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1 Vector Calculus

1.1 Preliminary ideas and some revision of vectors

1.1.1 The Einstein summation convention

In any product of terms, if we have a repeated suffix, then that quantity is considered to
be summed over (from 1 to 3, since we will usually be working in three dimensions). For
example

aixi is shorthand for
3∑

i=1

aixi.

1.1.2 The Kronecker delta

This is the quantity δij and is defined such that

δij =

{
1, i = j;
0, i 6= j.

Example

δijaj =

=

Note that the left-hand-side had two different subscripts, while the right-hand-side ends
up with only one subscript - this is known as a contraction.

1.1.3 The permutation symbol

This is the quantity εijk, defined as

εijk =






0, if any two of i, j, k are the same;
1, if i, j, k is a cyclic permutation of 1, 2, 3;
−1, if i, j, k is an acyclic permutation of 1, 2, 3.

For example
ε123 = , ε321 = , ε133 = .

We can show, by considering the various cases, that the Kronecker delta and the permu-
tation symbol are connected by the formula

εijkεklm = δilδjm − δimδjl.

(I will put a proof on blackboard). The quantities δij and εijk are known as tensors.
Exercise: Show this can be rewritten in the alternative form

εijkεilm = δjlδkm − δjmδkl.
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1.1.4 Vector product

Recall that this is the multiplication of two vectors which results in a third vector, per-
pendicular to the first two. It can be written in the form of a determinant as

a × b =

∣
∣
∣
∣
∣
∣

i j k
a1 a2 a3

b1 b2 b3

∣
∣
∣
∣
∣
∣
.

If a× b = 0 then the two vectors are parallel. Recall that (a× b) = −(b× a). If we just
consider the first component of this vector we can write this as

a2b3 − a3b2 =

=

since ε123 = 1, ε132 = −1, and ε1ij = 0 for all other i and j. In general we can write the
ith component of a × b as

[a × b]i =

1.1.5 Scalar product

This is defined as

a ∙ b =

=

using the summation convention. Recall that if a ∙ b = 0 then the vectors a and b are
orthogonal.

1.1.6 Triple scalar product

This is the quantity

a ∙ (b × c) =

=

If this quantity is zero then the vectors a,b, c are coplanar. A useful property of the triple
scalar product is that the dot and cross can be swapped without changing the answer,
provided the order of the vectors remains unchanged, i.e.

a ∙ (b × c) = (a × b) ∙ c.
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1.1.7 Triple vector product

This is defined as
a × (b × c).

Since b× c is a vector normal to the plane of b and c, and a× (b× c) is normal to b× c,
it follows that the triple vector product must lie in the plane of b and c. In component
notation

[a × (b × c)]i =

=

=

=

=

and so we conclude that

a × (b × c) = (a ∙ c)b − (a ∙ b)c,

which confirms explicitly that the triple vector product indeed lies in the plane of b and
c.
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N

θ

Figure 1: The surface φ = constant through two neighbouring points.

1.2 Gradient

Let φ be a differentiable scalar function of position in three dimensions. If P is a general
point, φ will depend on the position of P, so we may write φ = φ(P ). The position of P
is defined by reference to a coordinate system e.g. if we consider Cartesian coordinates,
then P depends on (x, y, z) and hence φ = φ(x, y, z), while if we consider cylindrical polar
coordinates (r, θ, z) then φ = φ(r, θ, z).

The equation φ = constant defines a surface in three dimensions. Varying the constant,
we can define a family of surfaces called ‘level surfaces’ or ‘equi-φ surfaces’. For example,
if φ represents pressure, then φ = constant defines a family of surfaces over which the
pressure is constant. The surface through a specific point P is φ = φ(P ). Let Q be
a neighbouring point. (See figure 1). The equation of the level surface through Q is
φ = φ(Q). We draw the normal to φ = φ(P ) at P. Suppose that it intersects φ = φ(Q)
at the point N. Since N is on φ = φ(Q) we have φ(N) = φ(Q). Let s denote the length
along PQ and let n denote the length along PN. Introduce unit vectors ŝ and n̂ in those
directions. We define ∂φ/∂s to be the directional derivative of φ in the direction ŝ :

∂φ

∂s
=

=

=

=

=

Since cos θ ≤ 1, the maximum directional derivative at P occurs along the normal to
φ = φ(P ) at P.
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The vector n̂ ∂φ/∂n is called the gradient of φ at P. We write it as grad φ or ∇φ.
The operator grad or ∇ is known as the vector gradient operator. We have

∂φ

∂s
= ŝ ∙ ∇φ.

1.2.1 Cartesian components of ∇φ

If ∇φ = A1i + A2j + A3k then i ∙ ∇φ = A1. But, by definition, i ∙ ∇φ = ∂φ/∂x. Hence
A1 = ∂φ/∂x. Similarly we find A2 = ∂φ/∂y,A3 = ∂φ/∂z and so we have the result:

∇φ =

AGW
Pencil
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Example

If φ = axy2 + byz + cx3z2, where a, b, c are constants, find ∇φ. Also find the directional
derivative of φ at the point (1, 4, 2) in the direction towards the point (2, 0,−1).
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Figure 2: Sketch showing a point P represented by Cartesian coordinates (x, y, z) and
cylindrical polar coordinates (r, θ, z).

1.2.2 Cylindrical polar components of ∇φ

The set-up is as shown in figure 2. We write ∇φ = A1r̂+A2θ̂ +A3k. Then it follows that

A1 = r̂ ∙ ∇φ

=

=

=

=

Similarly, we find

A2 = θ̂ ∙ ∇φ

=

=

=

=

and A3 = k∙∇φ = ∂φ/∂z. Hence

∇φ = r̂
∂φ

∂r
+

θ̂

r

∂φ

∂θ
+ k

∂φ

∂z
.
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Figure 3: The tangent plane to a surface.

1.2.3 Equation of a tangent plane to φ = φ(P )

We have that (∇φ)P is normal to φ = φ(P ) at P. The equation of the tangent plane is
therefore

(r − rP ) ∙ (∇φ)P = 0,

i.e. (
∂φ

∂x

)

P

(x − xP ) +

(
∂φ

∂y

)

P

(y − yP ) +

(
∂φ

∂z

)

P

(z − zP ) = 0.
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Example

Find the tangent plane to the surface

z = e−(x2+y2)1/2

at the point x = −1, y = 0.
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1.3 Divergence and Curl

In this section we will assume that A is a vector function of position in three dimensions,
with continuous first partial derivatives.

Since ∇ is a vector operator, we can define formally a scalar product ∇∙A. This is called
the divergence of the vector A. We can also define the vector product ∇× A, which is
called the curl of A. So to summarize we have

divA = ∇ ∙ A, curlA =∇× A.

1.3.1 Cartesian form

divA =

=

curlA =

=

Note that these simple forms for div and curl arise because i , j ,k are constant vectors:
this is not so in other coordinate systems.
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Examples

(a) If
A = (y2 cos x + z3)i + (2y sin x − 4)j + (3xz2 + 2)k,

find divA and curl A.

(b) Find div u and curl u when (i) u = r; (ii) u = ω × r, where r = xi + yj + zk, and
ω = Ωk with Ω constant.
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1.4 Operations with the gradient operator

1.4.1 Important sum and product formulae

Note that ∇ is a linear operator, and so:

(i)∇(φ1 + φ2) = ∇φ1 + ∇φ2,

(ii) div(A + B) = divA + divB,

(iii) curl (A + B) = curl A + curl B.

The proofs of these results follow immediately from the definition of ∇.
Other key results are:

(iv)∇(φψ) = φ∇ψ + ψ∇φ,

(v) div(φA) = φ divA + ∇φ ∙ A.

Proof of (v)

div(φA) =

=

=

In writing out these proofs it is easier to use the summation convention that
we introduced earlier. Rather than write (x, y, z) for Cartesian components, we write
(x1, x2, x3) and in place of (i , j ,k ) we write (ê1, ê2, ê3). Then we saw earlier that

A ∙ B = AiBi,

A × B = εijkêiAjBk

Also recall the useful result that

εijkεklm = δilδjm − δimδjl.

Thus, under the summation convention:

divA =

[∇φ]i =

[curl A]i =

where [ ]i indicates the ith component. Using this approach, the proof of (v) takes the
form

div(φA) =

=
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Other important results are:

(vi) curl (φA) = φ curlA + ∇φ × A,

(vii) div(A × B) = B ∙ curlA − A ∙ curlB,

(viii) curl (A × B) = (B ∙ ∇)A − B divA − (A ∙ ∇)B + A divB,

(ix)∇(A ∙ B) = (B ∙ ∇)A + (A ∙ ∇)B + B × curlA + A × curlB.

Example

Prove relation (ix) above. If we work on the RHS we can write

[(B ∙ ∇)A + (A ∙ ∇)B + B × curlA + A × curlB]i
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Note: In the following sections we will assume that our scalar and vector functions
possess continuous second derivatives.

1.4.2 The divergence of a gradient: the Laplacian

Consider the operation

div(∇φ) =

(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

∙

(
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k

)

=

≡

This is to be read as ‘del squared φ’ or the Laplacian of φ. The operator ∇2 is known
as the Laplacian operator. We also define the Laplacian of a vector as

∇2A ≡
∂2A

∂x2
+

∂2A

∂y2
+

∂2A

∂z2

in Cartesian coordinates, and the equation ∇2φ = 0 is known as Laplace’s equation.

Example

If φ = x2 + y2, find ∇2φ.
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1.4.3 The curl of a gradient

Consider the operation

curl (∇φ) =

(This result can also be established by using tensor notation).

Example

Consider φ = axy2 + byz + cx3z2 and show explicitly that curl ∇φ = 0.
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1.4.4 The divergence of a curl

This is also always zero, as can be seen from the following argument:

div(curl A) =

Example

Verify that div(curl A) = 0 for the quantity A = y exi + (x2 + z)j + y3 cos(zx)k.
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1.4.5 The curl of a curl

This is the vector quantity
curl (curl A).

Using tensor notation and the summation convention we can show that

curl (curl A) = ∇(divA) −∇2A.

Proof

Exercise

Calculate curl (curl A),∇(divA) and ∇2A for A = y exi + (x2 + z)j + y3 cos(zx)k.
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1.4.6 Scalar and vector fields

If, at each point of a region V of space, a scalar function φ is defined, we say that φ is
a scalar field over the region V. Similarly, if a vector function A is also defined at all
points of V, then A is a vector field over V. If curl A = 0 we say that A is an irrotational
vector field. If div A = 0 we say A is a solenoidal vector field. An obvious example of a
vector field is the position vector r of a point in space. In three dimensions:

r = xi + yj + zk ,

div r =

curl r =

|r| = r = (x2 + y2 + z2)1/2

∇r = ∇(x2 + y2 + z2)1/2

=

=

=

=
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Example

Find
∇2(1/r).
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Figure 4: A curve γ joining A to B and divided into N sections.

1.5 Path Integrals

1.5.1 Definition

Consider a curve γ (not necessarily in the plane, and not necessarily smooth) joining
the points A and B. (See figure 4). Suppose that the curve is divided into N sections:
AP1, P1P2, . . . , PN−1B. Let AP1 = δs1, P1P2 = δs2, . . . , PN−1B = δsN . Next, suppose a
function f is defined along this curve γ. We compute the sum

f1δs1 + f2δs2 + ∙ ∙ ∙ + fNδsN ,

where fn = f(Pn). On increasing N indefinitely, while letting the maximum δsn → 0, the
resulting limit of the sum, if it exists, is called the path integral of f along γ, and we
write: ∫

γ

f ds =

The function f may be a scalar or a vector.
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Figure 5: Diagram showing the tangent vector at a point P .

1.5.2 Path element

See figure 5. Let δs represent the arc PQ and suppose that the vector
−→
PQ = δr. We

define the tangent vector

t̂ =
dr

ds
= lim

δs→0

δr

δs
,

and the path element
dr = t̂ ds.

Note that t̂ has length unity because |δr| → δs as δs → 0. We can then define the
quantity

∫

γ

F ∙ dr =
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1.5.3 Conservative forces

Consider the special case where we have a vector F of the form

F = ∇φ

with φ a differentiable scalar function. Consider the integral (with γ defined as in figure
3):

∫

γ

F ∙ dr =

=

=

=

=

=

=

We note that the result is independent of the path γ joining A to B. In particular,
if γ is a closed curve (i.e. B ≡ A), then we have

∮
γ
F ∙ dr = 0, where we put a circle on

the integral to denote the path is closed. We sometimes refer to such an integral as the
circulation of F around γ.
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Figure 6: Two curves joining A to P . Q is a neighbouring point.

If a vector field F has the property that
∮

γ
F ∙ dr = 0 for any closed curve γ, we say

that F is a conservative field. Thus, if F = ∇φ, then F is conservative. Conversely, if
F is conservative we can always find a differentiable scalar function φ such that F = ∇φ.
The function φ is called the potential of the field F.

Proof of this last part

See figure 6. Let F = F1i + F2j + F3k . Since we know that F is conservative it must be
the case that

∫ P

A
F ∙ dr is independent of the path from A to P and hence

∫

C1

F ∙ dr =

∫

C2

F ∙ dr,

where C1 and C2 are any two curves drawn from A to P . Suppose that the point A is
fixed. Then

∫ P

A

F ∙ dr = G(P ), say

= G(x, y, z)

Let Q be the point (x + δx, y, z) and let P be the point (x, y, z). Consider the quantity

G(x + δx, y, z) − G(x, y, z) ≡

=

But we can choose the path from P to Q so that only x varies, in which case dr = i dx.
Thus

G(x + δx, y, z) − G(x, y, z) =
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and hence

∂G

∂x
=

=

=

Similarly we can show that

F2 =
∂G

∂y
, F3 =

∂G

∂z
.

Thus, if F is conservative then a scalar function (G in this case) can be found such that
F = ∇G.

Example

For the vector field

F = (3x2 + yz)i + (6y2 + xz)j + (12z2 + xy)k

find a scalar function φ(x, y, z) such that F = ∇φ. Hence calculate
∫ B

A
F ∙ dr where

A = (0, 0, 0) and B = (1, 1, 1).
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1.5.4 Practical evaluation of path integrals

Suppose we wish to evaluate

I =

∫

γ

F ∙ dr

explicitly, where F is a known function of (x, y, z) and γ is some known curve joining the
points A(x0, y0, z0) and B(x1, y1, z1).

Along γ we can write

Here, t is a parameter that takes us along γ with x(t0) = x0, x(t1) = x1 and similarly for
y and z. Then we can write

dr =

and hence, with F = F1(t)i + F2(t)j + F3(t)k:

I =

∫

γ

F ∙ dr =

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil



A. G. Walton MATH50004 Multivariable Calculus: Vector Calculus 26

Figure 7: The integration path for this example.

Example (see figure 7)

Evaluate ∫

γ

F ∙ dr with F = yzi + xyj + xzk

when γ joins (0, 0, 0) to (1, 1, 1) along

(i) C1 + C2 with C1 the curve x = y2, z = 0 from (0, 0, 0) to (1, 1, 0) and C2 is the
straight line joining (1, 1, 0) to (1, 1, 1);

(ii) C3 is the straight line joining (0, 0, 0) to (1, 1, 1).
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1.6 Surface integrals

1.6.1 Definition

To define a surface integral of f = f(P ) over a surface S, we divide S into elements of area
δS1, δS2, . . . , δSN . Let f1, f2, . . . , fN be the values of f at typical points P1, P2, . . . , PN of
δS1, δS2, . . . , δSN respectively. We calculate the quantity

N∑

n=1

fnδSn.

We now let N → ∞, max δSn → 0. The resulting limit, if it exists, is called the surface
integral of f over S, and we write it as

∫

S

f dS =

As with the line integral, the function f may be a vector or a scalar.

1.6.2 Types of surfaces

Closed surface : this divides three-dimensional space into two non-connected regions -
an interior region and an exterior region;

 Convex surface: this is a surface which is crossed by a straight line at most twice; 
Open surface: this does not divide space into two non-connected regions - it has a rim

which can be represented by a closed curve. (A closed surface can be thought of as the
sum of two open surfaces).
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Figure 8: Diagram to illustrate the evaluation of surface integrals.

1.6.3 Evaluation of surface integrals for plane surfaces in the x − y plane

An areal element dS is an ‘infinitesimally small’ element of area of a surface. Even for
closed surfaces it can be thought of as approximately plane. The vector areal element
dS is the vector n̂ dS where n̂ is the unit vector normal to dS. For plane surfaces dS can
be expressed in Cartesian coordinates (x, y) since we may choose the surface to lie in the
plane z = 0. Thus we can write dS = dx dy. (See figure 8).

Let the rectangle x = a, b and y = c, d circumscribe S. We will assume for simplicity
that S is convex. (If it isn’t then we split S up into convex sub-regions). Let the equation
of the boundary of S be denoted by

y =

{
F1(x) upper half ADB
F2(x) lower half ACB

.

(n.b. we need to ensure these are single-valued functions, which they will be if S is
convex). Then

S =

=

If f(x, y) is any function of position:

∫

S

f dS =
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In some situations it may be more convenient to do the x−integration first. If we want
to do this we need to write the boundaries in terms of functions of y instead of x. In this
case let the boundary be described by

x =

{
G1(y) right half CBD
G2(y) left half CAD

.

Then

S =

=

and ∫

S

f dS =
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1.6.4 Example

Find the area of the circle x2 + y2 = a2.
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Figure 9: Left: The projection of a plane area S onto the x − y plane. Right: The
projection of a curved surface S onto the x − y plane.

1.6.5 Projection of an area onto a plane

Consider first a plane area S (left hand diagram in figure 9). Suppose Σ is the projected
area in the x − y plane. Then Σ = S cos θ, where cos θ = |n̂ ∙ k | .

Now consider a curved surface. (Right hand diagram in figure 9). If we consider an
areal element dS then this will be effectively plane, and so

dS =

AGW
Pencil
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1.6.6 The projection theorem

Let P denote a general point of a surface S which at no point is orthogonal to the direction
k . Then: ∫

S

f(P ) dS =

∫

Σ

f(P )
dx dy

|n̂ ∙ k |
,

where Σ is the projection of S onto the plane z = 0, and n̂ is normal to S.

Proof

∫

S

f(P ) dS =

=

where εr → 0 as δSr → 0. (Here n̂r is the unit vector normal to S at Pr and δΣr is the
projection of δSr onto the plane z = 0. It therefore follows that

∫

S

f(P ) dS =

as required. Note that f(P ) is evaluated at P (x, y, z) on S in both integrals.
If, for example, the equation of S is z = φ(x, y) then the theorem gives

∫

S

f(x, y, z) dS =

Alternatively, we may choose to project the surface onto x = 0 or y = 0 to give:

∫

S

f(P ) dS =

where Σx is the projection of S onto x = 0 and Σy is the projection of S onto y = 0.
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Figure 10: Left: The plane 2x + 3y + 6z = 12 and its projection onto the x − y plane.
Right: The projected region Σz viewed from above.

Example of using the projection theorem

Evaluate ∫

S

(y + 2z − 2) dS

where S is the part of the plane 2x + 3y + 6z = 12 in the first octant (x, y, z ≥ 0), by
projecting onto the plane z = 0.
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1.7 Volume Integrals

1.7.1 Definition

Consider a volume τ and split it up into N subregions δτ1, δτ2, . . . , δτN . Let P1, P2, . . . , PN

be typical points of δτ1, δτ2, . . . , δτN .
Consider the sum

Now let N → ∞, max δτi → 0. If this sum tends to a limit we call it the volume integral
of f over τ and write this as ∫

τ

f dτ.

The function f may be a vector or a scalar.

1.7.2 Volume element

In Cartesian coordinates the volume element

dτ = dx dy dz.
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Figure 11: The volume τ for the example.

Example

Evaluate ∫

τ

(2x + y) dτ

when τ is the volume enclosed by the parabolic cylinder z = 4 − x2 and the planes
x = y = z = 0 and y = 2.
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Figure 12: Diagram for proof of Green’s theorem.

1.8 Results relating line, surface and volume integrals

1.8.1 Green’s theorem in the plane

Suppose R is a closed plane region bounded by a simple plane closed convex curve in
the x − y plane. Let L,M be continuous functions of x, y having continuous derivatives
throughout R. Then:

∮

C

(Ldx + M dy) =

∫

R

(
∂M

∂x
−

∂L

∂y

)

dx dy,

where C is the boundary of R described in the counter-clockwise (positive) sense.
Proof. We draw a rectangle formed by the tangent lines x = a, b and y = e, f (figure

12). This rectangle circumscribes C. Let x = X1(y), x = X2(y) be the equations of EAF
and EBF respectively. We then can write

∫

R

∂M

∂x
dx dy =

Now, let the equations of AEB and AFB be y = Y1(x), y = Y2(x). Then
∫

R

∂L

∂y
dx dy =
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1.8.2 Vector forms of Green’s Theorem

(i) (2D Stokes Theorem). Let F = Li + M j, and dr = dxi + dyj. Then

curlF =

(
∂M

∂x
−

∂L

∂y

)

k.

Over the region R we can write dx dy = dS. Thus using Green’s theorem:

∮

C

F ∙ dr =

∫

R

k ∙ curlF dS

=

∫

R

curlF ∙ dS.

This result can be generalized to three dimensions (see Stokes theorem later).

(ii)(Divergence theorem in 2D). This time let F = M i − L j. Then

divF =
∂M

∂x
−

∂L

∂y

and so Green’s theorem can be rewritten as
∫

R

divF dx dy =

∮

C

F1 dy − F2 dx.

Now it can be shown (exercise) that

n̂ ds = (dy i − dx j)

where s is arclength along C, and n̂ is the unit normal to C. Therefore we can rewrite
Green’s theorem as ∫

R

divF dx dy =

∮

C

F ∙ n̂ ds.

This result also turns out to be true in three dimensions, where it is known as the Di-
vergence Theorem.
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Example

Show that the area enclosed by a simple closed curve with boundary C can be expressed
as

1

2

∮

C

x dy − y dx.

Use this result to calculate the area of an ellipse.
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Figure 13: A non-convex boundary.

1.8.3 Extensions of Green’s theorem in the plane

Green’s theorem is true for more complicated geometries than that assumed in the proof
given above. e.g. if C is not convex, but has the shape given in figure 13. We can join
the points A,A′ so as to form 2 (or more) simple convex closed curves C1, C2 enclosing
R1, R2 where R1 + R2 = R. Then:

∮

C1

F ∙ dr +

∮

C2

F ∙ dr =

=

Now
∮

C1

=

∮

C2

=

and so
∮

C

F ∙ dr =

We see therefore that the theorem still holds.
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Figure 14: Left: Examples of doubly- and triply-connected regions. Right: Green’s
theorem in a multiply-connected region.

1.8.4 Green’s theorem in multiply-connected regions

A region R is said to be simply-connected if any closed curve drawn in R can be shrunk
to a point without leaving R. If we restrict ourselves to two dimensions then any region
with a hole in it is not simply-connected (left-hand picture in figure 14). A region which
is not simply-connected is said to be multiply-connected.

If R is multiply-connected, Green’s theorem is still true provided C is now interpreted
as the entire (outer and inner) boundary, with C described so that the region R is always
on the left (right hand picture in figure 14).

For example if we have a doubly-connected region, we describe the outer boundary C0

in an anti-clockwise fashion and the inner boundary C1 clockwise. We can then join the
point A on C0 to the point B on C1 by the line AB. This line then divides R in such a
way that it is a simply connected region bounded by the closed curve C0 +AB +C1 +BA.
Then, by Green’s theorem:

∫

R

curlF ∙ dS =

and therefore it follows that
∫

R

curlF ∙ dS =

where C = C0 + C1.
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Figure 15: Diagram for the proof of the divergence theorem.

1.8.5 Flux

If S is a surface then the flux of A across S is defined as
∫

S

A ∙ n̂ dS.

If S is a closed surface then, by convention, we always draw the unit normal n̂ out of S.

1.8.6 The divergence theorem

If τ is the volume enclosed by a closed surface S with unit outward normal n̂ and A is a
vector field with continuous derivatives throughout τ, then:

∫

S

A ∙ n̂ dS =

∫

τ

divA dτ.

Proof

We will assume that S is convex and that τ is simply connected, with no interior bound-
aries. Let A = (A1, A2, A3) and n̂ = (l,m, n). We have to prove that
∫

S

(lA1 + mA2 + nA3) dS =

Project S onto the plane z = 0 (figure 15). The cylinder with normal cross-section Σ
and generators parallel to the z−axis circumscribes S and it touches S along the curve C
which divides S into two open surfaces, S1 (upper) and S2 (lower). Both S1 and S2 have
projection Σ in the plane z = 0. Suppose the equations of S1 and S2 are z = f1(x, y) and
z = f2(x, y) respectively. Then:

∫

τ

∂A3

∂z
dx dy dz =

=
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Now, using the projection theorem:

∫

S1

nA3 dS =

=

Similarly:

∫

S2

nA3 dS =

=

Thus:
∫

S

nA3 dS =

and therefore
∫

τ

∂A3

∂z
dτ =

Similarly, by projecting onto the planes x = 0 and y = 0 :

∫

τ

∂A1

∂x
dτ =

and
∫

τ

∂A2

∂y
dτ =

and hence
∫

S

A ∙ n̂ dS =

as required.

Note that the surface S need not necessarily be smooth - it could be, for example, a
cube or a tetrahedron.
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Figure 16: The surface S in the example.

Example

Evaluate ∫

S

A ∙ n̂ dS if A = 2x2y i − y2 j + 4xz2 k,

and S is the surface of the region in the first octant bounded by y2 + z2 = 9, x = 2 and
x = y = z = 0.
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Figure 17: The divergence theorem applied to a non-convex surface.

1.8.7 The divergence theorem in more-complicated geometries

(i) Non-convex surfaces

A non-convex surface S can be divided by surface(s) σ into two (or more) parts S1 and
S2 which, together with σ, form convex surfaces S1 + σ, S2 + σ (figure 17). We can then
apply the divergence theorem to S1 + σ, S2 + σ with τ1, τ2 being the respective enclosed
volumes, where τ1 + τ2 = τ. On adding the results, the surface integrals over σ cancel out,
and since S = S1 + S2 we have

∫

S

A ∙ n̂ dS =

∫

τ

divA dτ

as before.
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Figure 18: Diagrams for the proof of the divergence theorem in (top): a simply-connected
domain; (bottom): a multiply-connected region.

(ii) A region with internal boundaries

(a) Simply-connected regions (top diagram in figure 18)

For example this could be the space between concentric spheres. Suppose we have an
interior surface Si and outer surface So. Draw a plane Π that cuts both So and Si. This
divides So into two open surfaces S

(1)
o , S

(2)
o . Si is similarly divided into S

(1)
i , S

(2)
i . We then

apply the divergence theorem to the volume τ1 which is bounded by the closed surface
S

(1)
o + S

(1)
i + Π, and we then apply the divergence theorem to the volume τ2 which is

bounded by S
(2)
o + S

(2)
i + Π. We add these results together. The contributions over Π

cancel, leaving the result:
∫

So+Si

A ∙ n̂ dS =

with the normal to Si drawn inwards, i.e. out of τ.

(b) Multiply-connected regions (bottom diagram in figure 18)

For example this could be the region between two cylinders. Again let So and Si be
the outer and inner surfaces, linked by the plane Π. Label the two sides of the plane 1
and 2. Consider the surface

This is closed and encloses a simply-connected region τ. We then apply the divergence
theorem to τ. The contributions along the two sides of Π cancel, giving

∫

So+Si

A ∙ n̂ dS =

∫

τ

divA dτ.
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1.8.8 Green’s identities in 3D

Let φ and ψ be two scalar fields with continuous second derivatives. Consider the quantity

A = φ∇ψ.

It follows that

divA =

n̂ ∙ A =

Applying the divergence theorem we obtain

∫

S

{

φ
∂ψ

∂n

}

dS = (1)

which is known as Green’s first identity. Interchanging φ and ψ we have

∫

S

{

ψ
∂φ

∂n

}

dS = (2)

Subtracting (2) from (1) we obtain

∫

S

{

φ
∂ψ

∂n
− ψ

∂φ

∂n

}

dS =

which is known as Green’s second identity. These identities are very useful when
constructing solutions to partial differential equations (see for example ‘PDEs in action’
in term 2).

1.8.9 Green’s identities in 2D

If we use the divergence theorem in 2D derived in the first section of the notes:

∫

R

divF dx dy =

∮

C

F ∙ n̂ ds.

then we can calculate down the corresponding Green identities. These are

∮

C

φ
∂ψ

∂n
ds =

∫

R

[
φ∇2ψ + (∇ψ) ∙ (∇φ)

]
dx dy

and ∮

C

[

φ
∂ψ

∂n
− ψ

∂φ

∂n

]

ds =

∫

R

[
φ∇2ψ − ψ∇2φ

]
dx dy.

These formulae are the generalisation of integration by parts to two dimensions.
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1.8.10 Gauss’ flux theorem

Let S be a closed surface with outward unit normal n̂, and let O be the origin of the
coordinate system. Then:

∫

S

n̂ ∙ r
r3

dS =

{
0, if O is exterior to S
4π, if O is interior to S.

Proof

First suppose O is exterior to S and that S encloses a volume τ . Then we have r 6= 0
throughout τ . Applying the divergence theorem:

∫

S

n̂ ∙ r
r3

dS =

But

div
( r

r3

)
=

Hence we have that ∫

S

n̂ ∙ r
r3

dS =

∫

τ

div
( r

r3

)
dτ = 0,

as required.
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O

Figure 19: Diagram for the proof of Gauss theorem with O interior to S.

Now suppose O is interior to S (figure 19). We surround O with a small sphere radius ε,
with surface Sε, lying entirely within S. We consider the volume τε enclosed between S
and Sε Then, applying the divergence theorem and proceeding as above we have

∫

S+Sε

n̂ ∙ r
r3

dS =

Breaking up the surface integral into two parts:

0 =

∫

S+Sε

n̂ ∙ r
r3

dS =

However (since r = ε on Sε):

∫

Sε

r̂ ∙ r
r3

dS =

Thus it follows that ∫

S

n̂ ∙ r
r3

dS =
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C

Figure 20: Diagram for the proof of Stokes’ theorem.

1.8.11 Stokes theorem

Suppose S is an open surface with a simple closed curve γ forming its boundary, and let
A be a vector field with continuous partial derivatives. Then:

∮

γ

A ∙ dr =

∫

S

curlA ∙ n̂ dS,

where the direction of the unit normal to S and the sense of γ are related by a right-hand
rule (i.e. n̂ is in the direction a right-handed screw moves when turned in the direction
of γ).

Proof

Let A = A1i + A2 j+A3k . Consider

curl (A1i) =

Then we have
∫

S

[curl (A1i )] ∙ n̂ dS =

If we now project onto the x − y plane, S becomes Σ say, and γ becomes C (figure 20).
Let the equation of S be z = f(x, y). Then we have

n̂ =
∇(z − f(x, y))

|∇(z − f(x, y))|
=

Therefore, on S :

j ∙ n̂ =
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Thus:
∫

S

[curl (A1i)] ∙ n̂ dS =

=

=

=

with the last line following by using Green’s theorem. However on γ we have z = f and
so ∮

C

A1(x, y, f ) dx =

We have therefore established that
∫

S

(curl A1i ) ∙ n̂ dS =

In a similar way we can show that

∫

S

(curl A2j ) ∙ n̂ dS =

and ∫

S

(curl A3k ) ∙ n̂ dS =

and so the theorem is proved by adding all three results together.

Note that although S must be open, it is not necessarily smooth. For example it could
be in the shape of a box without a lid.
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Figure 21: Two different open surfaces, both with the closed curve γ as boundary.

The theorem is actually true for any open surface with γ as boundary. To see this
consider figure 21. The normal to S1 is n̂1 and to S2 is n̂2. The surface S1 + S2 is closed:
let it enclose a volume V . Applying the divergence theorem to curl A over this region
gives ∫

S1+S2

curlA ∙ n̂ dS =

In the divergence theorem the normal must always point out of V and hence

0 =

∫

S1+S2

curlA ∙ n̂ dS =

implying that

Theorem

A necessary and sufficient condition that
∮

γ
A ∙ dr = 0 for any simple closed curve γ is

that curl A = 0 throughout the region in which γ is drawn (assuming A is continuously
differentiable and the region is simply-connected).

Proof

We already know that if
∮

γ
A ∙ dr = 0 then there exists a potential φ such that A = ∇φ.

Therefore we see that curl A = 0 since the curl of a gradient is always zero.
Conversely, if curl A = 0 then by Stokes’ theorem we have

∮
γ
A ∙dr = 0 for any simple

closed curve γ.
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Figure 22: The parabolic surface z = 1 − x2 − y2 with z ≥ 0.

Example

Verify Stokes theorem for the vector field A = (y, z, x) and the surface S given by z =
1 − x2 − y2 with z ≥ 0.

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil

AGW
Pencil



A. G. Walton MATH50004 Multivariable Calculus: Vector Calculus 53

blah
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Figure 23: The surfaces r = constant, θ = constant, z = constant, for the cylindrical polar
coordinate system, and the orientation of the unit vectors.

1.9 Curvilinear coordinates

1.9.1 Introduction & definition

Often it is more convenient, depending on the geometry of the problem under considera-
tion, to use coordinates other than Cartesians. An example is cylindrical polar coordinates
(r, θ, z) which are related to Cartesian coordinates by

from which we can deduce that

The equation r = constant therefore defines a family of circular cylinders with axes along
the z-axis, while the equation θ = constant defines a family of planes, as does the equation
z = constant (figure 23). Cylindrical polar coordinates are an example of curvilinear

coordinates. The unit vectors r̂, θ̂, k̂ at any point P are perpendicular to the surfaces
r = constant, θ = constant, z = constant through P in the directions of increasing
r, θ, z. Note that the direction of the unit vectors r̂, θ̂ vary from point to point, unlike the
corresponding Cartesian unit vectors.
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More generally now, let us suppose that our Cartesian coordinates (x, y, z) ≡ (x1, x2, x3)
can be expressed as single-valued differentiable functions of the new coordinates (u1, u2, u3),
i.e.

We would like to know what the conditions are under which we can invert these expressions
and write the ui as single-valued differentiable functions of the xi. First let’s differentiate
the above expression with respect to xj :

Writing this out for each i and j we have the matrix equation



∂x1/∂u1 ∂x1/∂u2 ∂x1/∂u3

∂x2/∂u1 ∂x2/∂u2 ∂x2/∂u3

∂x3/∂u1 ∂x3/∂u2 ∂x3/∂u3








∂u1/∂x1 ∂u1/∂x2 ∂u1/∂x3

∂u2/∂x1 ∂u2/∂x2 ∂u2/∂x3

∂u3/∂x1 ∂u3/∂x2 ∂u3/∂x3



 = I,

where I is the identity matrix. We can express this more succinctly as

where J(xu) is the Jacobian matrix for the (x1, x2, x3) system and J(ux) is the cor-
responding Jacobian for (u1, u2, u3). We therefore see that J(ux) exists (i.e. the ui are
differentiable functions of the xi provided (J(xu))

−1 exists, i.e. we require

It turns out that this condition is sufficient to guarantee that our transformation can
be inverted. More precisely, the inverse function theorem states that around any
point where det(J(xu)) is nonzero, there exists a neighbourhood in which the ui can be
expressed as single-valued differentiable functions of the xi. There is more on this theorem
in the Differential Equations course next term.

Note also that the result J(xu)J(ux) = I implies that

a useful result that we will exploit later when we consider the transformation of inte-
grals. From now on we will assume we are in a region where det(J(xu)) 6= 0 and so our
transformations can indeed be inverted.

Example

Consider cylindrical polar coordinates (r, θ, z) again. The Jacobian is

∂(x, y, z)

∂(r, θ, z)
=




∂x/∂r ∂x/∂θ ∂x/∂z
∂y/∂r ∂y/∂θ ∂y/∂z
∂z/∂r ∂z/∂θ ∂z/∂z



 =

and so the determinant is equal to r(cos2 θ + sin2 θ) = r. So provided r 6= 0, the transfor-
mation can be inverted.
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Figure 24: Left: the intersection of the surfaces ui = ui(P ); right: P and Q are points on
a curve along which only one component ui varies.

Given that we can now write ui = ui(x1, x2, x3), the equations u1 = constant, u2 =
constant, u3 = constant define three families of surfaces, and (u1, u2, u3) is said to be
a curvilinear coordinate system. Through each point P (x, y, z) there passes one
member of each family. Let (â1, â2, â3) be unit vectors at P in the directions normal
to u1 = u1(P ), u2 = u2(P ), u3 = u3(P ) respectively, such that u1, u2, u3 increase in the
directions â1, â2, â3. Clearly we must have

âi =

If (â1, â2, â3) are mutually orthogonal, the coordinate system is said to be an orthogonal
curvilinear coordinate system.

The surfaces u2 = u2(P ) and u3 = u3(P ) intersect in a curve, along which only u1

varies. Let ê1 be the unit vector tangential to the curve at P. Let ê2, ê3 be unit vectors
tangential to curves along which only u2, u3 vary. For an orthogonal system we must have
êi = âi (left diagram in figure 24). Let Q be a neighbouring point to P on the curve along
which only ui varies (right diagram of figure 24). We have

∂r

∂ui

=

where we have defined hi = |∂r/∂ui| . The quantities hi are often known as the length
scales for the coordinate system.
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Figure 25: A volume element in an orthogonal curvilinear coordinate system.

1.9.2 Path element

Since r = r(u1, u2, u3), the path element dr is given by

dr =

If the system is orthogonal then it follows that

(ds)2 =

In what follows we will assume we have an orthogonal system so that

êi = âi =

In particular, path elements along curves of intersection of ui surfaces have lengths
h1du1, h2du2, h3du3 respectively.

1.9.3 Volume element

Since the volume element is approximately rectangular (figure 25) we can take

dτ =

1.9.4 Surface element

Also from figure 25, by looking at the areas of the faces of the volume element, we can
see that the surface element for a surface with u1 constant is

dS =

and similarly for u2 = constant, u3 = constant.
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Figure 26: An element of volume in cylindrical polar coordinates.

1.9.5 Properties of various orthogonal coordinate systems

(i) Cartesian coordinates (x, y, z)

dτ = dr =

(ds)2 =

and so h1 = h2 = h3 = 1 in this case.

(ii) Cylindrical polar coordinates (r, φ, z)

See figure 26. The coordinates are related to Cartesians by

To show that this is an orthogonal system we calculate

∂r/∂r =

∂r/∂φ =

∂r/∂z =

Orthogonality then follows from the fact that

The lengthscales are

and so the elements of length and volume are

The surface elements can also be calculated, e.g. an element of the surface along which r
is constant (i.e. a cylinder) is
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Figure 27: An element of volume in spherical polar coordinates.

(iii) Spherical polar coordinates (r, θ, φ)

See figure 27. In this case the relationship between the coordinates is

Then

∂r/∂r =

∂r/∂θ =

∂r/∂φ =

It can then be seen that

(∂r/∂r)∙(∂r/∂θ) =

Similarly:

and so the system is orthogonal. Then

h1 =

h2 =

h3 =

(We have assumed here that sin θ > 0, which is OK since the range of θ is 0 to π). The
volume element is

Also, an element of the surface r = constant = a (i.e. a sphere of radius a) is:
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Example

Find the volume and surface area of a sphere of radius a, and also find the surface area
of a cap of the sphere that subtends an angle 2α at the centre of the sphere.
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1.9.6 Gradient in orthogonal curvilinear coordinates

Let
∇Φ = λ1ê1 + λ2ê2 + λ3ê3

in a general coordinate system, where λ1, λ2, λ3 are to be found. Recall that the element
of length is given by

dr =

Now

dΦ =

=

=

But, using our expressions for ∇Φ and dr above:

(∇Φ) ∙ dr =

and so we see that

hiλi =

Thus we have the result that

∇Φ =

This result now allows us to write down ∇ easily for other coordinate systems.

(i) Cylindrical polars (r, φ, z)

Recall that h1 = 1, h2 = r, h3 = 1. Thus

∇ =

(ii) Spherical polars (r, θ, φ)

We have h1 = 1, h2 = r, h3 = r sin θ, and so

∇ =

1.9.7 Expressions for unit vectors

From the expression for ∇ we have just derived it is easy to see that:

êi =

Alternatively, since the unit vectors are orthogonal, if we know two unit vectors we can
find the third from the relation

ê1 =

and similarly for the other components, by permuting in a cyclic fashion.
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1.9.8 Divergence in orthogonal curvilinear coordinates

Suppose we have a vector field

A = A1ê1 + A2ê2 + A3ê3.

First consider

∇ ∙ (A1ê1) =

=

using the results established just above. Also we know that

∇ ∙ (B × C) = C ∙ curlB − B ∙ curlC,

and so it follows that

∇ ∙ (∇u2 ×∇u3) =

since the curl of a gradient is always zero. Thus we are left with

∇ ∙ (A1ê1) =

We can proceed in a similar fashion for the other components, and establish that

∇∙A =

It is now easy to write down div in other coordinate systems.

(i) Cylindrical polars (r, φ, z)

Recall that h1 = 1, h2 = r, h3 = 1. Thus using the above formula:

∇ ∙ A =

=

(ii) Spherical polars (r, θ, φ)

We have h1 = 1, h2 = r, h3 = r sin θ. Hence

∇∙A =
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1.9.9 Curl in orthogonal curvilinear coordinates

Again just consider the curl of the first component of A :

∇× (A1ê1) =

=

=

=

=

(since ê1 × ê1 = 0, ê2 × ê1 = −ê3, ê3 × ê1 = ê2). We can obviously find curl (A2ê2) and
curl (A3ê3) in a similar way. These can be shown to be

∇× (A2ê2) =
ê3

h2h1

∂

∂u1

(h2A2) −
ê1

h2h3

∂

∂u3

(h2A2),

∇× (A3ê3) =
ê1

h3h2

∂

∂u2

(h3A3) −
ê2

h3h1

∂

∂u1

(h3A3).

Adding the three contributions together, we find we can write this in the form of a
determinant as

curlA =

in which form it is probably easiest remembered. It’s then straightforward to write down
curl in various orthogonal coordinate systems.

(i) Cylindrical polars

curlA =
1

r

∣
∣
∣
∣
∣
∣

r̂ rφ̂ k̂
∂/∂r ∂/∂φ ∂/∂z
A1 rA2 A3

∣
∣
∣
∣
∣
∣
.

(ii) Spherical polars

curlA =
1

r2 sin θ

∣
∣
∣
∣
∣
∣

r̂ rθ̂ r sin θ φ̂
∂/∂r ∂/∂θ ∂/∂φ
A1 rA2 r sin θA3

∣
∣
∣
∣
∣
∣
.
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1.9.10 The Laplacian in orthogonal curvilinear coordinates

From the formulae already established for grad and div, we can see that

∇2Φ = ∇ ∙ (∇Φ)

=

This formula can then be used to calculate the Laplacian for various coordinate systems.

(i) Cylindrical polars (r, φ, z)

∇2Φ =
1

r

{
∂

∂r

(

r
∂Φ

∂r

)

+
∂

∂φ

(
1

r

∂Φ

∂φ

)

+
∂

∂z

(

r
∂Φ

∂z

)}

=
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂φ2
+

∂2Φ

∂z2
.

(ii) Spherical polars (r, θ, φ)

∇2Φ =
1

r2 sin θ

{
∂

∂r

(

r2 sin θ
∂Φ

∂r

)

+
∂

∂θ

(

sin θ
∂Φ

∂θ

)

+
∂

∂φ

(
1

sin θ

∂Φ

∂φ

)}

=
∂2Φ

∂r2
+

2

r

∂Φ

∂r
+

cot θ

r2

∂Φ

∂θ
+

1

r2

∂2Φ

∂θ2
+

1

r2 sin2 θ

∂2Φ

∂φ2
.
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1.9.11 Alternative definitions for grad, div, curl (not examinable)

Let τ be a region enclosed by a surface S and let P be a general point of τ. We established
earlier that ∫

τ

∇φ dτ =

∫

S

n̂φ dS.

This result is a consequence of the divergence theorem (see problem sheet). It follows
that ∫

τ

i ∙ ∇φ dτ =

∫

S

(i ∙ n̂)φ dS.

Now the left-hand-side above can be written as τ{i ∙ ∇φ} where the bar denotes the mean
value of this quantity over τ. Since we are assuming that φ has continuous derivatives
throughout τ, we can write

{i ∙ ∇φ} = {i ∙ ∇φ}Q

for some point Q of τ. Thus we have that

{i ∙ ∇φ}Q =
1

τ

∫

S

(i ∙ n̂)φ dS.

Now let τ → 0 about P. Then P → Q and we have that at any point P of τ :

i ∙ ∇φ = lim
τ→0

1

τ

∫

S

(i ∙ n̂)φ dS.

Similar results can be established for j ∙ ∇φ and k ∙ ∇φ. Taken together, these imply that

∇φ = lim
τ→0

1

τ

∫

S

n̂φ dS.

This can be regarded as an alternative way of defining ∇φ, rather than defining it as
(∂φ/∂x)i + (∂φ/∂y)j + (∂φ/∂z)k.

We can similarly establish that

divA = lim
τ→0

1

τ

∫

S

(n̂ ∙ A) dS,

curlA = lim
τ→0

1

τ

∫

S

(n̂ × A) dS,

which are alternative definitions of the divergence and curl, and are clearly independent
of the choice of coordinates, which is one of the advantages of this approach. In particular
we can see that the divergence is a measure of the flux of a quantity.

Equivalence of definitions

Let’s show that the definition of divergence given here is consistent with the curvilinear
formula given earlier. Consider δτ to be the volume of a curvilinear volume element
located at the point P, with edges of length h1δu1, h2δu2, h3δu3, and unit vectors aligned
as shown in the picture (figure 28). The volume of the element δτ ' h1h2h3δu1δu2δu3.
We start with our definition

divA = lim
τ→0

1

τ

∫

S

(n̂ ∙ A) dS,
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Figure 28: A curvilinear volume element.

and aim to compute explicitly the right-hand-side. This involves calculating the con-
tributions to

∫
S

arising from the six faces of the volume element. If we start with the
contribution from the face PP ′S ′S, this is:

−(A1h2h3)P δu2δu3 + higher order terms.

The contribution from the face QQ′R′R is

(A1h2h3)Q δu2δu3 + h.o.t. =

[

(A1h2h3) +
∂

∂u1

(A1h2h3)δu1

]

P

δu2δu3 + h.o.t.,

using a Taylor series expansion. Adding together the contributions from these two faces
we get [

∂

∂u1

(A1h2h3)

]

P

δu1δu2δu3 + h.o.t.

Similarly, the sum of the contributions from the faces PSRQ,P ′S ′R′Q′ is

[
∂

∂u3

(A3h1h2)

]

P

δu1δu2δu3 + h.o.t.,

while the combined contributions from PQQ′P ′, SRR′S ′ is

[
∂

∂u2

(A2h3h1)

]

P

δu1δu2δu3 + h.o.t..

If we then let δτ → 0 we have that

lim
δτ→0

1

δτ

∫

S

n̂ ∙ A dS =
1

h1h2h3

{
∂

∂u1

(A1h2h3) +
∂

∂u2

(A2h3h1) +
∂

∂u3

(A3h1h2)

}

,

and so we can see that the integral expression for divA is consistent with the formula in
curvilinear coordinates derived earlier.
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Figure 29: A surface S parameterized by u1 and u2.

1.10 Changes of variable in surface integration

Suppose we have a surface S which is parameterized by the quantities u1, u2. We can
therefore write that on S:

x = , y = , z = .

[For example, if S is the surface of a sphere of unit radius we have x = sin θ cos φ,
y = sin θ sin φ, z = cos θ and so we can take u1 = θ, u2 = φ.]

We can consider the surface to be comprised of arbitrarily small parallelograms whose
sides are obtained by keeping either u1 or u2 constant: see figure 29, i.e.

dS = Area of parallelogram with sides
∂r

∂u1

du1 and
∂r

∂u2

du2

= |J| du1 du2,

where the vector Jacobian J is given by J =

This result is particularly useful when using a substitution in a surface integral, as we
can write∫

S

f(x, y, z) dS =

where F (u1, u2) = f(x(u1, u2), y(u1, u2), z(u1, u2)).

If S is a region R in the x − y plane, (i.e. z = 0 on R), the result reduces to
∫

R

f(x, y) dx dy =

where J(xu) is the Jacobian matrix we met earlier, i.e.

J(xu) =

Note that since dx dy = |det(J(xu))| du1du2 it follows that du1du2 = (1/ |det(J(xu))|)dx dy,
and hence

1/ |det(J(xu))| =

which is a result we found earlier by a different method. These formulae apply for both
orthogonal and non-orthogonal transformations.
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Suppose a surface is described by z = f(x, y). Then u1 = x, u2 = y and r = (x, y, f (x, y)).
It follows that

∂r

∂u1

=
∂r

∂x
= i +

∂f

∂x
k

∂r

∂u2

=
∂r

∂y
= j +

∂f

∂y
k

so then
∣
∣
∣
∣

∂r

∂u1

×
∂r

∂u2

∣
∣
∣
∣ =

=

=

=

Therefore the area of surface is
∫

Σ

√
(1 + |∇f |2) dx dy,

where Σ is the projection of S onto the x − y plane. We will use this expression in the
next section.
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Figure 30: A section of a helicoid.

Example

Evaluate the integral ∫

S

√
(1 + x2 + y2) dS

where S is the surface of the helicoid (shown in figure 30):

x = u cos v, y = u sin v, z = v,

with 0 6 u 6 4 and 0 6 v 6 4π.
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2 The Calculus of Variations

2.1 Preliminary motivational examples

Figure 1: The figure for Example 1.

Example 1. Shortest path between 2 points

Suppose we have two points A(0, 0) and B(x1, y1). The length l of a curve y(x) joining
the two points is (see figure 1):

The shortest path can be found by finding the y (x) which minimizes this integral. Intu-
ition suggests that it is a straight line. We will return to this problem later.
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Figure 2: The brachistochrone problem

Example 2. Curve of quickest descent (‘brachistochrone’)

A slightly less trivial example is the following. A particle starts from rest at the origin
and travels under gravity along a smooth curve until it reaches the point (x1, y1). What
shape of curve should it travel along in order that the time of descent is a minimum?

If s is distance along the curve then as in the first example

ds =
(
1 + (dy/dx)2)1/2

dx,

where y(x) is the path. As the particle travels, it converts potential energy into kinetic
energy while respecting the overall conservation of energy principle:

where y is measured vertically downwards from the origin, v(x) is the velocity at location
(x, y(x)) and m is the mass of the particle. Therefore we have

Rearranging:

Thus, the time τ taken to travel to x1 along y(x) is

The curve of quickest descent is found by minimizing this integral. This time the answer
is far from obvious.
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Figure 3: Surface of revolution

Example 3. Minimal surface of revolution

Consider a curve y = y(x) joining the points A(x1, y1) and B(x2, y2). We now consider
the surface formed by rotating this curve about the y−axis. The surface area is given by

Using the expression for arclength as in the first two examples, this can be rewritten as

It is of interest to find the curve y(x) which minimizes A. Again the answer is not obvious.
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2.2 ‘The Vanishing Lemma’

Before we proceed with the general theory we need the following result. If g is a continuous
function such that ∫ x2

x1

g(x)η(x) dx = 0

for all smooth functions η(x), with η(x1) = η(x2) = 0, then g(x) ≡ 0.

Proof

Assume for a contradiction that there is a point x0 ∈ [x1, x2] for which g(x0) 6= 0.
Let’s assume without loss of generality that g(x0) > 0. Since g is continuous there is
a neighbourhood of x0 in which g remains positive. Denote this neighbourhood by NH.

If x0 is not equal to x1 or x2 then we can take NH = (x0 − ε, x0 + ε). with ε > 0. If
x0 = x1 then NH = [x1, x1 + ε) and if x0 = x2 then NH = (x2 − ε, x2]. In each case
g(x) > c > 0 for all x ∈ NH.

Consider now a smooth function h(x) on [x1, x2] with the following properties†

(i) h(x) = 0 for all x outside the neighbourhood;

(ii)
∫ x2

x1
h(x) dx =

∫
NH

h(x) dx > 0.

It follows then that

and hence leads to a contradiction.

†For an example of such a function h(x) see problem sheet 5.
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2.3 General theory for 1D integrals

The examples mentioned above are special cases of the integral

I =

∫ x2

x1

L(x, y, y′) dx

where y′ = dy/dx. In example 1, L = (1 + (y′)2)1/2. L is known as a functional.

Suppose y = y(x) passes through A(x1, y1) and B(x2, y2). What is the particular y(x)
which minimizes/maximizes (extremizes) the integral I? If y = Y (x) is the extremal
curve, how do we find it?

Consider the family of curves

where ε is any real number and η is a smooth curve with η(x1) = η(x2) = 0. Each member
of the family passes through A and B. It follows that

The integral I takes on its extreme value when ε = 0 (since then y = Y ). Therefore we
must have

Now

When ε = 0 we have y = Y and y′ = Y ′, and so

We now integrate by parts to get

The integrated term vanishes since η(x1) = η(x2) = 0 and we are left with

Since η(x) is an arbitrary smooth curve we can use the Vanishing Lemma above to deduce
that Y satisfies

∂L

∂Y
−

d

dx

(
∂L

∂Y ′

)

= 0 (1)

which is known as the Euler-Lagrange equation in one dimension.
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2.3.1 Remarks

(i) In order to integrate by parts we have assumed that the curve Y (x) is of the class C2

(i.e. the derivatives Y ′ and Y ′′ exist and are continuous).
(ii) Y (x) renders I stationary, not necessarily a maximum or minimum, so the Euler-
Lagrange equation is a necessary but not sufficient condition for Y (x) to minimize I. In
order to prove it definitely gives a (local) minimum we have to show that I ′′(0) > 0 (which
is complicated to establish except for very simple examples).
(iii) We usually refer to Y (x) as an extremal curve of I.
(iv) The Euler-Lagrange equation is an equation to determine Y (x); the functional L is
known for a given problem and is referred to as the Lagrangian.
(v) From now on we will replace Y by y, i.e. we will denote the extremal curve by y(x).

2.3.2 Short forms of the 1D Euler-Lagrange equation

The equation simplifies if the functional L is independent of one or more of the variables
x, y, y′.

Case 1. L is explicitly independent of y.
Here L = L(x, y′) and so ∂L/∂y = 0. Thus the E-L equation reduces to

−
d

dx

(
∂L

∂y′

)

= 0

and hence

Case 2. L = L(x, y) so that ∂L/∂y′ = 0. In this case the E-L equation reduces to

Case 3. L = L(y, y′) so that ∂L/∂x = 0, but dL/dx 6= 0. Using the chain rule

dL

dx
=

∂L

∂x
+

∂L

∂y

dy

dx
+

∂L

∂y′

dy′

dx

= y′∂L

∂y
+ y′′ ∂L

∂y′
.

Using the E-L equation, the RHS can be rewritten as

Therefore we see that
dL

dx
=

d

dx

(

y′ ∂L

∂y′

)

and hence the E-L equation reduces in this case to

L − y′ ∂L

∂y′
= constant.
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It’s useful to remember the short forms, but the most important equation to remember
is the original Euler-Lagrange equation (1). Now that we have this we can revisit our
motivational examples.

2.4 Revisiting our examples

Example 1 revisited: shortest path between 2 points.
Here the integral to minimize is

I =

∫ x1

0

(
1 + (y′)

2
)1/2

dx.

and hence L =
(
1 + (y′)2)1/2

, explicitly independent of x and y. Therefore the E-L equa-
tion

∂L

∂y
−

d

dx

(
∂L

∂y′

)

= 0

reduces to

Substituting for L we find:

This implies

and hence

Therefore the extremal curve is of the form

with m,C found from the conditions that y passes through (0, 0) and (x1, y1). In this case:

Thus the answer is a straight line as expected. In this case we can check explicitly
that I ′′(0) > 0 and hence demonstrate rigorously that this is a minimum rather than a
maximum (although here of course it is obvious there is no maximal curve).
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Example 2 revisited: brachistochrone

Here the integral to minimize is

τ =
1

(2g)1/2

∫ x1

0

y−1/2
(
1 + (y′)

2
)1/2

dx

and so we can take
L = y−1/2(1 + (y′)2)1/2.

Since this is independent of x we can use the appropriate short form (case 3) of the E-L
equation, namely:

L − y′ ∂L

∂y′
= constant.

Substituting for L :

Putting over a common denominator:

where α is an arbitrary constant. We now separate the variables and integrate, setting
y = 0 when x = 0 as this is the initial location of the particle. This gives

To solve the integral we make the substitution y = α2 sin2 θ, dy = 2α2 sin θ cos θ. Thus:

We take the positive sign so that x increases as θ increases (i.e. the parameter θ increases
as the particle moves along the curve from left to right) . Thus the parametric form of the
mimimizing curve is:

x = α2(θ −
1

2
sin 2θ), y =

1

2
α2(1 − cos 2θ), (0 ≤ θ ≤ θ1),

where α and θ1 can be expressed in terms of x1 and y1 from the condition that x = x1, y =
y1 when θ = θ1. The solution is the arc of a cycloid. A sketch is shown in figure 4. Recall
that y is measured downwards. The resulting shape is a compromise between travelling
the shortest distance (a straight line) and achieving the highest speed (moving vertically
downwards and then horizontally).
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Figure 4: The curve of quickest descent under gravity

Example 3 revisited: minimal surface of revolution
Here we want to minimize the area

A = 2π

∫ x2

x1

x
(
1 + (y′)

2
)1/2

dx.

We take L = x
(
1 + (y′)2)1/2

, which is explicitly independent of y (case 1). Hence the
E-L equation is ∂L/∂y′ = constant, i.e.

This can be rearranged into the form

which can be integrated to give

y = ±β cosh−1(x/β) + γ.

When written in the form x = x(y) this curve is known as a catenary. The curve has the
shape shown on the left in figure 5. On the right we show a sample surface of revolution
linking two circles of different radii - the surface is known as a catenoid.

Figure 5: Left: the catenary curve x = cosh y. Right: a surface of revolution formed from
a section of a catenary.
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Recall that the boundary conditions are such that y(x1) = y1, y(x2) = y2 and we can take
y1 = 0 without loss of generality so that one of our rings lies in the plane y = 0. We
therefore need to choose β and γ such that

x1 = β cosh

(
γ

β

)

, x2 = β cosh

(
y2 − γ

β

)

.

However for some boundary conditions this is not possible: in particular if x1 and x2 are
small, but y2 is large. This means that there is no continuous minimal surface between
small rings a large distance apart. This has applications to soap films among other things
and there are some interesting videos you can find online.
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2.5 Extension of the Euler-Lagrange equation to more variables

Suppose we now have an integral of the form

I =

∫ t2

t1

L(t, x1(t), x2(t), . . . , xn(t), x′
1(t), x

′
2(t), . . . x

′
n(t)) dt

so that L is a scalar function of (2n + 1) variables. For simplicity let’s write

x = (x1(t), x2(t), . . . , xn(t)), x′ = (x′
1(t), x

′
2(t), . . . x

′
n(t))

If we suppose that the extremal solution is

X = (X1(t), X2(t), . . . , Xn(t)),

then in a similar way to our earlier proof we can consider a perturbation to this solution
of the form

x(t, ε) = X(t) + εη(t)

where η = (η1, η2, . . . ηn) is a smooth n−dimensional vector function of t, with η(t1) =
η(t2) = 0. We then seek a solution for which

dI/dε = 0 when ε = 0.

Thus

using the chain rule. We can integrate by parts to get

Since ηi(t1) = ηi(t2) = 0 for all i, this reduces to

Since the ηi are arbitrary smooth functions, the Vanishing Lemma implies that

∂L

∂Xi

−
d

dt

∂L

∂X ′
i

= 0 (2)

for all i = 1, 2, . . . , n. Thus rather than having one E-L equation we now have a set of 
n simultaneous E-L equations to solve for the function X = (X1, X2, . . . , Xn).
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Example 4. A trivial example of this is to consider the area A enclosed by a simple
closed curve in the x − y plane. In Part 1 on Green’s theorem we showed that if the
boundary is denoted by C, then

A =
1

2

∮

C

x dy − y dx.

Writing this in parametric form:

So here we have x = (x, y) and we can apply the theory above to find the closed curve
which extremizes the area. We therefore need to solve the simultaneous E-L equations

∂L

∂x
−

d

dt

∂L

∂x′
= 0,

∂L

∂y
−

d

dt

∂L

∂y′
= 0,

where

L(t, x, y, x′, y′) =
1

2
xy′ −

1

2
yx′.

Substituting for L the equations become

In this case we can see that the only solution is that x and y are both constant. in other
words the E-L equation has led us to the minimum area of zero which is obtained by
shrinking the curve C to a point. This of course is self-evident but the problem becomes
more interesting if we restrict our attention to closed curves that have a fixed length l
say. This is equivalent to imposing the arclength constraint

We would then hope to obtain a non-trivial answer to our problem of maximising/minimizing
A. We will return to this problem later. This example motivates our study of finding ex-
tremal solutions subject to constraints in the next section.
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2.6 Variational problems involving constraints

We will start with the 1D case again as it is easier to visualize before generalizing to
vector functions. Suppose we wish to find the curve y(x) with y(x1) = y1, y(x2) = y2 such
that

I =

∫ x2

x1

L(x, y, y′) dx

is stationary, and

J =

∫ x2

x1

g(x, y, y′) dx

is a fixed constant, J0 say. As usual, L and g are known functionals. As before we consider
a family of functions

where Y (x) is the desired solution to the problem and η is a smooth function which
satisfies η(x1) = η(x2) = 0 so that each member of the family passes through the end
points. We therefore have

and

We want I to be stationary and so

J is a constant and so in particular

Calculating I ′(0) and J ′(0) by the same method as in the unconstrained case we arrive at
the following conclusion:

∫ x2

x1

η(x)

{
∂L

∂Y
−

d

dx

(
∂L

∂Y ′

)}

dx = 0

for all smooth functions η(x) vanishing at the end points which satisfy

∫ x2

x1

η(x)

{
∂g

∂Y
−

d

dx

(
∂g

∂Y ′

)}

dx = 0.

If follows (see problem sheet 5) that there exists a scalar λ (a Lagrange multiplier)
such that
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and hence we have
∂

∂Y
(L + λg) −

d

dx

(
∂

∂Y ′
(L + λg)

)

= 0. (3)

We therefore retain the familiar Euler-Lagrange equation but with L simply replaced by
L + λg. As before we will now use y rather than Y to denote the (constrained) extremal
curve.

The solution procedure is as follows: if we solve equation (3) we obtain y = y(x, λ, C1, C2)
where C1, C2 are constants of integration. Then applying the boundary conditions we can
reduce this to y = y(x, λ). Finally, substituting into the integral constraint will give us
the value of λ.
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Example 5
Find the form of y(x) which extremizes the integral

I =

∫ π/2

0

(y′)2 − y2 + 2xy dx

subject to y(0) = y(π/2) = 0 and the constraint
∫ π/2

0
y dx = π2/8.
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2.7 Extension of the constrained case to more variables

As in the unconstrained case the method can easily be extended to problems in which
we want to find the extremal solution x(t) (where x is an n−dimensional vector) of an
integral

I =

∫ t2

t1

L(t,x(t),x′(t)) dt

subject to the constraint

J =

∫ t2

t1

g(t,x(t),x′(t)) dt = J0.

As before we need to solve n simultaneous E-L equations, but now they are for the
functional L + λg, i.e.

∂

∂Xi

(L + λg) −
d

dt

∂

∂X ′
i

(L + λg) = 0

for i = 1, . . . , n.
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Example 4 revisited.
Let’s return to example 4 where we computed the area enclosed by a simple closed curve
but now let us impose the constraint that the length of the curve is fixed. Our problem
is to find a relation between x(t), y(t) such that the area

A =
1

2

∫ t2

t1

(x(t)y′(t) − y(t)x′(t)) dt

is rendered stationary, subject to

∫ t2

t1

(x′(t)2 + y′(t)2)1/2dt = l,

where l is a constant representing the length of the closed curve. For this problem the
minimum area of zero is clearly achieved if the curve collapses to a straight line. We might
hope that a variational approach to the constrained problem leads to the determination
of the curve that encloses the maximum area. We apply the Euler-Lagrange equations

∂f

∂x
−

d

dt

∂f

∂x′
= 0,

∂f

∂y
−

d

dt

∂f

∂y′
= 0

to the functional f = L + λg where

The equations become

Integrating we obtain

where a and b are constants. Squaring and adding we find that

and so the extremal curve is a circle of radius λ. Since the perimeter is fixed equal to l
then we must have λ = l/2π and therefore A = l2/4π. From what we have said earlier we
expect this curve maximizes (rather than minimizes) the area enclosed and this is indeed
the case: the circle gives the largest area for a fixed perimeter l. Thus for any simple
closed curve we have the isoperimetric inequality

4πA ≤ l2,

where equality holds only when the curve is a circle.
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2.8 The Euler-Lagrange equation for higher-dimensional
integrals

In the final part of Chapter 1 we showed that the area of surface of a function z = f(x, y)
is given by the integral

I =

∫

Σ

(1 + |∇f |2)1/2 dx dy

where Σ is the projection of the surface onto the x− y plane. Suppose that the surface is
bounded by a closed curve γ lying in 3D space. If a wire loop is bent into this shape and
dipped into a soap solution, a film will form. It turns out that the soap film will assume
a shape which has the least surface area, at least locally, compared to all other surfaces
that span the wire loop. If we want to find this shape we need to find the function f
which minimizes I. Since I is a surface integral, if we want to use a variational approach
we need to extend our Euler-Lagrange formulation. We will return to this example once
we have derived the general theory.

2.8.1 Euler-Lagrange theory for surface integrals

We consider integrals of the form

I =

∫

R

L(r, f(r),∇f(r)) dx dy

where r = xi+yj is a position vector in R2. Let C denote the boundary of R and suppose f
is prescribed on C. Suppose F (r) is the extremal function we are trying to find. Consider
a family of functions

f(r) = F (r) + εη(r),

where η is a smooth function which vanishes on C so that all members of the family take
on the same prescribed values on the boundary. We write

I(ε) =

∫

R

L(r, F + εη,∇F + ε∇η) dx dy.

Since we require I to be stationary when ε = 0 we have

I ′(0) = 0

as in our earlier formulations. Using the chain rule:

dI

dε
=

∫

R

(

η
∂L

∂f
+∇η ∙∇∇fL

)

dx dy. (4)

Here we adopt the notation

∇p ≡ i
∂

∂p1
+ j
∂

∂p2

for any vector p in R2 and we have used the result from early in the course (Sheet 1 Q3)
that

d

dε
f(g(ε)) = g′(ε) ∙∇gf.
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Setting ε = 0 in (4) we therefore have

0 =

∫

R

(

η
∂L

∂F
+∇η ∙∇∇FL

)

dx dy. (5)

Now since η vanishes on the boundary C of R, the divergence theorem tells us that

∫

R

∇η ∙A dx dy = −
∫

R

η divA dxdy

for any vector field A (see Problem Sheet 3, Q1). Thus choosing

A =∇∇FL,

(5) can be rewritten in the form

∫

R

η

(
∂L

∂F
− div(∇∇FL)

)

dxdy = 0.

Since η is arbitrary, and using an appropriate extension of the Vanishing Lemma to higher
dimensions, we conclude that

∂L

∂F
− div(∇∇FL) = 0, (6)

which is the generalization of the Euler-Lagrange equation we derived for 1D integrals.
Again, henceforth we use f rather than F to denote the extremal function.

2.8.2 Remarks

(i) The equation holds for volume integrals and in fact also for n-dimensional integrals.
(ii) Constraints can be accommodated in a similar way to before.
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Example 6
We conclude by revisiting the minimal surface area (soap film) example. Here we wish to
minimize the integral

I =

∫

Σ

(1 + |∇f |2)1/2 dx dy

and so
L = (1 + |∇f |2)1/2,

which is explicitly independent of position r and the function f. The E-L equation (6)
therefore becomes

Writing ∇f = (fx, fy) we have

and so the minimal surface equation is

After some algebra (problem sheet 5) the equation can be written as the following non-
linear second order partial differential equation:

(1 + f 2y )fxx + (1 + f
2
x)fyy − 2fxfyfxy = 0.

Some solutions to this equation are investigated on sheet 5.
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