorem - local version)

 $D \subset \mathbb{R} \times \mathbb{R}^d$ open

Consider function $f: D \to \mathbb{R}^d$ continuous and locally Lipschitz continuous. For fixed $(t_0, x_0) \in D$, we have initial value problem. Following 2 hold

(i) Qualitative version

Initial value problem has locally a uniquely determined solution

 $\exists h = h(t_0, x_0)$ s.t. there is exactly one solution on $[t_0 - h, t_0 + h]$

(ii) Quantitative version

For some τ, δ take set $W^{\tau,\delta}(t_0, x_0) := [t_0 - \tau, t_0 + \tau] \times \overline{B_{\delta}(x_0)}$. For $\overline{B_{\delta}(x_0)} := \{x \in \mathbb{R}^d : ||x - x_0|| \leq \delta\}$ - Closed δ -neighbourhood of x_0 . Assume $W^{\tau,\delta}(t_0, x_0) \subset D$, suppose $\exists K, M > 0$ s.t

$$||f(t,x) - f(t,y)|| \leq K||x-y|| \quad \forall (t,x), (t,y) \in U$$

and

$$||f(t,x)|| \leq M \quad \forall (t,x) \in W^{\tau,\delta}(t_0,x_0)$$

 \implies there is exactly one solution on $[t_0 - h, t_0 + h]$ with $h(t_0, x_0) := \min\{\tau, \frac{1}{2K}, \frac{\delta}{M}\}$

Proposition 2.14. - (Continuously differentiable & Lipschitz Continuity) $D \subset \mathbb{R} \times \mathbb{R}^d$ open. Continuously differentiable function $f: D \to \mathbb{R}^d$

 \implies f locally Lipschitz continuous w.r.t x

 \implies every initial value problem with differential equation with RHS f solved locally uniquely.

Lemma 2.15. - (Solutions cannot cross)

Let $D \subset \mathbb{R} \times \mathbb{R}^d$ open. $f: D \to \mathbb{R}^d$ continuous and locally Lipschitz continuous w.r.t xGiven 2 solutions of $\dot{x} = f(t, x); \lambda : I \to \mathbb{R}^d, \mu : J \to \mathbb{R}^d$ Either $\lambda(t) = \mu(t) \quad \forall t \in I \cap J \text{ or } \lambda(t) \neq \mu(t) \quad \forall t \in I \cap J$

2.4 Maximal Solutions

Definition 2.16. - (Maximal existence interval)

Consider initial value problem $\dot{x} = f(t, x), x(t_0) = x_0$ Define

- $I_+(t_0, x_0) := \sup\{t_+ \ge t_0 : \text{there exists solution on } [t_0, t_+]\}$
- $I_{-}(t_0, x_0) := \sup\{t_{-} \leq t_0 : \text{there exists solution on } [t_{-}, t_0]\}$

Maximal existence interval:

$$I_{max}(t_0, x_0) := (I_{-}(t_0, x_0), I_{+}(t_0, x_0))$$

Theorem 2.17. (Existence of maximal solution + boundary behaviour)

There exists maximal solution $\lambda_{max} : I_{max}(t_0, x_0) \to \mathbb{R}^d$ to initial value problem. Having properties:

(i) $I_+(t_0, x_0)$ finite Either - maximal solution unbounded for $t \ge t_0$

$$\sup_{t \in (t_0, I_+(t_0, x_0))} ||\lambda_{max}(t)|| = \infty$$

Or boundary: ∂D of D non-empty and we have

$$\lim_{t \nearrow I_+(t_0, x_0)} dist\left((t, \lambda_{max}(t)), \partial D\right) = 0$$

(ii) $I_{-}(t_0, x_0)$ finite

Either - maximal solution unbounded for $t \leq t_0$

$$\sup_{t \in (I_-(t_0, x_0), t_0)} ||\lambda_{max}(t)|| = \infty$$

Or boundary: ∂D of D non-empty and we have

$$\lim_{t \searrow I_{-}(t_{0}, x_{0})} dist\left((t, \lambda_{max}(t)), \partial D\right) = 0$$

Dist function

 $A \subset \mathbb{R}^n, \ dist(\cdot, A) : \mathbb{R}^n \to \mathbb{R}_0^+$

$$dist(y, A) := \inf\{|-a|| : a \in A\} \quad \forall y \in \mathbb{R}^n$$

2.5 General solutions and flows

2.5.1 General solutions

Definition 2.19. (General solution to non-autonomous differential equation)

Consider $\dot{x} = f(t, x)$. We define

$$\Omega := \{ (t, t_0, x_0) \in \mathbb{R}^{1+1+d} : (t_0, x_0) \in D \text{ and } t \in I_{max}(t_0, x_0) \}$$

We say $\lambda : \Omega \to \mathbb{R}^d$ with $\lambda(t, t_0, x_0) := \lambda_{max}(t, t_0, x_0)$ a general solution of $\dot{x} = f(t, x)$ Solution identity:

$$\frac{\partial \lambda}{\partial t}(t, t_0, x_0) = f(t, \lambda(t, t_0, x_0)) \quad \forall (t, t_0, x_0) \in \Omega$$

Proposition 2.21. - (Properties of general solutions)

Consider $\dot{x} = f(t, x), (t_0, x_0) \in D \implies \forall s \in I_{max}(t_0, x_0)$ we have

- (i) $I_{max}(s, \lambda(s, t_0, x_0)) = I_{max}(t_0, x_0)$
- (ii) $\lambda(t_0, t_0, x_0) = x_0$ (Initial value property)
- (iii) $\lambda(t, s, \lambda(s, t_0, x_0)) = \lambda(t, t_0, x_0) \forall t \in I_{max}(t_0, x_0)$ (Cocycle property)

2.5.2 Flows

Definition 2.22. (Flow of an autonomous differential equation)

Consider $\dot{x} = f(x)$ Define for any initial value $x_0 \in D$

$$J_{max}(x_0) := I_{max}(0, x_0)$$
$$\varphi(t, x_0) = \lambda(t, 0, x_0) \quad \forall t \in J_{max}(x_0)$$

 $(t, x_0) \mapsto \phi(t, 0, x_0)$ called flow of autonomous differential equation Solution identity:

$$\frac{\partial \varphi}{\partial t}(t, x_0) = f(\varphi(t, x_0)) \quad \forall x_0 \in D, t \in J_{max}(0)$$

Proposition 2.24 - (Properties of the flow)

Let φ be flow of autonomous differential equation. $\implies \forall x \in D$ we have

- (i) $J_{max}(\varphi(t,x)) = J_{max}(x) t \quad \forall t \in J_{max}(x)$
- (ii) $\varphi(0, x) = x$ (Initial value property)
- (iii) $\varphi(t,\varphi(s,x)) = \varphi(t+s,x) \quad \forall t, s \text{ with } s, t+s \in J_{max}(x)$ (Group property)
- (iv) $\varphi(-t,\varphi(t,x)) = x \quad \forall t \in J_{max}(x)$

Definition 2.25. (Orbits (or trajectories))

 φ flow of autonomous differential equations $\forall x \in D$, we have the **Orbit** through x

$$O(x) := \{\varphi(t, x) \in D : t \in J_{max}(x)\}$$

With the positive/negative half orbits:

• $O^+(x) := \{\varphi(t, x) \in D : t \in J_{max}(x) \cap \mathbb{R}^+_0\}$

•
$$O^-(x) := \{\varphi(t,x) \in D : t \in J_{max}(x) \cap \mathbb{R}_0^-\}$$

Types of orbits

- (i) O(x) singleton $\implies f(x) = 0$ and $J_{max}(x) = \mathbb{R}$ Call x the equilibrium
- (ii) O(x) closed curve $\exists t > 0$ s.t $\varphi(t, x) = x$ but $f(x) \neq 0 \implies J_{max}(x) = \mathbb{R}$, call x periods with O(x) periodic orbit
- (iii) O(x) not closed curve. function $t \mapsto \varphi(t, x)$ injective on $J_{max}(x)$

Proposition 2.27. - (Orbits of one-dimensional differential equation)

Consider $\dot{x} = f(x)$ where d = 1

 \implies all solutions monotone, \nexists periodic orbits

 \implies trajectory either an equilibrium or non-closed curve

3 Linear Systems

3.1 Matrix exponential function

Consider linear differential equation

 $\dot{x} = Ax \quad A \in \mathbb{R}^{d \times d}$

We have $||Ax - Ay|| \le ||A|| ||x - y|| \implies$ globally Lipschitz continuous with constant ||A||

Solution to every initial value problem exists and are unique. \implies generates globally defined flow $\varphi : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$

Picard iterates for local solutions

$$\begin{split} \lambda_0(t) &:= x_0 \forall t \in J \\ \lambda_{n+1} &= P(\lambda_n)(t) = x_0 + \int_0^t A\lambda_n(s) ds \implies \lambda_n = \sum_{k=0}^n \frac{t^k A^k}{k!} x_0 \\ \implies \lambda_\infty(t) = \varphi(t, x_0) e^{At} x_0 \\ \end{split}$$
We have the series converge whenever $|t| \leq h$ for some h > 0

Definition 3.1. (Matrix exponential function)

$$t \mapsto e^{At} \qquad e^{At} = \sum_{k=0}^{\infty} \frac{t^k A^k}{k!}$$

Lemma 3.1.

$$||BC|| \leqslant ||B||||C||$$

Proposition 3.2. - (Existence of matrix exponential) Matrix $B \in \mathbb{R}^{d \times d}$

$$e^B := \sum_{k=0}^{\infty} \frac{1}{k!} B^k \in \mathbb{R}^{d \times d}$$

 \mathbf{exists}

Theorem 3.3. (Flow of an autonomous linear differential equation)

Consider $\dot{x} = Ax$, $A \in \mathbb{R}^{d \times d}$ Flow $\varphi : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ given by

$$\varphi(t, x) = e^{At} x \quad \forall t \in \mathbb{R}$$

Proposition 3.4. - (Properties of matrix exponential)

- (i) $C = T^{-1}BT \implies e^C = T^{-1}e^BT$
- (ii) $e^{-B} = (e^B)^{-1}$
- (iii) $BC = CB \implies e^{B+C} = e^B e^C$
- (iv) $B = diag(B_1, \dots, B_p) \implies e^B = diag(e^{B_1}, \dots, e^{B_p})$

3.2 Planar linear systems

Consider $\dot{x} = Ax, A \in \mathbb{R}^{2 \times 2}$ Transform A in Jordan normal form $\implies J = T^{-1}AT, T$ invertible $\implies e^{AT} = Te^{Jt}T^{-1}$

(C1) A has 2 distinct real eigenvalues, $a, b \in \mathbb{R} : J = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$

- (C2) A has double real eigenvalues $a \in \mathbb{R}$, with 2 linearly independent eigenvectors: $J = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$
- (C3) A double real eigenvalues with 1 eigenvector : $J = \begin{pmatrix} a & 0 \\ 1 & a \end{pmatrix}$
- (C4) A has 2 complex eigenvalues $a \pm b, b \neq 0$: $J = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$

A not singular: C1

$$J = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \quad a, b \in \mathbb{R} \setminus \{0\}, \ a \neq b$$
$$e^{Jt} = \begin{pmatrix} e^{at} & 0 \\ 0 & e^{bt} \end{pmatrix} \quad \forall \ t \in \mathbb{R}$$

Trajectory given $O(x_0, y_0) = \{(x, y_0(\frac{x}{x_0})^{b/a} \in \mathbb{R}^2 : \frac{x}{x_0} > 0)\}$ Obtaining the following phase portraits:

C2

Trajectory given $O(x_0, y_0) = \{(x_0e^{at}, y_0e^{at}) : t \in \mathbb{R}\} = \{(x, x\frac{y_0}{x_0}) \in \mathbb{R}^2 :$	$\frac{x}{x_0}$	>	$0\}$
Obtaining the following phase portraits:	20		

 $\mathbf{C3}$

$$J = \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} \quad a \in \mathbb{R} \setminus \{0\}$$
$$e^{Jt} = \begin{pmatrix} e^{at} & te^{at} \\ 0 & e^{at} \end{pmatrix} \quad \forall \ t \in \mathbb{R}$$

Trajectory given $O(x_0, y_0) = \{(x_0e^{at} + y_0te^{at}, y_0e^{at}) : t \in \mathbb{R}\} = \{(\frac{x_0}{y_0}y + \frac{y}{a}\ln\frac{y}{y_0}, y) \in \mathbb{R}^2 : \frac{y}{y_0} > 0\}$ Obtaining the following phase portraits:

a < 0	$a \ge 0$	
Stable knot - 1 tangents	Unstable knot - 1 tangents	
a and a second s	<i>a</i>	
x	x	

 $J = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \quad a \in \mathbb{R} \setminus \{0\}$ $e^{Jt} = e^{at} \begin{pmatrix} \cos(bt) & \sin(bt) \\ -\sin(bt) & \cos(bt) \end{pmatrix} \quad \forall \ t \in \mathbb{R}$

Trajectory given $O(x_0, y_0) = \{e^{at} \begin{pmatrix} x_0 \cos(bt) + y_0 \sin(bt) \\ y_0 \cos(bt) - x_0 \sin(bt) \end{pmatrix} : t \in \mathbb{R}\}$ Obtaining the following phase portraits:

C4

A singular: C1

$$J = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \quad a \in \mathbb{R} \backslash \{0\}$$
$$e^{Jt} = \begin{pmatrix} e^{at} & 0 \\ 0 & 1 \end{pmatrix} \quad \forall \ t \in \mathbb{R}$$

Trajectory given by $O(x_0, y_0) = \{(e^{at}x_0, y_0) : t \in \mathbb{R}\}$ Obtaining the following phase portraits:

 $\mathbf{C2}$

$$J = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Trivially whole space is equilibria

C3

$$J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad a \in \mathbb{R} \setminus \{0\}$$
$$e^{Jt} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \quad \forall \ t \in \mathbb{R}$$

Trajectory given by $O(x_0, y_0) = e^{Jt} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \{ (x_0 + ty_0, y_0) : t \in \mathbb{R} \}$ Obtaining the following phase portraits:

 $\mathbf{C4}$

Can't happen as a 2D matrix of real eigenvalus can't have eigenvalue of 0.

Remark 3.5 - (Meaning of real + imaginary parts of e.vals of A)

(i) Rate of exponential growth

Re[e.val] - determines rate of exponential growth behaviour of solution

$$\lambda(t) = e^{At} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

Obtain exponential growth rate for $\mu(t) = e^{at}$

$$\lim_{t\to\infty}\frac{\ln e^{at}}{t}=a$$

Lyapunov exponent

For solution λ with initial condition $(x_0, y_0) \neq (0, 0)$

$$\sigma_{lyap}(\lambda) = \lim_{t \to \infty} \frac{\ln \|\lambda(t)\|}{t}$$

We have a solution decay if $\sigma_{lyap} < 0$, grow if $\sigma_{lyap} > 0$

(ii) Rate of Rotation Solution rotates is e.vals not real.

For a + bi an e.val

- |b| speed of rotation
- sign(b) orientation of rotation $b > 0 \implies Q$, $b < 0 \implies Q$

3.3 Jordan Normal Form

Theorem 3.6 - Complex Jordan Normal Form

 $A \in \mathbb{R}^{d \times d}, \exists T \in d \times d$ s.t we get

$$J := T^{-1}AT = \begin{pmatrix} J_1 & & 0 \\ & \ddots & \\ 0 & & J_p \end{pmatrix}$$

With Jordan blocks

$$J_{j} = \begin{pmatrix} \rho_{j} & 1 & 0 & 0 \\ 0 & \rho_{j} & 1 & 0 \\ & \ddots & \ddots & \\ 0 & & \rho_{j} & 1 \\ 0 & 0 & 0 & \rho_{j} \end{pmatrix} \quad \text{for all } j \in \{1, \dots, p\}$$

For $p_j, j \in \{1, ..., p\}$ complex e.vals of A **Theorem 3.7** - Real Jordan Form

 $A \in \mathbb{R}^{d \times d}, \, \exists T \in \mathbb{R}^{d \times d} \text{ s.t}$

$$J := T^{-1}AT = \begin{pmatrix} J_1 & 0 \\ & \ddots & \\ 0 & & J_p \end{pmatrix}$$

 J_j as in 3.6 if ρ_j real if ρ_j complex \implies

$$J_{j} = \begin{pmatrix} C_{j} & I_{2} & 0 & 0\\ 0 & C_{2} & I_{2} & 0\\ & \ddots & \ddots & \\ 0 & & C_{j} & I_{2}\\ 0 & 0 & 0 & C_{j} \end{pmatrix} \quad \text{with } C_{j} = \begin{pmatrix} a_{j} & b_{j}\\ -b_{j} & a_{j} \end{pmatrix} \rho_{j} = a_{j} + ib_{j}$$

3.4 Explicit representation of matrix exponential function

 $A \in \mathbb{R}^{d \times d}$

Assume invertible $T \in \mathbb{R}^{d \times d}$ transforms A into real $J := T^{-1}AT = \begin{pmatrix} J_1 & 0 \\ & \ddots \\ 0 & J_p \end{pmatrix}$ $\implies e^{At} = Te^{Jt}T^{-1} = T \begin{pmatrix} e^{J_1t} & 0 \\ & \ddots \\ 0 & e^{J_pt} \end{pmatrix} T^{-1}$

Proposition 3.8

 $A \in \mathbb{R}^{d \times d}$ $J_j, j \in \{1, \dots, p\}$ Jordan blocks for real Jordan normal form with eigenvalues ρ_j

(i) ρ_j real

$$\exp\left\{ \begin{pmatrix} \rho_j & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \rho_j \end{pmatrix} t \right\} = e^{\rho_j t} \begin{pmatrix} 1 & t & t^2/2 & \dots & \frac{t^{d_j - 1}}{(d_j - 1)!} \\ 0 & 1 & t & \ddots & \vdots \\ & & \ddots & \ddots & t^2/2 \\ 0 & & & 1 & t \\ 0 & 0 & & 0 & 1 \end{pmatrix}$$

(ii)
$$\rho_j = a_j + ib_j \in$$

$$\exp\left\{ \begin{pmatrix} C_{j} & I_{2} & 0 \\ & \ddots & \ddots \\ & & \ddots & I_{2} \\ 0 & & & C_{j} \end{pmatrix} t \right\} = e^{a_{j}t} \begin{pmatrix} G(t) & tG(t) & \frac{t^{2}}{2}G(t) & \dots & \frac{t^{d_{j}-1}}{(d_{j}-1)!}G(t) \\ 0 & G(t) & tG(t) & \ddots & \vdots \\ & & \ddots & \ddots & \frac{t^{2}}{2}G(t) \\ 0 & & G(t) & tG(t) \\ 0 & 0 & 0 & G(t) \end{pmatrix}$$
Where $G(t) = \begin{pmatrix} \cos(b_{j}t) & \sin(b_{j}t) \\ -\sin(b_{j}t) & \cos(b_{j}t) \end{pmatrix} \quad \forall t \in \mathbb{R}$

3.5 Exponential growth behaviour

Definition 3.2.

Spectrum of A

$$A \in \mathbb{R}^{d \times d} \quad \Sigma(A) = \{Re(\rho) : \rho \text{ eval of } A\} = \{s_1, \dots, s_p\}$$

For $\dot{x} = Ax$ we have decomposition

$$\mathbb{R}^d = E_1 \oplus \cdots \oplus E_q$$

 E_j invariant

- $x \in E_j \implies \varphi(t, x) \in E_j \ \forall t \in \mathbb{R}$
- $x \in E_j \setminus \{0\} \implies \sigma_{lyap}(\varphi(\cdot, x)) = \lim_{t \to \infty} \frac{\|\varphi(t, x)\|}{t} = s_j$

Definition 3.3.

semi-simple eigenvalue

If all Jordan blocks associated to eval in real Jordan normal form are:
1 dim. for real e.val
2 dim. for non-real e.val
Proposition 3.9 - Exponential estimate for matrix exponential function

 $A \in \mathbb{R}^{d \times d}$, Choose $\gamma > \max \Sigma(A)$ If all e.vals ρ with $Re(\rho) = \max \Sigma(A)$, semi-simple \implies take $\gamma = \max \Sigma(A)$

$$\implies \exists K > 0 s.t \| e^{At} \| \leq K e^{\gamma t} \quad \forall t \ge 0$$

3.6 Variation of constants formula

Proposition 3.10 - (Variation of constants formula)

General solution to $\dot{x} = Ax + g(t)$ given by

$$\lambda(t, t_0, x_0) = e^{A(t-t_0)} x_0 + \int_{t_0}^t e^{A(t-s)} g(s) ds \quad \forall t, t_0 \in I, x_0 \in \mathbb{R}^d$$

4 Non-linear systems

4.1 Stability

4.1.1 Basic definitions

Definition 4.1.

- x^* an equilibrium of $\dot{x} = f(x) \implies f(x^*) = 0$
 - (i) x^* stable if $\forall \epsilon > 0, \exists \delta > 0$ s.t

$$\|\varphi(t,x) - x^*\| < \epsilon \quad \forall x \in B_{\delta}(x^*) \text{ and } t \ge 0$$

- (ii) x^* unstable if not stable
- (iii) x^* attractive if $\exists \delta > 0$ s.t

$$\lim_{t \to \infty} \varphi(t, x) = x^* \quad \forall x \in B_{\delta}(x^*)$$

- (iv) x^* asymptotically stable if x^* stable and attractive
- (v) x^* exponentially stable if $\exists \delta > 0, K \ge 1$ and $\gamma < 0$ s.t

$$\|\varphi(t,x) - x^*\| \leqslant K e^{\gamma t}$$

(vi) x^* repulsive if $\exists \delta > 0$ s.t $\lim_{t \to -\infty} \varphi(t, x) = x^*$, $\forall x \in B_{\delta}(x^*)$

INSERTFIGURESHERE

Definition 4.4. (Homoclinic and heteroclinic orbits)

 $\dot{x} = f(x) \ f : \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$ locally Lipschitz continuous, with flow φ Orbit O(x) for some $x \in D$

(i) **Homoclinic** orbit if \exists equilibrium $x^* \in D \setminus \{x\}$ s.t

$$\lim_{t \to \infty} \varphi(t, x) = x^* \text{ and } \lim_{t \to -\infty} \varphi(t, x) = x^*$$

(ii) **Heteroclinic** orbit if $\exists 2$ distinct equilibria $x_1^* \neq x_2^*$ s.t

$$\lim_{t\to\infty}\varphi(t,x)=x_1^* \text{ and } \lim_{t\to-\infty}\varphi(t,x)=x_2^*$$

Theorem 4.5. (Stability of linear systems

Consider autonomous linear system, $\dot{x} = Ax, A \in \mathbb{R}^{d \times d}$ Have trivial equilibrium $x^* = 0$

- (i) stable \iff - $Re(\rho) \le 0 \ \forall \rho \text{ e.vals of } A$ - e.val ρ semi-simple \forall e.vals ρ of A with $Re(\rho) = 0$
- (ii) exponentially stable $\iff Re(\rho) < 0 \ \forall$ e.vals ρ of A

4.1.3 Hyperbolicity

Definition 4.7.

 $A \in \mathbb{R}^{d \times d}$ hyperbolic if $Re(\lambda) \neq 0 \ \forall \lambda$ e.vals of AEquilibrium x^* of differential equation $\dot{x} = f(x) \ f : D \subset \mathbb{R}^d \to \mathbb{R}^d$ continuously differentiable, is hyperbolic if matrix $f'(x^*) \in \mathbb{R}^{d \times d}$ hyperbolic. Lemma 4.9 - Gronwall Lemma

Consider continuous function $u : [a, b] \to \mathbb{R}$, let $c, d \ge 0$ Assume u satisfies implicit inequality

$$0 \leqslant u(t) \leqslant c + d \int_{a}^{t} u(s) ds \quad \forall t \in [a, b]$$

Theorem 4.10. (Linearised stability)

 $\dot{x} = f(x) \ f: \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$ continuously differentiable.

Assume x^* equilibrium of above s.t \forall e.vals $\lambda \in$ of linearisation of $f'(x^*) \in \mathbb{R}^{d \times d}$ we have $Re(\lambda) < 0 \implies x^*$ is exponentially stable.

4.1.5 Stable and unstable sets, invariant sets

Definition 4.12. (Stable + unstable set)

$$\dot{x} = f(x) \ f : \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$$
 locally lipschitz continuous, with flow φ and equilibria x^*
Stable set of x^*

 $W^s(x^*) = \{x \in D : \lim_{t \to \infty} \varphi(t, x) = x^*\}$

Unstable set of x^*

$$W^{u}(x^{*}) = \{x \in D : \lim_{t \to -\infty} \varphi(t, x) = x^{*}\}$$

Definition 4.15. (Invariance)

 $\dot{x} = f(x) \ f: \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d \text{ locally lipschitz continuous.}.$

- (i) **positively invariant** if $\forall x \in M, O^+(x) \subset M$
- (ii) negatively invariant if $\forall x \in M, O^-(x) \subset M$
- (iii) **invariant** if $\forall x \in M, O(x) \subset M$

4.2 Limit Sets

Definition 4.16. (Omega and alpha limit sets)

$$\dot{x} = f(x) \ f : \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$$
 locally lipschitz continuous, with flow $\varphi, x \in D$

1. $x_w \in D$ an omega limit point of xIf \exists sequence $\{t_n\}_{n\in\mathbb{N}}$ s.t $\lim_{n\to\infty} t_n = \infty$ and

$$x_{\omega} = \lim_{n \to \infty} \varphi(t_n, x)$$

 $\omega(x) = \{ \text{all omega limit points of } x \}$

2. $x_{\alpha} \in D$ an alpha limit point of xif \exists sequence $\{t_n\}_{n \in \mathbb{N}}$ s.t $\lim_{n \to \infty} t_n = -\infty$ and

$$x_{\alpha} = \lim_{n \to \infty} \varphi(t_n, x)$$

 $\alpha(x) = \{ \text{all alpha limit points of } x \}$

Proposition 4.19 - (Alternative characterisation of limit sets)

 φ flow of differential from above $x\in D$

$$\begin{split} \omega(x) &= \bigcap_{t \geqslant 0} \overline{O^+(\varphi(t,x))} \\ \alpha(x) &= \bigcup_{t \leqslant 0} \overline{O^-(\varphi(t,x))} \end{split}$$

Proposition 4.21 - (properties of ω, α limit sets)

$$\dot{x} = f(x) \ f : \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$$
 locally lipschitz continuous, $x \in D$

- (i) $\omega(x)$ invariant if $O^+(x)$ bounded and $\overline{O^+(x)} \subset D \implies \omega(x) \neq \emptyset$ compact
- (ii) $\alpha(x)$ invariant if $O^{-}(x)$ bounded and $\overline{O^{-}(x)} \subset D \implies \alpha(x) \neq \emptyset$ compact

4.3 Lyapunov functions

Definition 4.22. (Orbital derivatives)

 $\dot{x} = f(x) \ f : \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$ locally lipschitz continuous $V : D \to \mathbb{R}$ continuously differentiable function. Define **orbital derivative** \dot{V} of V

$$\dot{V}(x) := V'(x) \cdot f(x) = \sum_{i=1}^{d} \frac{\partial V}{\partial x_i}(x) f_i(x)$$

 $V'(x) \in \mathbb{R}^{1 \times d}$ the gradient of V at $x \in D$ \dot{V} describes derivative of V along solution $\mu : ID$ of $\dot{x} = f(x)$

Definition 4.24. (Lyapunov functions)

$$\begin{split} \dot{x} &= f(x) \ f: \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d \text{ Locally Lipschitz continuous.} \\ V: D \to \mathbb{R} \text{ continuously differentiable function} \\ V &= \text{Lyapunov function if } \dot{V}(X) \leqslant 0 \ \forall x \in D \end{split}$$

Remark.

Lyapunov function decrease along solutions

$$V(\varphi(t,x)) \leq V(x) \ \forall t \in [0, \sup J_{max}(x))$$

Proposition 4.25. - (Sublevel sets of Lyapunov functions are positively invariant) $\dot{x} = f(x) \ f: \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$ Locally Lipschitz continuous, with Lyapunov function $V: D \to \mathbb{R}$ Any sublevel set of form

$$S_c := \{ x \in D : V(x) \le c \}, \ c \in \mathbb{R}$$

is positively invariant

Theorem 4.26. (Lyapunov's direct method for stability)

 $\dot{x} = f(x) \ f : \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$ Locally Lipschitz continuous, x^* an equilibria and $V : D \to \mathbb{R}$ lyapunov function s.t

$$V(x^*) = 0, V(x) > 0 \ \forall x \in D \setminus \{x^*\} \implies x^* \text{ stable}$$

Theorem 4.28. (La Salle's invariance principal)

 $\dot{x} = f(x) \ f: \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d \text{ Locally Lipschitz continuous, with Lyapunov function } V: D \to \mathbb{R}$

$$\omega(x) \subset \{y \in D : V(y) = 0\} \ \forall x \in D$$

 $\dot{x} = f(x) \ f : \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$ Locally Lipschitz continuous, with Lyapunov function $V : D \to \mathbb{R}$

$$\forall x \in D\omega(x) \subset \underbrace{\text{largest invariant subset of } \{y \in D : \dot{V}(y) = 0\}}_{=\bigcup \text{ invariant subsets of } \{y \in D : \dot{V}(y) = 0\}}$$

Theorem 4.31. (Lyapunov's direct method for asymptotic stability)

 $\dot{x} = f(x) \ f : \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$ Locally Lipschitz continuous, $x^* \in D, V : D \to \mathbb{R}$ Lyapunov function s.t

$$\begin{split} V(x^*) &= 0 \text{ and } V(x) > 0 \ \forall x \in D \setminus \{x^*\} \\ \dot{V}(x^*) &= 0 \text{ and } \dot{V}(x) < 0 \ \forall x \in D \setminus \{x^*\} \end{split}$$

 $\implies x^*$ asymptotically stable

Corollary 4.33 - (Sublevel sets of Lyapunov functions are subsets of domain of attraction) $\dot{x} = f(x) f: \underbrace{D \subset \mathbb{R}^d}_{\text{open}} \to \mathbb{R}^d$ Locally Lipschitz continuous, $x^* \in D, V: D \to \mathbb{R}$ Lyapunov function

Consider sublevel sets of Lyapunov function V

$$S_c := \{ x \in D : V(x) \le c \} \ \forall c > 0$$

 \implies S_c subset of domain of attraction $W^s(x^*)$ if $S_c \subset D$ compact

4.4 Poincaré-Bendixson Theorem

Theorem 4.34. (Poincare-Bendixson Theorem

 $\dot{x} = f(x) \ f : \underbrace{D \subset \mathbb{R}^2}_{\text{open}} \to \mathbb{R}^2$ with flow φ continuously differentiable.

Assume for some $x \in D, O^+(x) \subset K$ compact $\subset D$ K containing not more than finitely many equilibria.

One of the following 3 hold for $\omega(x)$

- (i) $\omega(x)$ a singleton, consisting of an equilibrium
- (ii) $\omega(x)$ a periodic orbit
- (iii) $\omega(x)$ consists of equilibria + non-closed orbits non-closed orbits in $\omega(x)$ converge forward and backward in time to equilibria in $\omega(x)$ \implies either homoclinic or heteroclinic orbits.

Corollary 4.35 - (Existence of a periodic orbit)

$$\dot{x} = f(x) \ f : \underbrace{D \subset \mathbb{R}^2}_{\text{open}} \to \mathbb{R}^2$$
 continuously differentiable with flow φ .
Assume for $x \in D, \ O^+(x) \subset K$ compact $\subset D$

D not containing an equilibrium $\implies \omega(x)$ periodic orbit.