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1 Vector Calculus

1.1 Preliminary ideas and some revision of vectors

1.1.1 The Einstein summation convention

In any product of terms, if we have a repeated suffix, then that quantity is considered to
be summed over (from 1 to 3, since we will usually be working in three dimensions). For
example

3
a;x; is shorthand for g a;x;.

i=1
1.1.2 The Kronecker delta

This is the quantity d;; and is defined such that
_JLi=g
b = { 0, i4]
Example 3

L3080 = Sulurbife
a =
J= T 0383
C
Note that the left-hand-side had two different subscripts, while the right-hand-side ends
up with only one subscript - this is known as a contraction.
— |

1.1.3 The permutation symbol 3 \(
This is the quantity €;;x, defined as /\\/ Z

0, if any two of 4, j, k are the same; C clic
Eijk = 1, if 7, 7, k is a cyclic permutation of 1, 2, 3;
—1, if 4,4,k is an acyclic permutation of 1,2,3. | 2,3 2_’3; 3 (1
ck_\,C.

For example
€123Zl ,53212/)_781332 O : 32~l‘32[3 2—

We can show, by considering the various cases, that the Kronecker delta and the permu-
tation symbol are connected by the formula

SMMO\/*Q_Vk

EijkEklm = 5i15jm - 5im5jl-

(I will put a proof on blackboard). The quantities d;; and &;j; are known as tensors.
Exercise: Show this can be rewritten in the alternative form

S o0el EijkEitm = 0j10km — OjmOki-
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1.1.4 Vector product

Recall that this is the multiplication of two vectors which results in a third vector, per-
pendicular to the first two. It can be written in the form of a determinant as

i j k
axb=|a a aj
by by b3

If a x b = 0 then the two vectors are parallel. Recall that (a x b) = —(b x a). If we just
consider the first component of this vector we can write this as

asbs — asby = 8(23 Q—Z(O:S + EIBZQS&)Q_
E | ot
| \)K ) b "3
since €193 = 1,e132 = —1, and &1;; = 0 for all other ¢ and j. In general we can write the

1th component of a x b as
lax b= E O-
W Oiby

1.1.5 Scalar product

'y
This is defined as

wh - o b+ G, Gabs

A

using the summation convention. Recall that if a-b = 0 then the vectors a and b are
orthogonal.

1.1.6 Triple scalar product
o ti?btt)y o [x ¢\ LT 0 kR G
If this quantity is zero then the vectors a, b, c are coplanar. A useful property of the triple

scalar product is that the dot and cross can be swapped without changing the answer,
provided the order of the vectors remains unchanged, i.e.

=(exiy OL'JD:DQK = [Q’(\?.}KC'K
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1.1.7 'Triple vector product

This is defined as
ax (b xc).

Since b x ¢ is a vector normal to the plane of b and ¢, and a x (b x ¢) is normal to b x c,
it follows that the triple vector product must lie in the plane of b and c. In component
notation

ax(bxel = <K O‘jﬂl—’xdk
— 5(,3\40\.5 gk(vv\b/Q CW\
-(BuSyr 8 b)) obuc,

= (O—"C—g\’L’C(}l'by C:

and so we conclude that
ax(bxc)=(a-c)b—(a-b)c,

which confirms explicitly that the triple vector product indeed lies in the plane of b and
C.
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=p(Q)
> . s

P\ K§> p=p()

Figure 1: The surface ¢ = constant through two neighbouring points.

1.2 Gradient

Let ¢ be a differentiable scalar function of position in three dimensions. If P is a general
point, ¢ will depend on the position of P, so we may write ¢ = ¢(P). The position of P
is defined by reference to a coordinate system e.g. if we consider Cartesian coordinates,
then P depends on (z,y, z) and hence ¢ = ¢(x,y, z), while if we consider cylindrical polar
coordinates (r,0, z) then ¢ = ¢(r,0, 2).

The equation ¢ = constant defines a surface in three dimensions. Varying the constant,
we can define a family of surfaces called ‘level surfaces’ or ‘equi- ¢ surfaces’. For example,
if ¢ represents pressure, then ¢ = constant defines a family of surfaces over which the
pressure is constant. The surface through a specific point P is ¢ = ¢(P). Let @ be
a neighbouring point. (See figure 1). The equation of the level surface through @ is
¢ = ¢(Q). We draw the normal to ¢ = ¢(P) at P. Suppose that it intersects ¢ = ¢(Q)
at the point N. Since N is on ¢ = ¢(Q) we have ¢(N) = ¢(Q). Let s denote the length
along P(Q and let n denote the length along PN. Introduce unit vectors S and n in those
directions. We define d¢/0s to be the directional derlvatlve of ¢ in the direction § :

¢ i COl@— 2@ /FQ

0s PQ—%O

) (- C,D(P)}
Q > ( (PN
- . N Q) \
\A‘,V;/\P PNy - WA <
A
.

N N QP

?L‘DC@S@ = Q}‘i(
IR

Since cosf < 1, the maximum directional derivative at P occurs along the normal to

» = ¢(P) at P.

N
=

2)
)
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The vector nd¢/0n is called the gradient of ¢ at P. We write it as grad ¢ or V.
The operator grad or V is known as the vector gradient operator. We have

9
%—S V¢

1.2.1 Cartesian components of V¢

If Vo = Aji+ Agj + Ask then i- Vo = A;. But, by definition, i- V¢ = d¢/dzx. Hence
Ay = 0¢/0x. Similarly we find Ay = 0¢/dy, A3 = d¢/0z and so we have the result:

vo- Op 1 +9£/J\"—Q£/L\c
X Y %
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Example

If ¢ = axy® + byz + cx®z?, where a, b, c are constants, find V¢. Also find the directional
derivative of ¢ at the point (1,4, 2) in the direction towards the point (2,0, —1

)

S]KIO = (a\a?‘—l- ?)Cbtzzl>'+ 3<Za>u}+lo{{> 4 ﬁ iog/‘i'ZCxZZ:)
= \ ) A

PQYO(P)L: 3— Q( |Got |§2<;> 4+ 3<8Q+§2L}> + k<4b+4c>

(\)wj S = (2)0)4—0— (/\\w?) - (l;%yi)
. v g ;({_43—3/%) «/(,}HFZJF 32>
IR CX N R I =
Dp»ec;%mé& — (< /é>
e — (MPe
s ;élQod-\é}c)P- Ll—<8 “"‘”2\0) =5 (L"E’—MLCE /ﬁé
- C

—1ca — 20b>/\r’26
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L =
’S

Figure 2: Sketch showing a point P represented by Cartesian coordinates (z,y,z) and

cylindrical polar coordinates (7,0, z = v (59 Lﬁ =T %V\'e

1.2.2 Cylindrical polar components of V¢

The set-up is as shown in figure 2. We write V¢ = AT+ AQé\ + Ask. Then it follows that
A = /\
T < P+ _,ﬁ ) -\— [4 N
AN
(2523
(Q)S%E_&e«k%\%?j@ —+ ZeD - -

D

Ay = 0-Vo

K=Y
| >
\\
O

S

and A3 =k-V¢ = 9¢/0z. Hence
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AN (&'750 >P

Figure 3: The tangent plane to a surface.

1.2.3 Equation of a tangent plane to ¢ = ¢(P)

We have that (V¢)p is normal to ¢ = ¢(P) at P. The equation of the tangent plane is
therefore

(r—rp)-(Vo)p =0,

(52) ot () s () (==

1.e.
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Example [\] @
Find the tangent plane to the surface C O\A&-\/O\)/Q \ /.
_ (@) ( z 7‘> >
z=ce . AL -+ 3
f=2€

\
* at the point z = -1,y = 0. PEA /J_
N

J\e;kap:z—é = ﬁ:_\_

_ s Voo ol Z P
% /%L% =1 & & Z%@aiﬁzﬂmi\’:")élo
“oa £‘3 — e—l.
N ’{’OJ\SW\& Q\O\/’\Q_ S
c'(a=(-N)T O T (1)(z-€) =0
) > z=¢ et ()

—

—_—

— ’Jé (24‘3(}//
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1.3 Divergence and Curl

In this section we will assume that A is a vector function of position in three dimensions,
with continuous first partial derivatives.

Since V is a vector operator, we can define formally a scalar product V- A. This is called
the divergence of the vector A. We can also define the vector product V x A, which is
called the curl of A. So to summarize we have

divA=V-A curlA =V xA.

1.3.1 Cartesian form

’\9 ¢ 5 k
o ®+ +k®i> (L\ +A 3+A3 >

(esP'S
A+ SAL 4—9 A3
Dx @8/

’8/31 '3/693 9/31\
- A N /AN, DA
2 -
~ (2R3 _OA Ay M)tk 5377 =
<5§ g;> J(ax az> O X'

Note that these simple forms for div and curl arise because i, j,kare constant vectors:
this is not so in other coordinate systems.

curlA =

N.@- Dot C,(JV\Q&&Q-
/N ALY & YA
= Q
<A L+A7_&+7A\5\(> ;i/ %+ &%: Scodey”

— A( g’l' ALZ}%,/‘—Aggz < d‘f}_m:t@f—
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Examples
(a) If

A = (yPcosz + 2°)i+ (2ysinx — 4)j + (322 + 2)k,
find divA and curl A.

(b) Find divu and curlu when (i) u = r; (ii) u = w X r, where r = zi + yj + 2k, and
w = Qk with Q constant.

2
( Q> o L} — a@_}é uglCosxA— 23> 1‘9% (2\3,3\,,\)(_— L{-)"("S%@JL% il R>

A A /\\/ — S Xt S+ bx2
L ) 3
N ggm 'jizl A s
J&—:f 94 +al l RRoTATroNAL>

A * ;—_9
- g ) =2
() %;x’t%’pﬁ = c&/tv& =S
CL w = . /3 k — 0
- \ Ofax. 9/ ’5/8%\
Y Z
0 . w = QL k A

(W) & = WK T Ny, N
- \ S O —g— = — L+ 0
- J ‘ ENo (DAL
' — QO+ o) = O _L_*“LS‘SOL 0D >
B dwy = I C MG )
N ~ ~
Cotn = L J k :/\k(o)—/j(c)

-~y O O +k <Q—:(__—§l}>ﬁ>\
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1.4 Operations with the gradient operator

1.4.1 Important sum and product formulae

Note that V is a linear operator, and so:
() V(g1 +¢2) = Vo1 + Vo,
(i) div(A + B) = divA +divB,
(i) cwrl (A +B) = curl A + curl B.

The proofs of these results follow immediately from the definition of V.

Other key results are
(V) V(o) = Vi + 0V, ( VAVE

(v)div(pA) = ¢divA+Vo-A.
Proof of (v)

div(oA) = “ax 93

- b \PQ\A\+9A1+9A5>+ A(QE+A2§6‘€+A3—9—E

dxX Y o2

In writing out these proofs it is easier to use the summation convention that
we introduced earlier. Rather than write (z,y, z) for Cartesian components, we write
(21,22, x3) and in place of (i,j,k) we write (€;, €z, €3). Then we saw earlier that

AxB = £,&A,B; [.’A,\ ”(,@_](J: Etjk C‘j lok

Also recall the useful result that
Eijk€klm = 5il5jm - 5im5jl~

Thus, under the summation convention:

ava — DAL/ax L

Ve, = 9“‘3/ OX
Kk @ Ak
[ourlA]i = aD(_

where [ ]; indicates the ith component Using this approach the proof of (v) takes the

form
div(pA) Za—zb C(O L> %0 XL é_(f—

¢t +(a D)
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Other important results are:

(vi) curl (pA)

(vii) div(A x B)
(viii) curl (A x B)
(ix) V(A - B)

pcurl A+ Vo x A,

B:-curl A — A - curl B,

(B-V)A —BdivA — (A-V)B + AdivB,
(B-V)A+(A-V)B+B xcurl A+ A x curl B.

Example

Prove relation (ix) above. If we work on the RHS we can write

[(B V)A+ (A -V)B+B x curl A + A x curlB|,

— B A+ A B € By (CeA) + € KAJ(CJE)K
&x 83&

13
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Note: In the following sections we will assume that our scalar and vector functions
possess continuous second derivatives.

1.4.2 The divergence of a gradient: the Laplacian

Consider the operation

B 2
= VZSO = alfo/é)xégx =9 SD/QXL

This is to be read as ‘del squared ¢’ or the Laplacian of ¢. The operator V2 is known
as the Laplacian operator. We also define the Laplacian of a vector as

A n 0?A n 9*’A

ox?  Oy*> 022

VA =

in Cartesian coordinates, and the equation V2¢ 0 is known as Laplace’s equation.

Ve o = f(x)%z> Porsson’s
Example L/\:/‘/E:\/‘- (\)L’LA} IO/\(
If ¢ =22 + ¢, find V3¢.
J = ol >.9/—(E L, o =0
by e

L —
%VP’LL’1~ Sohikon

p= g P o
OF(FG\SSCM SQT;&W
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1.4.3 The curl of a gradient

Consider the operation /t 3\ k
M B, Oy Vo
20 9

(568 a&@) (@®2®)
AR 3E) - ekl
(This result can also be established by using tensor notation). (,_g_) 9
5/ 8 pl&

Example

Consider ¢ = azy? + byz + ca®z? and show explicitly that curl V¢ = 0.

Vp = L(Ové " B z)—r\) (2&%\&*&%}% k(ba;k IS ?:>

> Qo (YY) = L 3 'k
@/@1 Q/aj @/@Z

\
0»‘§+ 3011%1 ) o Yt bz togﬁ Qex2

=2 (b (eete —aete) v (g 2oy)
— @ C&% @L@EC&Q§>
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1.4.4 The divergence of a curl

This is also always zero, as can be seen from the followmg argument:

div(curl A) = ag CM A) "JK 2 ( 9 A
— 1. e @AK> b s 9 A )
T2 e o) ‘”Kax XL
1 8 aA &
— 6 > K JLk >
- i } (=i
Example — ~_;‘_
Verify that div(curl A) = 0 for the quantity A = ye®i+ (2% + 2)j + 3> cos(zx)k.
N ~ N
Cwl 6 = L J k.
3

< 34@s(20) “> 0( 32%‘“(ﬁ>>
+ k(élx e )
ietn)= G%@S@@") s
@ (Qac, 6)

,3?_2 gm(%@% 3}{5%\w<215 +0O
p— Q// oS @Q&&E’/c&

—
—_—
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1.4.5 The curl of a curl

This is the vector quantity
curl (curl A).

Using tensor notation and the summation convention we can show that

curl (curl A) = V(divA) — V?A.

Proof _ 2 Cvre_ 753
[MCCWJC@]'L = Sl gxg ‘

ek 2 (Eam2hm)

- 4 813 oOXg
2
=& g-w\—g' 8‘,Q ,@- Am
< L R >93C'9JC/Q
AN A A aJ
= <y — — L p—

GDCJ::‘)DC'L 3

= [Y(A)]

2 (22 -4
X\ 83X QJCJZ

X 2

7'
. A
C C
Exercise
Calculate curl (curl A), V(divA) and VA for A = ye®i+ (2 + 2)j + v cos(zx)k.

Answes X

5 N\
AN — (-4 Gin2x— z:cCsosZDQL
Cot(ctt) (_Bg(a_@ﬁsboc-xmg+?<(;L%ﬁz<®sﬂ‘68‘:“29

V(dwA) 21 (ye g smzr—x ?zcb/\s 2x)
- —(—%’5( QDC—?)JC‘B:L%M zr) nes ‘3” (o3 2 9 2
Wzﬁ\ = C%@() + éli\\ 4k (*3322@33%1+ 63 (232X ~331 @5%9
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1.4.6 Scalar and vector fields

If, at each point of a region V of space, a scalar function ¢ is defined, we say that ¢ is
a scalar field over the region V. Similarly, if a vector function A is also defined at all
points of V, then A is a vector field over V. If curl A = 0 we say that A is an irrotational
vector field. If div A = 0 we say A is a solenoidal vector field. An obvious example of a
vector field is the position vector r of a point in space. In three dimensions:

r = zi+yj+ 2k,

divr = 3 A

~ ~ k

L J — O

curlr = D/Ix g/aj 9/.9% —
x Y z
r| = r= (2% + 4+ 22)Y?

Vr = V(22 + 9 + 22)/? ) \/Q
29450 K _9_>(>8+ Uﬂrz)
= AX 3\\] D% v
AN 20 <x7'+ L+%z>
_ (‘:( C +%J + 2k > 3

_ /v

N
r

—
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—3 »:C( ~)(Qac> _ %< ,_>(23> ;/3( (22>

— 3 2 )
() ( DX ( s V5o

_ 3 4 3(4yr2Y) = o
(J(:HS’('-Z_?—> - (Cut 2% S/2 f—
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| 3'%@ dx
—

@)

! P

gg\f .

A

NO

1

oV
©
C®o

Figure 4: A curve « joining A to B and divided into /N sections.

1.5 Path Integrals

1.5.1 Definition

Consider a curve « (not necessarily in the plane, and not necessarily smooth) joining
the points A and B. (See figure 4). Suppose that the curve is divided into N sections:
AP\, P\P,,...,Py_1B. Let AP, = 081, P\P, = 0s9,...,Py_1B = dsy. Next, suppose a
function f is defined along this curve v. We compute the sum

fi10s1 + fadsg + -+ + fndsn,

where f, = f(P,). On increasing N indefinitely, while letting the maximum ds,, — 0, the
resulting limit of the sum, if it exists, is called the path integral of f along v, and we

write:
[ s | A § S,

N = A
X [ §S,)—>0 n=)

The function f may be a scalar or a vector.
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Figure 5: Diagram showing the tangent vector at a point P.

1.5.2 Path element

See figure 5. Let ds represent the arc P and suppose that the vector P—Cj = Jor. We
define the tangent vector

~ dr . or
t=—=lim —
S 85008
and the path element R
dr = tds.

T Codessians A= daC + 0\8/3 +A:&/\\(

Note that t has length unity because |or| — 0s as s — 0. We can then define the

[ fg(g.ﬁg)as
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1.5.3 Conservative forces

Consider the special case where we have a vector F of the form
F=Vo

with ¢ a differentiable scalar function. Consider the integral (with ~ defined as in figure

3):
\V4 ds
/F -dr = j ( $0 t>
. j Je eb « df > S
¥
) S SLpQ .dxée >d3
c93(,
= J &x )cls
_J¥
Jy ok%s ds [so]
PSR IGY,
We note that the result is independent of the path v joining A to B. In particular,
if v is a closed curve (i.e. B = A), then we have f,y F - dr = 0, where we put a circle on

the integral to denote the path is closed. We sometimes refer to such an integral as the
circulation of F around 7. A

Z§ B =A EZS/P
Q/V E.o\f:—@
¥
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QCDC-FSJL)%)Z)
P(x)‘j)z>

A

Figure 6: Two curves joining A to P. @ is a neighbouring point.

If a vector field F has the property that ﬁr F - dr = 0 for any closed curve ~, we say
that F is a conservative field. Thus, if F = V¢, then F is conservative. Conversely, if
F is conservative we can always find a differentiable scalar function ¢ such that F = V¢.
The function ¢ is called the potential of the field F.

Proof of this last part

See figure 6. Let F = Fii + F3j + F3k. Since we know that F is conservative it must be
the case that ff F - dr is independent of the path from A to P and hence

/ F'dr:/ F - dr,
Cl 02

where C7 and Cy are any two curves drawn from A to P. Suppose that the point A is
fixed. Then

P
/ F.-dr = G(P), say

A
= G(z,y,2)

Let @ be the point (z + dx,y, z) and let P be the point (z,y, z). Consider the quantity

Gz +0z,y,2) — G(z,y,2) = 5 . d\r — ij AC

: 59 . At <o\r o\auJFOL“/g\

But we can choose the path from P to ) so that only z varies, in which case dr = idz.

Thus I_“\' 8:(
Gz +dzr,y,2) — G(z,y,2) =
F( A

X
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and hence i [G, (5e+8x, J ﬁ) -G (X)“&)Z)J

96 _ A+
o = Sy=>0 s S _ ﬁé’/\:;/
i 5\'\W\ ( ¢ F\A°C>/gx T %‘(&):Sx[mau

NS . Hhen
TR (T [3e9=Ree)
RS >9/e)=h )
Similarly we can show that e Ple
F2 = a_y7 F3 = E

Thus, if F is conservative then a scalar function (G in this case) can be found such that

F=VvG. :> Cust F=o0.

Example CL\,Q«CJ'(.,

For the vector field C (/\I‘C {-—: = O
F = (327 + y2)i + (6y* + 22)j + (122> + 2y)k <}—’)

find a scalar function ¢(z,y,z) such that F = V¢. Hence calculate ffF - dr where
=(0,0,0) and B =(1,1,1).

¢ EAZYSD tleew %ECZF‘ :3£+32 = 3&:f+x32+ Fl42)
o 20 3k v 5 =F, = Gyttt > 237+ 36
= =x4+g/(z) =tz = |dz
7 })é%%ga:i%%c g
= @:3&+x32+233+421+ C. 3
Henw S%EQO\: :&fﬂ%di =1,
A = P(H1)— P(O’OJO>
= 3+C —C = 37
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1.5.4 Practical evaluation of path integrals

I:/F-dr
¥

explicitly, where F is a known function of (z,y, z) and v is some known curve joining the
points A(zo, yo, 2z0) and B(z1,y1, 21).

Alongyﬂv;—canjvgéle) 3 8(_JC> %:%ét) <{0€%<tl>

Here, t is a parameter that takes us along v with x(ty) = z¢, z(¢;) = x; and similarly for

y and z. Then we can write A
+ dg A S+ dz k> At
dr = th At dt

and hence, with F = Fy ()i + Fy(t)j + F5(¢

b + 5 d +ro,0_a> okt
[_ FerG ;L% soL“t

Suppose we wish to evaluate
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Z
(50
Ca

Na

! &
N
(151,0)
¥

x =X

Figure 7: The integration path for this example.

Example (see figure 7)
Evaluate

/F-drwithF:yzi +zyj +x2k
.

when v joins (0,0,0) to (1,1,1) along

(i) Cy + Cy with C} the curve x = 3% 2z = 0 from (0,0,0) to (1,1,0) and C, is the
straight line joining (1,1,0) to (1,1, 1);

(ii) Cj is the straight line joining (0,0,0) to (1,1,1). t
(i) On C * 2=0,02=0 x = So (ex na—‘c <o<+<l)& X=

ok OAR dy/at =\ dofae = AL
A\ - L+ \‘ —+ | 7 o
OV% w&m 5 F. cx[—SJcSZ‘_éo\t *EOJC dt = /‘*/
O

A(dv\s Q’L = _\ = dx = d‘éy

Jc o<t<|>

| 2
(1) Onla: X=Y=2 =t Céétgg
2 AR |
Fe bty 2 ot =1
g ‘ —tlo\d,—\-—kléjé_—\-’% dz ot = | 3¢ =1
& E.df = ZE R G . =

=
Anspad o C)&C“) oXe WJJC'HAO/ Sawma. .

w s CaSe
oowser\)c&we \
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1.6 Surface integrals

1.6.1 Definition

To define a surface integral of f = f(P) over a surface S, we divide S into elements of area
051,089, ...,05N. Let fi, fo,..., fn be the values of f at typical points Py, P, ..., Py of
051,059, ...,0SN respectively. We calculate the quantity

N
> fabSn.
n=1

We now let N — oo, maxdS,, — 0. The resulting limit, if it exists, is called the surface
integral of f over S, and we write it as

o Ty $h 55,

/ —
mox (53a)»0 n=)
As with the line integral, the function f may be a vector or a scalar.

1.6.2 Types of surfaces

Closed surface: this divides three-dimensional space into two non-connected regions -
an interior region and an exterior region; € .Q .< oo o-F co S?

Convex surface: this is a surface which is ctossed by a straight line'at most twice;

Open surface: this does not divide space into two non-connected regions - it has a rim
which can be represented by a closed curve. (A closed surface can be thought of as the
sum of two open surfaces).

Cowex
P Nom- conveX
e N P
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3 = F;.(:r.)

Figure 8: Diagram to illustrate the evaluation of surface integrals.

1.6.3 Evaluation of surface integrals for plane surfaces in the x — y plane

An areal element dS is an ‘infinitesimally small’ element of area of a surface. Even for

cusved  elosed surfaces it can be thought of as approximately plane. The vector areal element
dS is the vector ndS where n is the unit vector normal to dS. For plane surfaces dS can
MSMH coordinates (z,y) since we may choose the surface to lie in the

plane z = 0. Thus we can write dS = dx dy. (See figure 8). W ‘\'\"45 (nSe ‘f’l' =k

Let the rectangle x = a,b and y = ¢, d circumscribe S. We will assume for simplicity

that S is convex. (If it isn’t then we split .S up into convex sub-regions). Let the equation
of the boundary of S be denoted by

| Fi(z) upper half ADB
Y7\ B(z) lower half ACB

(n.b. we need to ensure these are single—valt;ed functi(‘%ns,C szhich they will be ;f)\!f is
convex). Then x= 3 =r, (% \/ e‘d,\;(’
A%OGS :Sgdg = (5 cl\tj dx shrps
b X =Ou 3 = FL(_DL,)
AN GICRAREE (

If f(x,y) is any function of position:

b (4R
/S £dS =
=

Q%‘g Cosd ‘oo M‘?\% 01["\’\0&@“&9 (%ﬁ@&im
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In some situations it may be more convenient to do the x—integration first. If we want
to do this we need to write the boundaries in terms of functions of y instead of z. In this
case let the boundary be described by

Gl right half CBD
Ga(y) left half CAD 50 = G, (4)

Then . \3— Cdy d 4 0
Araa. OF i S e S —c (EDCJG:\QJ'B 5/ S?%Uf
g (G c»oq KL =

u(\ x= G, (3>
:?(xfé) A JB/

D(_:GQ\C\\'D

and

/Sde:
%:C
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=)
1.6.4 Example }

Find the area of the circle 2% + y? = a®. \/er{'LCC\Q
,\f 6 2 rlfs
— Q,’j’) -

—+oe Y=t (

a dx
j % N nffaro
Sy B

+«/C<x )

A=
>(,
- S [% (@)

s — n
_ g (M sy,
_ ;7\0» KSCQSZM’OIUL -
—Th_ ’ 2]\ | S B
~ 9% F/\L.—\—J—GDS&W du = da [EU‘JFE " ﬂ
e o
— ([l

—
—_—
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dZ

Figure 9: Left: The projection of a plane area S onto the x — y plane. Right: The
projection of a curved surface S onto the z — y plane.

1.6.5 Projection of an area onto a plane

Consider first a plane area S (left hand diagram in figure 9). Suppose X is the projected
area in the # — y plane. Then ¥ = S cos#, where cosf = |n-k|.

Now consider a curved surface. (Right hand diagram in figure 9). If we consider an
areal element dS then this will be effectively plane, and so
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1.6.6 The projection theorem

Let P denote a general point of a surface S which at no point is orthogonal to the direction

k. Then: gz d z ,
/f a5 = /f IAlgl Adepand an [

where ¥ is the projection of S onto the plane z = 0, and n is normal to S.

C.ovtons odd
Proof . GW&V\YQ’
/f(P)dS _ !lv/V\ Z&(PBSS
° mex (8355 0 T + €
vwcex(g,gr) >0 =) Iﬂ'r

where ¢, — 0 as 45, — 0. (Here n, is the unit vector normal to S at P, and d%, is the
projection of 0.5, onto the plane z = 0. It therefore follows that

j a%) £S

as required. Note that f(P) is evaluated at P(x y,z) on S in both integrals.
If, for example, the equation of S is z = ¢(z,y) then the theorem gives

Jottews J &(%‘P(W)ﬂ%

—

K|

Alternatively, we may choose to project the surface onto z = 0 or y = 0 to give:
[ j $(8) ‘*ac‘% = | f(py Ixde

JANVAN
n . L\ Zg, ( n-J \

where Y, is the projection of S onto x = 0 and X, is the projection of S onto y = 0.
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Figure 10: Left: The plane 2x 4+ 3y + 6z = 12 and its projection onto the z — y plane.
Right: The projected region X, viewed from above.

As A~ Nxasase F
Example of using the projection theorem P rD)Q&MB oWto ~
SC=0 ov 3 =

Evaluate

/S(y—|—2z—2)d5

where S is the part of the plane 2z + 3y 4+ 6z = 12 in the first octant (x,y,2z > 0), by
projecting onto the plane z = 0.

N otwmal o ?\OLNL S V(D\;(_-FS +Q>i> QL+53+G/T<A R
S n= x(DB+ok) /M(2+5+@> = 4 (QuB)Aek)/F

- Am;cl&: j\g% O D//\ ﬂ Dd“jqw%
[ G 3s =S5 “ﬁﬁ'&)%‘? 2= (1a-203)/s

= 9_1_,_1
&sz

D A2 =4 -2y
‘3—%&20(2 L — 23(

)l
)
o
~
O
TS
_
N
9>
ko
%
~~—
Lo
Q.
<
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1.7 Volume Integrals

1.7.1 Definition

Consider a volume 7 and split it up into NV subregions 07y, 07, ...,07n. Let P, P, ..., Py
be typical points of 071,07, ...,07N.

Consider the sum N
e J(e) 8,

L=
Now let N — 0o, max d1; — 0. If this sum tends to a limit we call it the volume integral
of f over 7 and write this as
/ fdr.
.

The function f may be a vector or a scalar.

1.7.2 Volume element

In Cartesian coordinates the volume element

dr =dzrdydz.
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Figure 11: The volume 7 for the example.

d gmgi -
Example v/
Evaluate
/ (22 +y)dr

when 7 is the volume enclosed by the parabolic cylinder 2z = 4 — 22 and the planes

r=y=z=0and y=2. 2 2 4'3(—7_

u}f:l
TR o

2=0 %20
>
:Slg (scrg) () A I
QO VYo
pn

= SQ—(%x—&éﬂ— 11/3—12@0\3 dx
o . TW

= 9\(@1 ,ng—f 8*9\1,2' dx
)

. = %0/3 2.
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¥M@-ﬁWF“E

Figure 12: Diagram for proof of Green’s theorem. d Stk It
IW\Q, cutsS
cuve ot
1.8 Results relating line, surface and volume integrals oSt
< -
1.8.1 Green’s theorem in the plane M_Vld\a 'V\‘(-QFSQ&VS Tu

Suppose R is a closed plane region bounded by a simple plane closed convex curve in
the © — y plane. Let L, M be continuous functions of z,y having continuous derivatives

throughout R. Then:

oM  OL

where C'is the boundary of R described in the counter-clockwise (positive) sense.
Proof. We draw a rectangle formed by the tangent lines x = a,b and y = e, f (figure
12). This rectangle circumscribes C. Let x = X;(y),z = X3(y) be the equations of EAF

and FBF respectively. We then can ertexl( 3 ’Hd'\'( WQ
/R—dxdy = J {j (8[\4/&1. dx } dé S ‘““:-‘DS
S M(qu)») j) M(x, (33;3} Y
_ ng(xl%y,g)Ag +j§ MGl ) g
= § M 0\5,

Now, let the equations of AEB and AF' B b>e,g{ 5 Yi(z),y = Ya(z). Then

/R dedy = 9L 0‘3 dx
" an ; &
s%rwgs = j L_(xﬂg_(x)\) L(+Y60) +¢

%, Y. (%)) 3%
P\ /‘ﬂj (xYC;(.ﬂADC J L( YC)
\—}/ _ §CLdi L‘\\ %\@

p—
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1.8.2 Vector forms of Green’s Theorem

(i) (2D Stokes Theorem). Let F = Li+ Mj, and dr = dzi + dyj. Then

oM  OL
curl F = (% — a_y) k.

Over the region R we can write dx dy = dS. Thus using Green’s theorem:

f[cF-dr : %kiﬂzs o ds = %dg

This result can be generalized to three dimensions (see Stokes theorem later).

magvm ‘
(ii) (Divergence theorem in 2D). This time let F = M i — Lj. Then

oM  OL

divF = — — — A A

Ox Oy F=F1+F g

and so Green’s theorem can be rewritten as / — Fl =M ) [; = ——L
divF dzdy = ]{ Fydy — Fydzx.
J, c C

48
. . 7 =
Now it can be shown (exercise) that

nds = (dyi— dxj)

where s is arclength along C, and n is the unit normal to C. Therefore we can rewrite

Green’s theorem as
/ divF dx dy = ?{ F - nds.
R c

This result also turns out to be true in three dimensions, where it is known as the Di-
vergence Theorem.
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Example

Show that the area enclosed by a simple closed curve with boundary C' can be expressed

as .
—j{ xdy —ydx.
2 Jc

Use this result to calculate the area of an ellipse.

G-T: SgQLCMJrMO% :Sﬁ %%/\-L-g%)obcofa.

Clhonse L:"8'7M;x Lence Hhe
— +1)dxdy — o
(??C_go\xfklc&& — gRC’L ) * 3 meé OF
> Afé ;5_(‘ §C Xd%—a—db(_
\6/ /\/\/\_/\/\/\/\,
i of Y elligse
x + = aCos® (o(eg@
. L NG TE P
o (> 3_3);97:>
at ot

16 — (58 ) (a5

_ (2Gs®)(bGsY
10\3“%&6 :COLL SCGSS(‘Q + G g) 49 = b dd
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A

C, (_do 3@,&) A’

X

Figure 13: A non-convex boundary.

1.8.3 Extensions of Green’s theorem in the plane

Green’s theorem is true for more complicated geometries than that assumed in the proof
given above. e.g. if C' is not convex, but has the shape given in figure 13. We can join
the points A, A’ so as to form 2 (or more) simple convex closed curves Cy,Cy enclosing
Rl, R2 where R1 + R2 R. Then:

7{CIF~dr+7{C2F~dr = Z
Now A /
A A
h, - fAXA/ JrjA’ [j -7
1 ¥

and so
§F d.r+ «F-AF — CW’(!‘E d_.S_

>

We see therefore that the theorem still holds.
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Figure 14: Left: Examples of doubly- and triply-connected regions. Right: Green’s
theorem in a multiply-connected region.

1.8.4 Green’s theorem in multiply-connected regions

A region R is said to be simply-connected if any closed curve drawn in R can be shrunk
to a point without leaving R. If we restrict ourselves to two dimensions then any region
with a hole in it is not simply-connected (left-hand picture in figure 14). A region which
is not simply-connected is said to be multiply-connected.

If R is multiply-connected, Green’s theorem is still true provided C'is now interpreted
as the entire (outer and inner) boundary, with C' described so that the region R is always
on the left (right hand picture in figure 14).

For example if we have a doubly-connected region, we describe the outer boundary Cj
in an anti-clockwise fashion and the inner boundary C} clockwise. We can then join the
point A on Cj to the point B on Cy by the line AB. This line then divides R in such a
way that it is a simply connected region bounded by the closed curve Cy+ AB+ C} + BA.

Then, by Green’s theorem: & A
ol e g [ e
/RcurlF -dS = o A C' 6
and therefore it follows that
[emie-as - §§ E.dr +<§ F.ar :E%E,ci_r

where C' = Cy + C. (._/‘\r———/) L//\/—)

Ve VA O NP LV\“\QS- ‘OM

Ye¢)
(ante- dbﬁ%} < Clod’uotgo_>
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Figure 15: Diagram for the proof of the divergence theorem.

1.8.5 Flux

If S is a surface then the flux of A across S is defined as

/A-ﬁdS.
S

If S is a closed surface then, by convention, we always draw the unit normal n out of S.

1.8.6 The divergence theorem

LT

If 7 is the volume enclosed by a closed surface S with unit outward normal n and A is a
vector field with continuous derivatives throughout 7, then:

/A-ﬁdS:/divAdT.
S T

We will assume that S is convex and that 7 is simply connected, with no interior bound-
aries. Let A = (A, Ay, Az) and n = (I,m,n). We have to prove that

oA L DAz L JA A\
L(ZA1+mA2+nA3)dS: J;L 5x+’é—va,+ 5_%3>o\>co\\6 z

Project S onto the plane z = 0 (figure 15). The cylinder with normal cross-section X
and generators parallel to the z—axis circumscribes S and it touches S along the curve C'
which divides S into two open surfaces, S; (upper) and Sy (lower). Both S; and Sy have
projection ¥ in the plane z = 0. Suppose the equations of S; and S, are z = fi(x,y) and
z = fo(x,y) respectively. Then:

/8A3 j 9A5 o\% dx dka,

Proof

—drdydz =

5%3@)3)&(&)@} As("“?w Cx’?f> )(0\5
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N
SR
Now, using the projection theorem: -

S
A (DC)‘Q)&(J% )> AX&B/ Cite n>0 "
/SlnAgdS - jz_n N g (k|

. Ay (8 (end) dx d
\gz s (3 5 bk [ﬁ.gl:(d:’”

imilarly: . S
> 1 ly V\_AS Cx_)"é )&2/(3()\3)> %70;\\6, 8\»“(‘0‘ V"<'O o 2"
/nAgdS — 52 {@k(

,_5 A3<"—)‘3 {YQ\C’“?Q) dx dé‘

Thus:

J

and therefore

04y js nAz dS

i 0
, 0z

d
n Ay dS — JZ [Aa C%VA;&(X»?;)) — Ay gy :c)g?f)}} dx 8

Similarly, by projecting onto the planes z =0 and y =0 :

/aA1 J;QA( 45 dhatke
s

and
o S m A, dS
S

and hence

/SA-ﬁdS: &C dw A AT

as required.

Note that the surface S need not necessarily be smooth - it could be, for example, a

cube or a tetrahedron. ~
/% N
)/7 A
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Gz =9
X z A/g' SFL\OVS
/“\J\{\ 5 sdes.

Figure 16: The surface S in the example.

Example

Evaluate
/A-ﬁdS if A =2x%yi—1y?j+ 42k,
S

and S is the surface of the region in the first octant bounded by 3% + 2?2 = 9,2 = 2 and

r=y=2z=0. WCP(\Q_
Divtrs, $dS _—§ v A dV ‘Aﬂ\“‘“"’ﬁﬁm Codoed
S _ VAR
clo ——5 (413 &3+8ﬁ>
svf?»"'
Y 3 Zz = '\/(9 ‘3)
= 5 g \8\ (Lp%aQa,Jr?x%) 4z O\‘a/ dx
)(,:0 \QY—" z=0 —/\/69 jL)

— & S vp“ﬁ YT 41%]2 0 4y
:5 S pacg(0=§)~ _ayllo-)+ 4x(578) dx g

x=2

S Lgx%\/@ £)- o‘LwOM/W ‘8>+&°°C9 ?@} 0\5’
B gyl(o-§)- L2687 &) &

= &8O |

—

= 5343«/(9—55‘)‘*%(9’3)0% o —
@)


AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil


A. G. Walton MATHS50004 Multivariable Calculus: Vector Calculus 44

Figure 17: The divergence theorem applied to a non-convex surface.

1.8.7 The divergence theorem in more-complicated geometries

(i) Non-convex surfaces

A non-convex surface S can be divided by surface(s) o into two (or more) parts S; and
Sy which, together with o, form convex surfaces S; + o, Ss 4+ o (figure 17). We can then
apply the divergence theorem to Sy + 0,55 + o with 71, 7 being the respective enclosed
volumes, where 71 + 75 = 7. On adding the results, the surface integrals over o cancel out,

and since S = S; + S5 we have
/A-ﬁdS:/divAdT
S T

as before.
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| s >.

vvw&ug\\:}
Figure 18: Diagrams for the proof of the divergence theorem in (top): a simply-connected
domain; (bottom): a multiply-connected region.

(ii) A region with internal boundaries

(a) Simply-connected regions (top diagram in figure 18)

For example this could be the space between concentric spheres. Suppose we have an
interior surface .S; and outer surface S,. Draw a plane II that cuts both S, and S;. This
divides S, into two open surfaces Sgl), S((,Q). S; is similarly divided into Si(l), Si(Q). We then
apply the divergence theorem to the volume 71 which is bounded by the closed surface
S(gl) + Sl-(l) + II, and we then apply the divergence theorem to the volume 75 which is
bounded by S 4 SZ»(Q) + II. We add these results together. The contributions over II

cancel, leaving the result:
A - j— y . ) — -
/ A fdS — J(; ARdS dwA dC+ | dwA JT = a(u/_/_]oo\l/'

So+Sz T, (Cl

with the normal to S; drawn inwards, i.e. out of 7.
(b) Multiply-connected regions (bottom diagram in figure 18)

For example this could be the region between two cylinders. Again let S, and S; be
the outer and inner surfaces, linked by the plane II. Label the two sides of the plane 1
and 2. Consider the surface

S; +del of TT + Se + Sde Qof TT

This is closed and encloses a simply-connected region 7. We then apply the divergence
theorem to 7. The contributions along the two sides of II cancel, giving

/ A-ﬁdS:/divAdT.
So+S; T
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1.8.8 Green’s identities in 3D

Let ¢ and ¥ be two scalar fields with continuous second derivatives. Consider the quantity

A = V. Y~(‘PE>
Tt follows that =@ Y.f
div A <Pv7:4f + (V) (Yl‘f) +(zp). £
A = (YW = POV /on

Applying the divergence theorem we obtain

JREIE Lcwqu + ). (Yw) LT )
which is known as Green’s first identity. Interchanging ¢ and v we have

[ J ¥R+ (- dT

Subtracting (2) from (1) we obtain

L{%‘ aQs}ds: jvc SOVZW ~YV oy AT

on

which is known as Green’s second identity. These identities are very useful when
constructing solutions to partial differential equations (see for example ‘PDEs in action’
in term 2).

1.8.9 Green’s identities in 2D

If we use the divergence theorem in 2D derived in the first section of the notes: C N
an
/didexdy:j{F-ﬁds. //R// -
R o} /

then we can calculate down the corresponding Green identities. These are

o ) | )
$ 05 ds = [ [69%0+(V0) - (V0)] dedy

0 0
§ oo —ue] as= [ loviu - vve) oy
C 6” 371 R
These formulae are the generalisation of integration by parts to two dimensions.

W oddu — oW ds — | (V) (Yp)dod
UV dady E%Ctp_g\s jR w)- (Tp) docdy

(_256\'L3 \\)VKQ wk WOV
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1.8.10 Gauss’ flux theorem

Let S be a closed surface with outward unit normal n, and let O be the origin of the
coordinate system. Then:

— _I'_’/g ~ PN :
= - /EdS—{ 0, if O is exterior to S
s

4r, if O is interior to S.

>

Proof

First suppose O is exterior to S and that S encloses a volume 7. Then we have r # 0
throughout 7. Applying the divergence theorem:

_dS— (/\O(,L\/('_S)OL((’ ég"jt‘“‘dﬂ

di r_ ob_v[‘-l-f'V( > I'E:[- :___(2
lV = '_3 rg —
Hence we have that e
n
|\v\ S e dS /le 3 dr =0,
/{\ as required.
ﬂmmw%&
duv (pA) = (o v A +A-Yp
with =72 A =T
.,3/
2 2
, _ N9yt
/ r3 X

= 3xl _3y) —3zk — JC3T

s /3 " hak
Lpvasge Squese s %
(2o fonea Coma. ot
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Figure 19: Diagram for the proof of Gauss theorem with O interior to S.

Now suppose O is interior to S (figure 19). We surround O with a small sphere radius ¢,
with surface S., lying entirely within S. We consider the volume 7. enclosed between S
and S Then, applying the divergence theorem and proceeding as above we have

Bor e =0 (%,
I e

r3
oK S 0 T VC&
Breaking up the surface integral into two parts: N A
_ jf_‘.vx O(S,‘_g £_‘(~£>d$
N]
S S

o:/ 2 las =
S+s. T

However (since r = ¢ on S;)

2

A
r.r = F> J
< / S dS = SZ, & Ss. E

SA.
Thus it follows that R OF hare
/ n_gr dS — 4 (| Pgwsg
A s T
/
-/_/‘

AﬁQicaﬁmS" [HS s aw&c/wmgz fFlax
RHS s endosed dzx.cw%@/mass

CSXM&?E O{\ SOLL& MﬂQQ:‘
uA mslmwswé

flx £0
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o= B =
Z )

Q/\

7

x<

Figure 20: Diagram for the proof of Stokes’ theorem.

1.8.11 Stokes theorem

Suppose S is an open surface with a simple closed curve v forming its boundary, and let
A be a vector field with continuous partial derivatives. Then:

%A-dr:/curlA-ﬁdS,
0% S

where the direction of the unit normal to S and the sense of v are related by a right-hand
rule (i.e. n is in the direction a right-handed screw moves when turned in the direction

of ).

Proof
Let A = Aji + Aj+Ask. Con81der /\

1 2] +A43 /\ /3\ g Al T - QA

curl (Aszf) = ”6/9JL /2w 9/8& Q2 93’
Then we have A [ ®)
/[Curl(Ali)]-ﬁdS = 8/0“ ) gA ( > CLS

S
If we now project onto the x — plane S becomes ¥ say, and 7 becomes C' (figure 20).
Let the equation of S be z = . Then we have

i = @EZ: (—3_% 1 ~EJC + k)/ %J—k (—%
Therefore, on S : ’ka&'Lo,+ve S PZTD Sotaak W k > O,

A= /%C >—- 22 lf\.>

N
|5>
(9
>
Q.
M
)|
C/éj I
r

\/7_
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Thus: L—g\ ( QAI aai' g% > (Q»Q) ClS
/[curl (A1i)] -ndS =

US\n A H(0Y, GL) /l\</\>\ OQS e
gk T Ss %‘A< 5 mi - @'%9
,_SZ %l(i)‘y{y@)‘g))%) N ' (é/

Wlth the last line following by using Green’s theorem. However on v we have z = f and

fAlxyf ) do — S%A Cugmi)dx

We have therefore established that
o A A dict A, dyt-Axdz
/S(CllﬂAll)-ndS: b/ ( — A . Ot,_r

In a similar way we can show that
é Ay o L&

and
/(curlAgk)-ﬁdS: éxf)‘s 47

and so the theorem is proved by adding all three results together.

/(curlAgj) -ndS =
s

Note that although S must be open, it is not necessarily smooth. For example it could
be in the shape of a box without a lid. b/

oS Cut v
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N
n>

AN

3s

Figure 21: Two different open surfaces, both with the closed curve v as boundary.

The theorem is actually true for any open surface with v as boundary. To see this
consider figure 21. The normal to S} is ny and to S, is ny. The surface Sy + Sy is closed:
let it enclose a volume V. Applying the divergence theorem to curl A over this region

gives /Sﬁsz e j\/ N (Cq{ﬁ\) dS = 0O

In the divergence theorem the normal must always point out of V' and hence

Oz/sﬁsgcurlA-ﬁdS: J\Scxx@ﬁ -/V\\g dS +J‘ Q""eé . C_{RZJOlS

S

AN

implyingthatj C\M'Q,A .I;\IC&S{:__S Cq(__é VV\Q&\ZS _
SZ

I

J

A s conServekune.

—_—

5 A - dr = 0 foy any simple closed curve 7 is

Theorem

A necessary and sufficient condition that
that curl A = 0 throughout the region in wht is draafn (assuming A is continuously
differentiable and the region is simply-connected).

Proof

We already know that if fv A - dr = 0 then there exists a potential ¢ such that A = V¢.
Therefore we see that curl A = 0 since the curl of a gradient is always zero.

Conversely, if curl A = 0 then by Stokes’ theorem we have fv A - dr = 0 for any simple
closed curve 7.

Aedr

_<J > A cov\ger\)o&:'we<:> CkA =0
E\ /50 < > - L—/\r\/

C/\\/&QS% ,@w (}L/C/G\/\SQJ‘\)O:Q'\\”Q-,@,@,\& '
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A2
| & ZZI-j"
X

B \‘f

] \ - DN
Cryt=| (
a : g \/
Figure 22: The parabolic surface z = 1 — 22 — y* with z > 0. X
Example
Verify Stokes theorem for the vector field A = (y, z,x) and the surface S given by z =
1—x2_y2“/,\ith220. /l\, /J\ ’Ec <A+/\—{-/]\<>
N — — — L
A= 8’E+ )tk = ColA = |9, by bz J
ﬂ\@ts o O N Z_fOLZ_ =0
Al = éo\ac—k%dé;yxc&% X =@s (oS@(QT\)
T - \6 = S\\/\@

é;/iec&f :S%O\x ol

™ L2 AT

0 B %\V\Q<-8\A@>&% — —SS‘MQOQ% - -
- 0

z® Z\\ — " N 0 ot e S rest

/EL:_YC%—(\-JL -4 >> ~ 81 L;QE]:‘HK F{_%'l\,y\w,;j@_&dc

¢ | MeE) ko

A
N L O{S nk =
>, ((Cwe ) nds :-j 42y +

Nawo wse Q)m\x%‘ﬁ _ J C2x+§21+\>
To @rbde,& vk 2 =0 ., “/(41#[*]2—”

x+3\<(

Z =0
— P-JWC(IQ%GQUJF l> A O\é_
AMSC
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USe. plocng polors o Coves TN~ disc
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seo
alsn C}QQA% > e dd Claﬁfy
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%z :CO“S{'.

= const

| A>

oC

1>

9>

Figure 23: The surfaces r = constant, § = constant, z = constant, for the cylindrical polar
coordinate system, and the orientation of the unit vectors.

1.9 Curvilinear coordinates

1.9.1 Introduction & definition

Often it is more convenient, depending on the geometry of the problem under considera-
tion, to use coordinates other than Cartesians. An example is cylindrical polar coordinates
(r,0, z) which are related to Cartesian coordinates by

(T22)

from which we can deduce that
2 P e —
mr =X + “6» ) Fond = (6,/ X

The equation r = constant therefore defines a family of circular cylinders with axes along
the z-axis, while the equation 6 = constant defines a family of planes, as does the equation
z = constant (figure 23). Cylindrical polar coordinates are an example of curvilinear
coordinates. The unit vectors T, 5, k at any point P are perpendicular to the surfaces
r = constant, ¢ = constant, z = constant through P in the directions of increasing
r,0, z. Note that the direction of the unit vectors T, 6 vary from point to point, unlike the
corresponding Cartesian unit vectors.
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More generally now, let us suppose that our Cartesian coordinates (z, vy, 2) = (1, 2, 3)
can be expressed as single-valued differentiable functions of the new coordinates (uy, ug, us),

ie. IL — )QL (d\)QZ)L)\Sv »por (,‘_—_.()2)3

We would like to know what the conditions are under which we can invert these expressions
and write the u; as single-valued differentiable functions of the xz;. First let’s differentiate

the above expression with respect to z; : SX a Uq + fax 5 ‘iz + a_x_ Suﬂ

830 - . =
b/al'j SLJ aul’ax,J au QDCJ U3 SDC\)

C =02
Writing this out for each ¢ and j we have the matrix equation J 753 )

2
8x1/3u1 (9(131/8U2 8:1:1/8u3 0U1/8$1 8u1/8$2 6u1/8:1:3 C L=" )3>
aﬂfz/aul 8x2/6’u2 81’2/811,3 auz/ﬁazl 8’&2/8172 8%2/8$3 = I,
ax3/8u1 8x3/8uQ 81‘3/67]{), 8u3/8x1 8u3/6x2 8%3/8])3

where [ is the identity matrix. We can express this more succinctly as

/\)_(Xu\) ) CULDC> =1

where J(z,) is the Jacobian matrix for the (x,zs,x3) system and J(u,) is the cor-
responding Jacobian for (uy,us,us). We therefore see that J(u,) exists (i.e. the wu; are
differentiable functions of the x; provided (J(z,))™! exists, i.e. we require

et ( T(xD)

It turns out that this condition is sufficient to guarantee that our transformation can
be inverted. More precisely, the inverse function theorem states that around any
point where det(.J(x,)) is nonzero, there exists a neighbourhood in which the u; can be
expressed as single-valued differentiable functions of the x;. There is more on this theorem
in the Differential Equations course next term.

Note also that the result J(z,)J(u,) = I implies that

dek (T0x) = 1/ det(T(uw))

a useful result that we will exploit later when we consider the transformation of inte-
grals. From now on we will assume we are in a region where det(.J(z,)) # 0 and so our
transformations can indeed be inverted.

Example
Consider cylindrical polar coordinates (r,0, z) again. The Jacobian is
5. v.2) Ox/dr 0x/d0 010z Gs® -rowd O
S = | avjor ayjoe oyjoz | = &R ros® O
(rn0.2)  \ ozj0r 02000 02/0- O o (

and so the determinant is equal to r(cos?# + sin? @) = r. So provided 7 # 0, the transfor-
mation can be inverted.
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——

Figure 24: Left: the intersection of the surfaces u; = u;(P); right: P and @ are points on
a curve along which only one component u; varies.

Given that we can now write u; = u;(xy, z2, x3), the equations u; = constant, us =
constant, ug = constant define three families of surfaces, and (uq,ug, ug) is said to be
a curvilinear coordinate system. Through each point P(z,y,z) there passes one
member of each family. Let (aj,ay, as) be unit vectors at P in the directions normal
to u; = uy(P),us = us(P),us = uz(P) respectively, such that u,us,us increase in the
directions @, as, az. Clearly we must have

a = Yul/ Y(LL\

If (a;,a,,a3) are mutually orthogonal, the coordinate system is said to be an orthogonal
curvilinear coordinate system.

The surfaces us = us(P) and uz = ug(P) intersect in a curve, along which only u,
varies. Let €; be the unit vector tangential to the curve at P. Let €5, €3 be unit vectors

ammgential to curves along which only wus, u3 vary. For an orthogonal system we must have
t diagram in figure 24). Let @Q be a neighbouring poimtto P on the curve along
onfy u; varies (right diagram of figure 24). We have
o\t ('_—(.Q\’E(Pw/gucb
e o I
Q>P T PQ  @>F du
= . PR |lwA PQ
R7t PQ Q7Y Su
VAN
= €. n L

where we have defined h; = |0r/0u;|. The quantities h; are often known as the length
scales for the coordinate system.
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Figure 25: A volume element in an orthogonal curvilinear coordinate system.

1.9.2 Path element

Since r = r(uy, ug, u3), the path element dr is given by N\
i = OF du & 9% du, 4 9F du :_(';f(ﬂ&ulel

Ju, Uy Uz 14Uy

If the system is orthogonal then it follows that 3

_ L2 G 2L L
@2 =(Ar-dr) = WAL, (dug )+ by (duy)
In what follows we will assume we have an orthogonal system so that
a=a= 9L/oul = Yo Lo (=123
(or/aui|  (w |

In particular, path elements along curves of intersection of w; surfaces have lengths
hyiduy, hodus, hadus respectively.

1.9.3 Volume element

Since the volume element is approximately rectangular (figure 25) we can take

i = (n, d\k‘><b\1Au2_> <»\Bo\u3> = L hyhy dudu,dug

1.9.4 Surface element

Also from figure 25, by looking at the areas of the faces of the volume element, we can
see that the surface element for a surface with u; constant is

ds = \’\2\/\3 O\.U\.z du 5

and similarly for uy = constant, u3 = constant.
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Figure 26: An element of volume in cylindrical polar coordinates.

1.9.5 Properties of various orthogonal coordinate systems

(i) Cartesian coordinates (z,y, 2)

dr = O\DC—d\jo\i dr = dbc/L\+A33 +0‘2k
2 _(d0) (A1) = (4 (dy) >+ (d2)

and so hy = hy = hg = 1 in this case.

(ii) Cylindrical polar coordinates (r, ¢, z)

See figure 26. The coordinates are related to Cartesians by
r=rbsp,y =ronp,z=2

To show that this is an orthogonal system We calculate

orjor = (9x/5r)0 + (39/5r))) 4 (a5 Vi =(Gs )it (5 o))
oo = (9x/BP)N + (34/29) ) + (B2 fop)lc = ~(Tim o)

A + (&S P)J
or/0z = k

Orthogonality then follows from the fact that
( ( A \=0

(9“/a> (% /op) =~ resp SM(P =0, )(az>—

The lengthscales are +r @SP%IV\ AR
T Ve Sl )

and so the elements of length and volume are h:’) — ( of r /8;_% l —

(ds)’ _ ()t (o\cp) +(d2) ;AT = rdrdepdz

The surface elements can also be calculated, e.g. an element of the surface along which r
is constant (i.e. a cylinder) is

-, sal dS = haj"& duydy = rdedz = adpdz



AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

agw
Pencil

agw
Pencil

agw
Pencil

agw
Pencil

agw
Pencil

agw
Pencil


A. G. Walton MATHS50004 Multivariable Calculus: Vector Calculus 59

0L HLT z
/N
O \< r < S 40 d;‘ﬁ
_ o
O < ?D £ AT ) ;
o
dp O
~ F z/r%ned;o

Figure 27: An element of volume in spherical polar coordinates.

(iii) Spherical polar coordinates (r,6, ¢)

See figure 27. In this case the relationship between the coordinates is

=rS.0 GDSSU 3," rglv\e%vxfﬁ) z2 =r(@sP
Then

or/or = SinB@s (o L+ Sin 8 Sinip ) + G0 K R

or/06 — 7 (@s0 @SSpll\, + u—@gegmw _rand k
N /N N
Or/0¢ :~I—%\V\Q %\V\(P ( + [_S"n,\g GDSQO\S + O k

It can then be seen that

(Or/or)-(or/00) = SO @SO Gs “0 4 Sind GsB S o~ GsgnO =O

Similarly:
(3t /ar) (BI@P> =0 (a“r/&(‘p>o (a_r/a@> =0
and so the system is orthogonal. Then

hy :/ ! ar/ \/(&MQC(DS;D*I‘SW\QSM 50+G>s€>
s :/ 95/86[ :\/(rt»s 9@3{0'\- G’ 678\,\1}0 4r Smﬂ) -
hs = l%f/a(’oj = /\/(VzginlegMZSp‘\‘rzg"‘le (2)87'?0) = rg’\ivxe

(We have assumed here that sin # > 0, which is OK since the range of 6 is 0 to 7). The
volume element is Z~.
J_L/L‘ — S—W\Q A olg d.}ﬁ

Also, an element of the surface r = constant = a (i.e. a sphere of radius a) is:
(r=w,) 9=U, Pp=u3

dS = hohgduyduy = 25,0 d0d e
&F‘:O\,
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Example

Find the volume and surface area of a sphere of radius a, and also find the surface area
of a cap of the sphere that subtends an angle 2« at the centre of the sphere.

dC = r g\m@ o\rd@d

T
—)F&QDVWQ &LA‘% LS‘ LSA f r gm@ oLrolGdl}o
=0

- S
AL gﬁ S
:i o WE \\ga%ﬂ@d@&}o
g0 07"

- X

= st [-Got,

— QWQL<( — (os o(>
NI
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1.9.6 Gradient in orthogonal curvilinear coordinates

Let
V(I) == )\161 + )\262 + )\3/6\3

in a general coordinate system, where A\, Ay, A3 are to be found. Recall that the element
of length is given by

o - (2‘@ /a0 } Ak, —+ (gﬁ/atu dha + @@/9%) du3

- (Bt (Bag)oy+ (Bhow)de
(Vg ).dr Dwe dr = a\uuaﬁaw

But, using our expressions for V& and dr above:

(V®) -dr = A by ol + e Omz’\"o‘:s[" d“&

Now

and so we see that

hiXi = /aé/au\_ CL:()2)3>

Thus we have the result that ’8—6
Al ‘8 -+ Q
Go & o8 0, =08, + &3 - - L/,

This result now allows us to write down V easﬂy for other coordinate systems.

(i) Cylindrical polars (r, ¢, z)
Recall that hy =1, hy =1, hy = 1. Thus

oD & 5D 4 k2

or r 2 g 0%
(ii) Spherical polars (r,0,¢)

We have hy = 1,hy =1, h3 —rsmH and so

1.9.7 Expressions for unit vectors
From the expression for V we have just derived it is easy to see that:

Alternatively, since the unit vectors are orthogonal, if we know two unit vectors we can
find the third from the relation

N\
& = Qly e, = \/\l\r\~5<YuLXYu5>

and similarly for the other components, by permuting in a cyclic fashion.
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[<.(r8)
1.9.8 Divergence in orthogonal curvilinear coordinates 50 v

A= Al/él + Agé\g + Ag/e\g. (— /—v‘
First consider

o as) V }:A hyhy (V(&XV&AS)] R

A Ve (Tux g) 4 (A hoks ) f\ﬂ
5

Suppose we have a vector field

using the results established just above. Also we know that
V- BxC)=C:curlB—-B-curlC,
and so it follows that

V- (Vuy x Vug) = (VUZA Q,&(V%) (VM2> Cuk (T/LLD

since the curl of a gradient is always zero. Thus we are left Wlth (A \/\ \’\
5)
Ju W,

(A7) = V(A W \"5) ] B —

23 hihalg
We can proceed in a similar fashion for the other components and estabhsh that
VA — ,_'/— @ (A\ 7.\"33'\’ (Az 3\’\J+ (A3>lr‘ h )
I "‘7)‘3 al*‘

It is now easy to write down div in other coordlnate systems.

(i) Cylindrical polars (r, ¢, z)

Recall that hy = 1, he = r, h3 = 1. Thus using the above formula:
V-A = [ 9(.—A)+9(A2>+QO—A3)}
or X

A+ A+ L JAz 4 A3

(ii) Spherical polars (r,0, ¢)

We have hy =1, hy = r, hy = r sin 6. Hence
va- L i 9( *Sn @ A )’\‘Q(FS\V\BA >+® ("A_‘g>}
250

use@«chcrbe\m Vub,e /m Ux( p8)= }a(Vx%)—{—Vgax@
& V}or&g‘h@.zfaw +€3’§_Le

n Dy, o 8\*2 l/\_3 o Uz
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1.9.9 Curl in orthogonal curvilinear coordinates

Again just consider the curl of the first component of A :

v = VYx(AhYy)
Ay Ix(Y)+ (A )x VU,

= ZPXD——}—VCA\“DX C/é/b\>

A
‘Q
43(,&»\)—%@19@1&%%9@[\@ _
= V\l oY\ l/"2—8 U2 = Ty OU3 h |
N
- % %QA!\AO - €3 QCAIK"O
s 993 by OU2
(since €; x €1 = 0, €3 X €] = —€3, €3 X €; = €). We can obviously find curl (Ase,) and
curl (Aze3) in a similar way. These can be shown to be
oy - B0 & 0
V x (Ageg) = h2h1 8_u1(h2A2) h2h3 aug (hQAQ),
o @0 & o
V X (AgGg) = h3h2 8u2 <h3A3) — h3h1 aUI (h3A3)
Adding the three contributions together, we find we can write this in the form of a
. A N N
determinant as [ ‘(‘1 Q. lf\:}_ 97_ \f\3 85
curl A = D (a/ o
’—/\: / ou, AUy /304

in which form it is probably easiest remembered. It’s then straightforward to write down
curl in various orthogonal coordinate systems.

(i) Cylindrical polars

T ré k
curlA=—| 9/or 0/0¢ 0/0z
Al T’AQ Ag
(ii) Spherical polars
T rf  rsinfo
curl A = —— d/or 0/00  0/0¢
2

r*sin Ay rAy; rsinfA;

useful b ‘quA 9 (A Wg:
(orelow: V.A = {aaCth +31£3( 2}*9“3( 15)} (

- l"l"zs


AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil


A. G. Walton MATHS50004 Multivariable Calculus: Vector Calculus 64

1.9.10 The Laplacian in orthogonal curvilinear coordinates
From the formulae already established for grad and div, we can see that

Ve = V- (VO)

f)
g { GG\L"\% :\990 >+ Oqsl’\‘ hy 8“~z>

Whohha Ou
42 G\ hy ,_facD >
This formula can then be used to calculate the Laplacian for various coordinate systems.
(i) Cylindrical polars (r,¢,z) W, =! ) h,=v )"\3 =\
1[0 0P 0 (109 0 0P
2p = —{— ==
e = 05) e (o) 5 (5]
Po 106 100 0%
oz ror  r20¢2 | 022"
(ii) Spherical polars (r,0, ¢) \,\‘ =\ \ \/\L:r) \I\5 = VS’\V\%

.1 [0 00\ 9 (. 8_<I> o (1 00
vie = r2sine{ar rsino )+ gg (5055 )+ 55 \ G s

02_<I>+28(I>+Cot08®+l82 N 1 0*®
or?2  ror 2 00  r2 002  r2sin?6 0¢?’
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1.9.11 Alternative definitions for grad, div, curl (not examinable)

Let 7 be a region enclosed by a surface S and let P be a general point of 7. We established

earlier that
/qudT = / na¢ds.
T S

This result is a consequence of the divergence theorem (see problem sheet). It follows

that
/Ti-V(de:/S(i-ﬁwdS.

Now the left-hand-side above can be written as 7{i - V¢} where the bar denotes the mean
value of this quantity over 7. Since we are assuming that ¢ has continuous derivatives
throughout 7, we can write

{i-Vo} ={i Vo}o

for some point () of 7. Thus we have that
. 1 .~
{i-Volo=- /(1 -1)pdS.
TJs
Now let 7 — 0 about P. Then P — () and we have that at any point P of 7 :

PV —lim~ [(i-f)6dS.

0T Jg

Similar results can be established for j- V¢ and k - Taken together, these imply that

This can be regarded as an a ing V¢, rather than defining it as

(00/0z)i+ (00/9y)j + (09/0z)k.
We can similarly establish th

which are alternative ence and curl, and are clearly independent
of the choice of coordinates, which is one of the advantages of this approach. In particular
we can see that the divergence is a measure of the flux of a quantity.

Equivalence of definitions

Let’s show that the definition of divergence given here is consistent with the curvilinear
formula given earlier. Consider 67 to be the volume of a curvilinear volume element
located at the point P, with edges of length hiduq, hodus, hsdus, and unit vectors aligned
as shown in the picture (figure 28). The volume of the element 67 ~ hihohgdu;dusdus.
We start with our definition

divA — lim - [ (R - A)dS,

T—0 T S
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Figure 28: A curvilinear volume element.

and aim to compute explicitly the right-hand-side. This involves calculating the con-
tributions to |, ¢ arising from the six faces of the volume element. If we start with the
contribution from the face PP’S’S, this is:

—(Alhzhg)]: 5U25U3 + hlgher order terms.

The contribution from the face QQ'R'R is

(A1h2h3)Q 5U25U3 + h.ot. = |:(A1h2h3) + %(Alhzhg)(sul 5U25U3 -+ h.O.JlZ.7
1

P

using a Taylor series expansion. Adding together the contributions from these two faces
we get

|:i<A1h2h3):| (5U1(5U2(5U3 + h.o.t.
8u1 P

Similarly, the sum of the contributions from the faces PSRQ, P'S'R'Q)’ is

[i(Aghlhg)] (5U1(5’LL2(5’LL3+ h.O.t.,
(9@63 P

while the combined contributions from PQQ’'P’,SRR'S" is

[i(Athhl)] 5U15U25U3 + h.o.t..
8uQ P

If we then let 57 — 0 we have that

1 [ 0 0 0
lim — / n-AdS = {—(Alhghg) + —(A2h3h1) + —(A3h1h2)} 5
0 S au?)

hl h2h3 3u1 auQ

and so we can see that the integral expression for div A is consistent with the formula in
curvilinear coordinates derived earlier.
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Figure 29: A surface S parameterized by u; and us.

1.10 Changes of variable in surface integration

Suppose we have a surface S which is parameterized by the quantities u;, us. We can
therefore write that on S:

T = wa>‘*z)> y= %’Cb&”uz‘) L 2=2 (ul)ul'> '

[For example, if S is the surface of a sphere of unit radius we have x = sinf cos ¢,
y =sinfsin ¢, z = cosd and so we can take u; = 6, uy = ¢.

We can consider the surface to be comprised of arbitrarily small parallelograms whose
sides are obtained by keeping either u; or uy constant: see figure 29, i.e.

or or
dS = Area of parallelogram with sides —du1 and —duz
8u1 8u2

2ly or

DU, P uz
This result is particularly useful when using a substitution in a surface integral, as we
can write

/Sf(m,y,z)dS: J‘SFC‘M)‘*?.\\Q__\ dw Ay

where F(uy,us) = f(x(ur,us), y(ui, ua), 2(uy, us)).

= ’J| du1 dUQ,

where the vector Jacobian J is given by J =

If S is a region R in the x — y plane, (i.e. z =0 on R), the result reduces to Seq.
/f(x,y) drdy = J F(UL\\U\,Q_) ] dek (\j(_&w\\) d\/\. AUy ba Qgglf\)
R
NAAANANANAN
where J(x,) is the Jacobian matrix we met earlier, i.e.
J(z,) = CEVATY ai’/a‘xt

DY /fon,  O%lown,

Note that since dz dy = |det(J(z,))| duidus it follows that duiduy = (1/ |det(J(x,,))|)dx dy,
and hence

1/ |det(J(2,))] = \ dek (T C“x\) K

which is a result we found earlier by a different method. These formulae apply for both
orthogonal and non-orthogonal transformations.

|
A U, /BJL_ ié 'éx,/au,( ecc.
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9\»&[/\ oUWy . A
L J K
g"//auu\ gﬂ/@\kl 9%04
/Uy O¥/au, OF/ou,

' N

| e

W o[ VK
O /30y o4/ou, O

o f3u, P4/au; O
- <a,x 2y 2By )Ak

DU OU, DU U
’\’\Q’M’Q’ 2oC %_‘gt _?_ag oY \

Bu du, uy du,

oy Y

QL OX
- é\e‘t ou 8(}2_
ou )

= \a\@: (T(x)) \
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Suppose a surface is described by z = f(x,y). Then u; = x, uy =y and r = (x,y, f(z,y)).
It follows that

or Or - g
8u1 3x 8x
or or | 0 f
— = =j+
dus Oy 8y
so then A
A N
o or| N
8%1 8u2 - 1 ®) 3?[936,
O L 3F/ey
N

WY 1 (e + (P%9) )
(| ER)

Therefore the area of surface is
[ Vs vs)eay,
x

where Y is the projection of S onto the x — y plane. We will use this expression in the
next section.
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Figure 30: A section of a helicoid.

Example

Evaluate the integral
/\/Z1+x2+y2)d5
s
where S is the surface of the helicoid (shown in figure 30):

T =ucosv, y=usinv, z =0,

With0<U<4EEdO<U<47r. N ' /\K
tnd. ;
QQQ/\}_NQ_&\/I‘@DF XVE)F _ Ox/3u. Y /on. OZ/n,.
- Jw 2v R foe Y/ ow 0t /o
A N
— ¢ J K = (%W\\SBL A(&s 6) A
s Gws O +<wCoSU+u\31v»\s>l/
—nSwns wloss | C—~——

N Prese
3] =50 s6ds 1) = e sty |

Naovo V( +1+%> /\/(H-ULG;SQ"\—U\.ZS’W\L5> \/(wa)
SV(l+L+‘6 )o\S j«/(lﬂ%)l J |dwds

l—l—”( >(1 1
_—J‘ . S [+w U UL/ El—LLl
- [“L'“’“/Slqp — L}""(_Lf;\) /
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2 The Calculus of Variations

2.1 Preliminary motivational examples

g' ‘i BC‘IDUg)
| .ds
| ( - " y=y@
A &

Figure 1: The figure for Example 1.

Example 1. Shortest path between 2 points
Suppose we have two points A(0,0) and B(x1,y1). The length [ of a curve y(x) joining

the two points is (see figure 1): X,
| A
B 2—> 2
7 = | 4s (1+(3/x) ) “dx
A o
The shortest path can be found by finding the y () which minimizes this integral. Intu-
ition suggests that it is a straight line. We will return to this problem later.

I
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FINISH

C“l)ﬁ,)

Figure 2: The brachistochrone problem

Example 2. Curve of quickest descent (‘brachistochrone’)

A slightly less trivial example is the following. A particle starts from rest at the origin
and travels under gravity along a smooth curve until it reaches the point (x1,y;). What
shape of curve should it travel along in order that the time of descent is a minimum?

If s is distance along the curve then as in the first example

ds = (1+ (dy/dgr;)Q)l/2 dr,

where y(z) is the path. As the particle travels, it converts potential energy into kinetic
energy while respecting the overall conservation of energy principle:

» z _
S MU= MBE

where y is measured vertically downwards from the origin, v(z) is the velocity at location
(xz,y(z)) and m is the mass of the particle. Therefore we have

g Ci — \ v
v = ds = (ag4)"

Rearranging: \

b — _O,\i " — (Q%\a)—\ﬁ(l_l_(@[%/dx)l)
(294)

Thus, the time 7 taken to travel to x; along y

o NS
K

— CZQQ /Z(l - (°\?}/Ou>> dac

The curve of quickest descent is found by minimizing this integral. This time the answer
is far from obvious.
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B(72,y2)

e e ;; _\__/Z?AS

Figure 3: Surface of revolution

Example 3. Minimal surface of revolution

Consider a curve y = y(x) joining the points A(z1,y1) and B(xs,y2). We now consider
the surface formed by rotating this curve about the y—axis. The surface area is given by

A = SQL&S

Using the expression for arclength as in the first two examples, this can be rewritten as
21\Y2
A= an S (1 + (9%/ax) JFdx

It is of interest to find the curve y(x) Wthh minimizes A. Again the answer is not obvious.
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2.2 ‘The Vanishing Lemma’

Before we proceed with the general theory we need the following result. If g is a continuous
function such that

| st de =0

z1
for all smooth functions n(z), with n(x1) = n(xs) = 0, then g(z) = 0.
Proof
Assume for a contradiction that there is a point xy € [z, 23] for which g(z¢) # 0.

Let’s assume without loss of generality that g(xg) > 0. Since g is continuous there is
a neighbourhood of xy in which g remains positive. Denote this neighbourhood by NH.

If 2o is not equal to x; or xs then we can take NH = (xg — €, 9 + €). with e > 0. If
xrg = w1 then NH = [z1,21 + €) and if g = x5 then NH = (x5 — €,25]. In each case
g(zr) >c>0forall z € NH.

Consider now a smooth function h(z) on [z1,zs] with the following propertiest

(i) h(z) = 0 for all = outside the neighbourhood;

(ii) f;f h(z)de = [y, h(x)dz > 0.

It follows then that

" ohGd = | §MEdE > ¢ [hse > o
xl

NH N H

and hence leads to a contradiction.

TFor an example of such a function h(z) see problem sheet 5.
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2.3 General theory for 1D integrals

The examples mentioned above are special cases of the integral
T2
I= / L(z,y,y) dx
1

where ¢ = dy/dz. In example 1, L = (1 + (y/)?)"/2. L is known as a functional.

Suppose y = y(z) passes through A(xy,y;) and B(zs,y2). What is the particular y(x)
which minimizes/maximizes (extremizes) the integral I? If y = Y (z) is the extremal
curve, how do we find it?

Consider the family of curves
u(oc,e) = VG + &7 6

where ¢ is any real number and 7 is a smooth curve with n(z;) = n(x2) = 0. Each member
of the family passes through A and B. It follows that

- L2 / /
_,<8) = j L(y,)Y+a'1z/)>‘ +£“’(/>d3€
X
The integral I takes on its extreme value when € = 0 (since then y = Y'). Therefore we

must have OLI _ O rYL
'JJ—E/\ £=0 L "~

" 4 /

Now AT B o) @_}_:E_i_\é:—\—— @J__/ /—\3~ ok)c,

—

Tr 5y de 94’ de
AE >, 9 J
When ¢ =0 we have y =Y and ¢y = Y’, and so y
-/ X
O:A_(O):: 9’( ®L+’YL9L>O\3C
X

We now integrate by parts to get

0 . d (5L
o = | imak o+ 1 oL 7> jn( )4 (8L Yoy

The 1ntegrated term vanishes since n(x1) =7 xg) = 0 and we are left Wlth

AL
SDC @iw A\ 3’ o

Since n(z) is an arbltrary smooth curve we can use the Vanishing Lemma above to deduce

that Y satisfies oL 4 7oL
W (aw) =0 (1)

which is known as the Euler-Lagrange equation in one dimension.
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2.3.1 Remarks

(i) In order to integrate by parts we have assumed that the curve Y () is of the class C?
(i.e. the derivatives Y’ and Y” exist and are continuous).
(ii) Y () renders I stationary, not necessarily a maximum or minimum, so the Euler-
Lagrange equation is a necessary but not sufficient condition for Y (x) to minimize I. In
order to prove it definitely gives a (local) minimum we have to show that 1”(0) > 0 (which
is complicated to establish except for very simple examples).
(iii) We usually refer to Y'(z) as an extremal curve of I.
(iv) The Euler-Lagrange equation is an equation to determine Y'(z); the functional L is
known for a given problem and is referred to as the Lagrangian.
(v) From now on we will replace Y by vy, i.e. we will denote the extremal curve by y(z).

L_d (oL

Ve

2.3.2 Short forms of the 1D Euler-Lagrange equation 5_ A\ O

The equation simplifies if the functional L is independent of one or more of the variables
TR

Case 1. L is explicitly independent of y.

Here L = L(x,y’) and so OL/0Jy = 0. Thus the E-L equation reduces to

_ 4 (L) _
de \oy' )
and hence @: _ com ot
/
Vy
Case 2. L = L(z,y) so that 0L/0y’ = 0. In this case the E-L equation reduces to
oL =
%

Case 3. L = L(y,y') so that 0L/0x = 0, but dL/dx # 0. Using the chain rule
dL 9L _9Ldy OLdy

dr Oz oy oy dx + G_y’%
_ /8_L + lla_L
Using the E-L equatlon the RHS can be rewritten as / /{; L,
/ a 4+ QL — '3'
Y % —
oba

Therefore we see that
dL d ( ,0L
dr  dz \” oy’
and hence the E-L equation reduces in this case to

/
L—y 8_3/ = constant.

=0


a.walton
FreeHand

a.walton
FreeHand

a.walton
FreeHand

a.walton
FreeHand

a.walton
FreeHand

a.walton
FreeHand

a.walton
FreeHand

a.walton
FreeHand

a.walton
FreeHand


A. G. Walton MATHS50004 Multivariable Calculus: Calculus of Variations 7

It’s useful to remember the short forms, but the most important equation to remember
is the original Euler-Lagrange equation (1). Now that we have this we can revisit our
motivational examples.

2.4 Revisiting our examples

Example 1 revisited: shortest path between 2 points.
Here the integral to minimize is

[= /Ox (1+ (y’)2>1/2 dz.

and hence L = (1 + (y’)2)1/2 , explicitly independent of x and y. Therefore the E-L equa-

tion
oL _ 4 ("LL) _
oy dx \ oy

reduces to .(a_L = Cow M
B%/

Substituting for L we find:

-\
9\% <l '\‘C%/)L) = sk :A) S&a/.
= Y = )

and hence /

} e C/GV\%JV .
Therefore the extremal curve is of the form
kéf — v 1 C
with m, C found from the conditions that y passes through (0,0) and (z1, ;). In this case:

(8‘/39> -

Thus the answer is a straight line as expected. In this case we can check explicitly
that 1" (O) and hence demonstrate rigorously that this is a minimum rather than a
maximum (although here of course it is obvious there is no maximal curve).

<+edbcwt3>
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Here the integral to minimize is

Example 2 revisited: brachistochrone l [ 3’ 8(9‘3

B 1 z1 12 2 1/2 gv
T_—(Qg)l/Q/o Y <1+(y)> dx

L=y 1+ ()2,

Since this is independent of x we can use the appropriate short form (case 3) of the E-L
equation, namely:

and so we can take

'—— = constant.

Substituting for L :

V)
52V L2y ) (1) = st
Putting over a common denominator:

/L /’2 — l = (/0\/\8*\’
) — \ V.
oo YA (H Bl

%'/L<\+\32) 1
= %C‘w”)f‘* > (Y=g

where « is an arbitrary constant. We now separate the variables and integrate, setting
y = 0 when x = 0 as this is the initial location of the partlcle This gives

Vs A /7,3\
- + ___éc—- -+
T So Cof/gﬂ/l So(»& g)“?

To solve the integral we make the substitution y = a?sin? 6, dy = 2a? sin 6 cos . Thus:

(x,) 31)

Q 8
x =+ 25040 = fo&& (1-Gs20)d0 = iJ(@*-ZLS\nm
o]

o

We take the positive sign so that x increases as 6 increases (i.e. the parameter  increases
as the particle moves along the curve from left to right). Thus the parametric form of the
mimimizing curve is:

r=a*0 - %sin%), Yy = %az(l —cos20), (0<6<6,),

where o and #; can be expressed in terms of x; and y; from the condition that x = x1,y =
y1 when 6 = 6. The solution is the arc of a cycloid. A sketch is shown in figure 4. Recall
that y is measured downwards. The resulting shape is a compromise between travelling
the shortest distance (a straight line) and achieving the highest speed (moving vertically
downwards and then horizontally).
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(Oiow - X

>

3 C:C”‘jo

V

Figure 4: The curve of quickest descent under gravity

Example 3 revisited: minimal surface of revolution
Here we want to minimize the area

A=2r /x2 T (1 + (y/)2> 2 dz.

x1

We take L = x (1 + (v )2)1/2, which is explicitly independent of y (case 1). Hence the
E-L equation is 0L/Jy" = constant, i.e.

DC%_/ — [3
(+ 3’2)‘/2

This can be rearranged into the form

%/: "_:__P__

which can be integrated to give

y==+0 cosh_l(x/ﬁ) + 7.

When written in the form x = x(y) this curve is known as a catenary. The curve has the
shape shown on the left in figure 5. On the right we show a sample surface of revolution
linking two circles of different radii - the surface is known as a catenoid.

Iz

Figure 5: Left: the catenary curve x = coshy. Right: a surface of revolution formed from
a section of a catenary.
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Recall that the boundary conditions are such that y(x;) = y1,y(x2) = y, and we can take
y1 = 0 without loss of generality so that one of our rings lies in the plane y = 0. We
therefore need to choose 3 and ~ such that

x1 = [ cosh (%) , Ty = [cosh (‘%6_ 7) .

However for some boundary conditions this is not possible: in particular if x; and x5 are
small, but g, is large. This means that there is no continuous minimal surface between
small rings a large distance apart. This has applications to soap films among other things
and there are some interesting videos you can find online.

o we SMcoL

44»9_3
““99“0”
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2.5 Extension of the Euler-Lagrange equation to more variables
Suppose we now have an integral of the form
t2
I= / L(t,x1(t), xa(t), ..., xn(t), 2} (), 24(t),. .. 2} (1)) dt
t1

so that L is a scalar function of (2n + 1) variables. For simplicity let’s write

x = (z1(t), 22(t), ..., 2, (1)), X' = (2}(t), 25(t),...2,(1))

If we suppose that the extremal solution is
X = (Xq(t), Xa(t),..., Xn(t)),

then in a similar way to our earlier proof we can consider a perturbation to this solution
of the form

x(t,e) = X(t) + en(t)

where 1 = (71, 72,...7m,) is a smooth n—dimensional vector function of ¢, with n(t;) =
n(t2) = 0. We then seek a solution for which

dl/de = 0 when € = 0.

OTTS 2.4 L<~l: K+eMN, X +SVL> -

_t

o

tlou/ ‘:1( Wl a£>oljc
_(L3Xx n

usmg the chain rule We can mtegrate by parts to get 9 [
_ 7.9l dk 4 [ 9L —'/> dt
O= Z < 5 X ] ' 8 o\‘t CheSt

Since nZ (t1) = n;(t2) = 0 for all i, this reduces to

Z§ VL<><®L,C<;\JE 9L>>o\sc =0

Since the n; are arbltrary smooth functions, the Vanishing Lemma implies that

oL  d OL
0X, dtoX!

=0 (2)

for all « = 1,2,...,n. Thus rather than having one E-L equation we now have a set of
n simultaneous E-L equations to solve for the function X = (X1, Xs,...,X,).
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Example 4. A trivial example of this is to consider the area A enclosed by a simple
closed curve in the x — y plane. In Part 1 on Green’s theorem we showed that if the
boundary is denoted by C', then C

/
A:%j{cxdy—ydx. /A///

Writing this in parametric form

(x(“t) 46 -y ) de

So here we have x = (z,y) and we can apply the theory above to find the closed curve
which extremizes the area. We therefore need to solve the simultaneous E-L equations

oL doL_ 0L 4oL _

oxr dtoz' ' Oy dtoy C
where

L ronN 1 / 1 / i’l
Substituting for L the equations become . J\ V\‘E
. d/ _ f

1 _ % é{ e ——X -2 [ —x\z—X = O Q,wg\o}eg
z% dt S SANC gLy

OO .
In this case we can see that the only solution is that x and y are both constant. in other
words the E-L equation has led us to the minimum area of zero which is obtained by
shrinking the curve C to a point. This of course is self-evident but the problem becomes
more interesting if we restrict our attention to closed curves that have a fixed length [
say. This is equivalent to imposing the arclength constraint

S £ ((ﬂﬂ)z»r (@) )\/7‘ at =1
t

We would then hope to obtain a non-trivial answer to our problem of maximising/minimizing
A. We will return to this problem later. This example motivates our study of finding ex-
tremal solutions subject to constraints in the next section.

JIRS Lo

@ ) S

0/ Can SeL Haock W\\vuva\w\ A€o,
&/er\ | 2 \/\ N would be Zers.
Y R/
Lok maxwvuéo,& e OJ*QG‘\,? ( ®-¢\X0.cii

PQ,‘?\W\Q— SA
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2.6 Variational problems involving constraints

We will start with the 1D case again as it is easier to visualize before generalizing to
vector functions. Suppose we wish to find the curve y(z) with y(z1) = y1,y(z2) = ya such
that

T2
= [ Ly

x1

is stationary, and

J=/ 9(z,y,y') dx

1

is a fixed constant, Jy say. As usual, L and g are known functionals. As before we consider
a family of functions
Ié(x> £) = >/(>c> + S,%(vc)

where Y (z) is the desired solution to the problem and 7 is a smooth function which
satisfies n(x1) = n(z2) = 0 so that each member of the family passes through the end
points. We therefore have

Xy
T(e) = f L () v+en, Y wen’)dx
DCI
e T(e) = S;l %<1)7’+6”L> >’/+s,v(>dx = J
|

We want I to be stationary and so
T7(0) = O
J is a constant and so in particular
J/(e) = O

Calculating I'(0) and J'(0) by the same method as in the unconstrained case we arrive at

the following conclusion:
2 oL d (0L
—_ - dr =0
L () {ay dz <an)} !

for all smooth functions n(x) vanishing at the end points which satisfy

2 dg d ( Jg B
[ {5 i (o) f oo =0

If follows (see problem sheet 5) that there exists a scalar A (a Lagrange multiplier)

such that 9[_#0\ ’2&) N E%__pl 2&)

fa—y FRANEY A oY  dx\ 9y’
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and hence we have

0 d (0
We therefore retain the familiar Euler-Lagrange equation but with L simply replaced by
L + \g. As before we will now use y rather than Y to denote the (constrained) extremal

curve.

The solution procedure is as follows: if we solve equation (3) we obtain y = y(x, A, C1, Cy)
where (7, U5 are constants of integration. Then applying the boundary conditions we can
reduce this to y = y(x, A). Finally, substituting into the integral constraint will give us
the value of .
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Example 5
Find the form of y(z) which extremizes the integral

/2
= / ()2 — y? + 2y dz
0

subject to y(0) = y(7/2) = 0 and the constraint fow 2y de = 12/8.

w@‘/\_O\N*Q L’é \3,+§2:C\5, 9=14
E- L or L+’)%

9(3}, 34-9\1,8,4-’\\3,) <} +2l3+qg'>>
8 rasan - A(a@ fo s gy = e
Sy = A Gs x +%%wﬁ+l+"’>

1N 4/(T)= D
A?@ﬁ and condsioms () =0 > A=30) 8_(%}: TN

%/Z ,_,_‘)CCQ)%I- \> ( >%MJC + X
(l" ’Pw\a\r\ %\)\)QS)V WD \S W \30\:{. — l\/%

> R = i (Gt (£ 13%“““‘/0\ =1/8

[ 2

>): "X(%m:c aQ+<“+f\ C@ngrDci g o
,/(x T> /WJA)% /

> X ’<Q_ \\/2“3

oy = T (G- (55 )T
W
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2.7 Extension of the constrained case to more variables

As in the unconstrained case the method can easily be extended to problems in which
we want to find the extremal solution x(¢) (where x is an n—dimensional vector) of an
integral
t2
I:/l@ﬂmﬂmﬁ
t1

subject to the constraint
to
J:/g@ﬂmﬂmﬁ:h
t1

As before we need to solve n simultaneous E-L equations, but now they are for the
functional L + Ag, i.e.

d 0

X, (L+Xg)=0

fori=1,...,n.
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Example 4 revisited.

Let’s return to example 4 where we computed the area enclosed by a simple closed curve
but now let us impose the constraint that the length of the curve is fixed. Our problem
is to find a relation between x(t),y(t) such that the area

A= [ty -y d

. 7/ C
/. 4

/t2(:v’(t)2 +y/(8)%)2dt = 1,

t1

is rendered stationary, subject to

where [ is a constant representing the length of the closed curve. For this problem the
minimum area of zero is clearly achieved if the curve collapses to a straight line. We might
hope that a variational approach to the constrained problem leads to the determination
of the curve that encloses the mazimum area. We apply the Euler-Lagrange equations

of _dof _, of dof _
oxr dtox’ 7 Oy dtoy
to the functional f = L + \g where >\ /2_

| = _lzauab/_ _l?_ﬁx/ Cx +bt
agions become PR 0
: muw e A
'}\ l\é >c+ )

Integrating we obt\a'n \/ )
/ 7 /N — . _ 7y I\ — —
AEy?) )= fx((x » ) 2y} =—a
where a and b are constants Squaring and addlng We find that
2 o2 2
(el = Sy T B2
) ( * 24 3 >

and so the extremal curve is a c1rcle of radius A. Since the perimeter is fixed equal to [
then we must have A = /27 and therefore A = [?/47. From what we have said earlier we
expect this curve maximizes (rather than minimizes) the area enclosed and this is indeed
the case: the circle gives the largest area for a fixed perimeter [. Thus for any simple
closed curve we have the isoperimetric inequality

Q_

ATt A < 12,

where equality holds only when the curve is a circle.
losed.

%N 8. lnthe cudio T Sand Hhak Hhe asea enc

us\favgﬁﬂf+ W /E.r‘——o%‘cm)\vSa"l‘ meavtt to S

b aSquare
% SMALLER .
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2.8 The Euler-Lagrange equation for higher-dimensional
integrals

In the final part of Chapter 1 we showed that the area of surface of a function z = f(z,y)

is given by the integral Chc‘zt,’ob _Z f 9
e

[ /(1+ IV 22 dr dy o cAre
b}

where Y is the projection of the surface onto the z — y plane. Suppose that the surface is
bounded by a closed curve v lying in 3D space. If a wire loop is bent into this shape and
dipped into a soap solution, a film will form. It turns out that the soap film will assume
a shape which has the least surface area, at least locally, compared to all other surfaces
that span the wire loop. If we want to find this shape we need to find the function f
which minimizes I. Since I is a surface integral, if we want to use a variational approach
we need to extend our Euler-Lagrange formulation. We will return to this example once
we have derived the general theory.

2.8.1 Euler-Lagrange theory for surface integrals

We consider integrals of the form

1= [ 15, V5w dray
C/ R

where r = zi+yj is a position vector in R?. Let C' denote the boundary of R and suppose f
is prescribed on C. Suppose F(r) is the extremal function we are trying to find. Consider
a family of functions

f(r) = F(r) +en(r),

where 7 is a smooth function which vanishes on C' so that all members of the family take
on the same prescribed values on the boundary. We write

I(e) = / L(r,F +en,VF +eVn)dzdy.
R
Since we require I to be stationary when € = 0 we have
I'o)y=0

as in our earlier formulations. Using the chain rule:

dI 0L
— = — +Vn-VyiL | dxdy. 4
= /R<778f+77 w)ffcy (4)
Here we adopt the notation
v 0 0
P op Japz

for any vector p in R? and we have used the result from early in the course (Sheet 1 Q3)
that

L@ =€) Vil
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Setting € = 0 in (4) we therefore have

oL

Now since 1 vanishes on the boundary C' of R, the divergence theorem tells us that

/ Vn-Adxdy = —/ ndivA dzdy

R R

for any vector field A (see Problem Sheet 3, Q1). Thus choosing
A= VVFLa

(5) can be rewritten in the form

oL ]

Since 7 is arbitrary, and using an appropriate extension of the Vanishing Lemma to higher
dimensions, we conclude that

oL '
a_F — le(VVFL) = 0, (6)

which is the generalization of the Euler-Lagrange equation we derived for 1D integrals.
Again, henceforth we use f rather than F' to denote the extremal function.

2.8.2 Remarks

(i) The equation holds for volume integrals and in fact also for n-dimensional integrals.
(ii) Constraints can be accommodated in a similar way to before.



(

ey

X

A. G. Walton MATH50004 Multivariable Calculus: Calculus of Variations 20

Example 6 Zz{éﬁ)ﬂ)
We conclude by revisiting the minimal surface area (soap film) example. Here we wish to
minimize the integral

- /(1+ IV 1122 de dy
b))

L=+ Wf)" &

7
which is explicitly independent of position r and the function f. The E-L equation (6)
therefore becomes
: \/ — 2
~ g O)Cc,> N
L

Writing V f = (f,, f,) we have

Yost :</Ca% g K Q L

.

and so

and so the minimal surface equation is

i/ V¥ =0
2\
1+ 6)>

After some algebra (problem sheet 5) the equation can be written as the following non-
linear second order partial differential equation:

Some solutions to this equation are investigated on sheet 5.
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