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Notes on these slides

© Prasun K. Ray (2021) These slides are provided for the personal study of students
taking Network Science at Imperial College London during the 2021-22 academic year.
The distribution of copies in part or whole is not permitted.

Examinable material: You will not be asked to analyze or write any Python code or
pseudocode. You will not be tested on your understanding of NetworkX. The material
on “Diffusion in 1D” in lecture 10 and “Network science and climate science” at the end

of lecture 16 will also not be examined.
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Network Science overview

The science of networks is an
important, rapidly growing field

Examples of significant networks:

Twitter, Facebook
Air transportation network

World-wide web  '

Human brain
—

images from.
https./7en. wikipedia.org/wiki/Complex_network
D.S. Bassett, How You Think: Structural Network Mechanisms of
Human Brain Function 9
Imperial College Brockmann & Helbing, The Hidden Geometry of Network-Driven

London

Contagion Phenomena



Ultimately, the aim is to understand how the

structure of a network influences its

functionality

* E.g. how does the structure of the air
transportation network influence a global
pandemic?

This requires careful thinking about:
e graph theory
e probability
* statistics
* linear algebra
» differential equations
e algorithms

“Coincidentally” this strongly overlaps with your
1st-year modules!

10
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Syllabus

Weeks 2-3: Graph properties and structure; using NetworkX
Weeks 3-5: Random graph models
Weeks 6-9: Dynamics on graphs: modeling, analysis, and simulation

Week 10-11: Communities, community detection, networks & data science

Questions we will consider:

Imperial College

How does Google order your search results?

How can we predict the spread of an infectious disease in a
community social network?

How can we identify communities in a pod of dolphins?

How can we model the evolution of the Facebook friends network?
11



Module structure

* A detailed module guide has been posted on Blackboard, I'll just provide a quick
overview here

* This module runs weeks 2-11 of term

* We have 9 live lectures (also streamed via Teams and recorded) and 7 pre-
recorded lectures

* So some weeks will have 2 lectures and some will have 1. | will post an
outline of the week ahead on Blackboard at the beginning of each week
(starting next Sunday)

 Slides will be posted on Blackboard in advance of live lectures and at the
same time as pre-recorded lectures

* A ssingle navigable pdf with all slides will be provided at the beginning of the
exam revision period at the beginning of April. These are the typed lecture
notes for the module.

12
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We will also have 6 computer labs (in the MLC) and 5 problem classes

* The first computer lab is this Friday and the first problem class is next
Thursday (see the module guide)

There are weekly office hours on Teams: Tuesdays, 3-3:40pm
Problem sheets will typically be posted on Mondays around noon.

This week: Monday lecture, Tuesday office hour, and Friday computer lab

Imperial College

London
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Assessment

2 Projects (10%, 20%)
1 Midterm (10%)

Final exam (60%)

Projects will contain substantial computational and open-ended components
Tentative project dates:
Project 1: Assigned 29/10, due 5/11

Project 2: Assigned 3/12 due 17/12

Imperial College
London
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Online resources

* Module Blackboard page
e All course material will be posted here

* Ed discussion board (similar to Piazza): https://edstem.org/us/courses/15185/discussion/
Ask (and answer) questions on nearly all module-related topics here

* Questions on Ed will be prioritized over emails
* You can post questions privately (only instructors/GTAs will see them)

* You can also post questions where you are anonymous to other classmates (but not
to instructors/GTAs)

* Microsoft Teams page: MATH50007 - Network Science (Autumn 2021-2022)

* Meetings will be started here for live lectures and office hours

15
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Computing

We will be using Python and it is recommended that you use/install the
standard Anaconda package: https://www.anaconda.com/products/individual

Imperial College
London

ANACONDA

This will give you the Spyder IDE and all of the packages that you need
(Numpy, Scipy, Matplotlib, NetworkX, Pandas,...)

For more information on software installation: https://imperial-fons-
computing.github.io/

If you have installation/software/hardware problems, please post your issue
on Ed within the “Computer issues” category

16
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Reading

We will use Network Science by Barabasi, one of the pioneers in ST 7
the field S o €
s P ey
* The book is freely available online: (e
http://networksciencebook.com/ o |
o ° o .
-\..\ .‘:,..// .. <
* It provides great context and motivation for most of the 5 S -
. . . . e ®
modaule topics with frequent comparisons with data from real AL Ads BaskE
networks

* It is not written for mathematicians and much of the SCI ENCE
mathematical development lacks rigor — the lectures will
attempt to compensate for this

* You should read chapters 2 of the book this week
* Afterwards, the required reading will be substantially reduced

* |If you are unsure of what Network Science is, browse through chapter 1

17
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Getting started (week 1)

* Make sure you are happy with your access to Python (terminal + editor)

* Read Chapter 2 of Barabasi: http://networksciencebook.com/

* Much of the material will be familiar and/or straightforward, and you should go
through those parts quickly

* You can skip the “Boxes” and historical discussions

* Don’t skip section 2.13

* Ask questions during the Tuesday office hour, during the computer lab on Friday, or on
Ed

18
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Distances in real-world networks

* The title of this module is Network Science
* So we should always keep our minds on important questions related to the real world

* For example, how close (or far apart) are Bruce Lee and Beyoncé?

Bruce Lee, famous American Beyoncé, famous American
actor and martial artist actress and singer

Imperial College
London
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We first have to define “distance”
Let’s say two actors are “linked” if they have appeared in the same film
* We could then place a weight on a link based on the number of shared films

* For example, Jackie Chan was a stuntman in 3 Bruce Lee films, so:

Imperial College
London
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e Let’s ignore the edge weights, and count the smallest number of links to get from Bruce Lee
to Beyoncé:

Beyonce | * We see that there is a path of distance 3
was in from Beyoncé to Bruce Lee
Cadillac Records |
with ’ « Which is shorter than what | would have
I
Adrien Brody | guessed!

was in

* And there is more than one shortest path
Dragon Blade |

with * |tis possible to study a much larger group
Jackie Chan | of actors (say all actors in IMDB) and
wabin construct a collaboration graph
Enter the Dragon |
with
Bruce Lee |

Image generated at oracleofbacon.org
21
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* A collaboration graph is a single-graph projection of a bipartite actor-movie graph:

Movie 1

Actorl
Actorl
Movie 2
Movie 3
Actor 2 \ > Actor 2
Movie 4
/ Movie 5
Actor 3
Actor 3
Imperial College \
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Here’s a small example:

Imperial College
London

Tom Hardy

Liam Neeson

Katie Holmes

Morgan Freeman

Joseph Gordon-Levitt

Batman Begins

The Dark Knight
The Dark Knight Rises

Christian Bale
.Aaron Eckhart

. Heath Ledger
Maggie Gyllenhaal ‘

From: R. Lewis, Who is the Centre of the Movie Universe?

23



e Our Bruce Lee — Beyoncé question is a variation of the “6 degrees of Kevin Bacon” game

* The concept is that any (Hollywood) actor can be reached from Kevin Bacon via links in the
actor collaboration network in 6 or less steps

II’

* The underlying idea is that distances in large social networks tend to be “smal
* And short distances are found in a large variety of complex networks
*  We will make this idea of “short distances” more precise soon

* 6 degrees of Kevin Bacon is a play on the idea of 6
degrees of separation which comes from the work of

social psychologist Stanley Milgram in the 1960s

* The claim is that any 2 people are no more than 6 links
apart in the global social network of acquaintances

 Network Science is generally considered to be about
Kevin Bacon, famous 20 years old, but this ignores the foundation provided

American actor by social network analysis which is considerably older
24
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Question for you: given data for the IMDB actor collaboration network, what would
you want to explore and analyze?

25
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Simple networks

We are primarily interested in large complex
networks like a national power grid 2>

But we should first make sure we can analyze
simpler cases!

This will build intuition about useful quantities like
the diameter and clustering coefficient

And later, will provide a reference when analyzing
complicated real-world problems

Imperial College

London

From: Tamrakar, S., Conrath, M. &
Kettemann, S. Propagation of
Disturbances in AC Electricity
Grids. Sci Rep 8, 6459 (2018)
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Warm-up question:

* What does this adjacency matrix—>
correspond to?

(A;; = 1if there is a link to node i from

node j and 4;; = 0 otherwise)

Imperial College
London
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Warm-up question:

* What does this adjacency matrix—>
correspond to?

(A;; = 1if there is a link to node i from
node j and 4;; = 0 otherwise)

* Thisis a cycle graph with N = 6 nodes

and L = 6 links
* This is an unweighted, undirected
graph

 And if we set the “top-right” and

"lower-left” elements to zero, we have
a chain 2

Imperial College
London

01 0 0 0
1 0 1 0 0
~]l]o 1.0 1 0
A_00101
0 00 1 0
1 0 0 0 1

o —0 0 0 0 0 0

S FRPr OO O K
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Simple example #1: lattices

We can think of a chain as a “1-D lattice” P P S S ——
The two- and.t.hree-dimensional versions “HFHTTH%HJ
are both familiar $3 : 3 %
» L I IH
e
3
1e0seoss E{H{

===
b
Dl
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* The adjacency matrix of a 2D lattice (A,) has
a block tridiagonal structure as shown below

 Here, A is the adjacency matrix for an m-
node 1D lattice, | is the m x m identity
matrix, and the 2D lattice has N = m? nodes

Optional exercise: what is the structure of the
adjacency matrix for a 3D lattice?

Imperial College
London
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Let’s now think about node degrees in
lattices. The degree of a node is the number
of links it has.

o —o 0 0 0 0 0

First consider “interior” nodes (as
opposed to “boundary” nodes)
* Interior nodes have degree, k = 2d , ' : E«%é

where d is the lattice dimension

2o s
p b »
i

 The degrees of boundary nodes depend
on the dimension

* Ford =3and N = m?3 nodes, the 8
corner nodes have k = 3, and all other

boundary nodes have k = 4 / /

Imperial College
London




Now, let’s think about the graph diameter, D,
the longest shortest path between two nodes
(assuming that the graph is connected)

For d-dimensional lattices, with N = m¢?

nodes, we have D = d(m — 1)

What we are interested in generally is how
the diameter scales with N, particularly as
N becomes large

Rearranging the above expressions, we
find,D = d NY/4 — d

So for large N,D ~ N1/
Are distances “short” in lattices? No, we

will look at another simple model next
lecture with different behavior.

Imperial College

London
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Chapter 2 of Barabasi introduces the local,
average, and global clustering coefficients.
Check your understanding by evaluating
the following claim: The average and
global clustering coefficients for these
lattices are zero.

o —o 0 0 0 0 0

50

SRR
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Note: Here we have only considered “rectangular” lattices. Lattices are constructed
via regular tilings, and we could, for example, construct a triangular lattice

Imperial College
London
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A quick aside:

1- and 2D rectangular lattices are
frequently found in manmade networks
(e.g. small computer networks, planned
cities)

3D lattices are commonly found in nature -
- crystals and crystalline solids have
lattice-like molecular structure

But we’re mainly using them as

preparation for analysis of complex
networks...

Imperial College
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Galena Quartz

Pyrite
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NetworkX

Network Nodes Links Directed / N i K>
Undirected
Internet Routers Internet Undirected 192,244 609,066 6.34
connections
WWW Webpages Links Directed 325,729 1,497,134 4.60
Power Grid Power plants, Cables Undirected 4,941 6,594 2.67
transformers

Mobile-Phone Calls Subscribers Calls Directed 36,595 91,826 2.51
Email Email addresses Emails Directed 57,194 103,731 1.81

Science Scientists Co-authorships Undirected 23,133 93,437 8.08
Collaboration

Actor Network Actors Co-acting Undirected 702,388 29,397,908 83.71
Citation Network Papers Citations Directed 449,673 4,689,479 10.43
E. Coli Metabolism Metabolites Chemical reactions Directed 1,039 5,802 5.58
Protein Interactions  Proteins Binding Undirected 2,018 2,930 2.90

lable 2.1

Canonical Network Maps
The basic characteristics of ten networks used throughout this book to illustrate the tools of network science.
The table lists the nature of their nodes and links, indicating if links are directed or undirected, the number of

nodes (N) and links (L), and the average degree for each network. For directed networks the average degree
shown is the average in- or out-degrees <k>

Imperial College
London

interactions

<kijn>=<koy> (see Equation (2.5)).

We are generally interested in large
complex networks

Analysis of such networks can be
complicated and expensive (classical
example: computing shortest path
between nodes)

NetworkX package provides a suite
of tools for working with complex
networks

More generally: avoid writing own
code whenever possible! Many
powerful highly-efficient libraries
are available

35



NetworkX: basics

Imperial College

Let’s work with this graph in NetworkX

First, import the module, and initialize a
graph:

In [55]: import networkx as nx

In [56]: G = nx.Graph()

There are numerous methods for building
a graph

In [57]: G.add_edge(1,2)

In [58]: G.edges()
Out[58]: [(1, 2)]

In [59]: G.nodes()
Out[59]: [1, 2]
36



We can add several
edges (or nodes) at once
using an edge list:

Imperial College

In [65]: e = [(1,5),(2,5),(2,3),(3,4),(4,5),(4,6)]
In [66]: G.add_edges_from(e)

In [67]: G.edges()
Out[67]: [(1, 2), (1, 5), (2, 3), (2, 5), (5, 4), (3, 4), (4, 6)]

In [68]: G.nodes()
Out[68]:[1, 2,5, 3, 4, 6]

37



Use nx.draw to visualize
the network:

Imperial College
London

In [69]: import matplotlib.pyplot as plt

In [70]: plt.figure()
Out[70]: <matplotlib.figure.Figure at Ox1515e3fef0>

In [71]: nx.draw(G, with_labels=True, font_weight='bold')

38



We can now analyze the graph:

In [74]: A = nx.adjacency_matrix(G)

In [75]: type(A)
Out[75]: scipy.sparse.csr.csr_matrix

In [76]: A.toarray()

Out[76]:

array([[0, 1, 1, O, O, 0],
[1,0,1,1,0,0],

[1,1,0,0, 1, 0],

[0,1,0,0, 1, 0],

[0,0,1,1,0, 1],

[0, 0, O, O, 1, 0]], dtype=int64)

 Most complex networks are sparse, and the sparse format uses memory more efficiently
* And some calculations (e.g. matrix-vector product) are more efficient as well

Imperial College
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It is straightforward to compute the local clustering and to get the degree of each node:

In [57]:
nx.clustering(G)

Out[57]: {1: 1.0, 2: 0.3333333333333333, 3: 0, 4: 0, 5: 0.3333333333333333, 6: 0}

In [58]:
nx.degree(G)

Out[58]: DegreeView({1: 2, 2: 3, 3: 2, 4: 3, 5: 3, 6: 1})

The degree distribution, p;,, is also extremely important. For a single network, it is defined
as:

pi, = fraction of nodes with degree k

40
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The degree distribution can be computed using the output from nx.degree_histogram:

In [83]: nx.degree_histogram?

Signature: nx.degree_histogram(G)

Docstring:

Return a list of the frequency of each degree value.
Returns

hist : list
A list of frequencies of degrees.
The degree values are the index in the list.

In [84]: h = nx.degree_histogram(G)

In [85]: h
Out[85]: [0, 1, 2, 3]

* The ith element of h corresponds to the number of nodes with degree i
(degree distributions are more interesting for large networks!)
41
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NetworkX also contains a number of functions for graph models

* Here, we generate and visualize a graph generated with the Gy, random graph
model: the graph has N nodes, and a link is placed between each pair of nodes with
probability p

In [119]: Grandom = nx.gnp_random_graph(1000,0.05)

In [120]: nx.draw(Grandom,node_shape=".")

42
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Now the degree distribution is more interesting. We will analyze this distribution later in
the term.

0.07 4

0.06 A

0.05 ~

0.04 A

0.03 A

node fraction

0.02 A

0.01 ~

0.00 A

Imperial College
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| should compute degree distributions
for several graphs (with fixed N, p) and
then average them

Generally, when there is randomness in

the problem, statistics are the quantities
of interest (mean, variance, etc...)
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NetworkX: getting started

* Read the online tutorial: https://networkx.github.io/documentation/stable/tutorial.html

* Browse through the online reference section:
https://networkx.github.io/documentation/stable/reference/index.html

e Use NetworkX 2.x (I’'m using 2.4)

e Come to lab 1 on Friday!

44
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Simple example #1: lattices

 1-and 2D lattices are frequently found in
manmade networks (e.g. small computer
networks, planned cities)

* 3D lattices are commonly found in nature -
- crystals and crystalline solids have
lattice-like molecular structure

https://www.andrewalexanderprice.com/images/blog2
0-14.jpg

* But we’re mainly using them as
preparation for analysis of complex
networks

Quartz

Pyrite

) 46
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Simple example #2: Cayley trees

* The image shows a “4-regular” Cayley tree
 Each node in the outer ring has degree=1
* All other nodes have degree=4
e A “tree” is a graph with no loops
Construction of a k-regular Cayley tree:

* lteration O: start with a single ‘root node’

e |teration 1: add k nodes that link to the root

e Iterationi,i > 1: For each node n added during
iteration i — 1, add k — 1 nodes which link to n

[ Check your understanding: how many iterations were used to make the graph pictured? ]

4/

Imperial College
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* After r iterations, a k-Cayley tree has:

N=1+k(1+ b+ b?2+--+ b"1)nodes where
b=k—-1

k(b"-1)
b—1

This simplifiesto, N = 1 +

And thereare L = N — 1 links

 The global and average clustering coefficients for all
Cayley trees is zero

* In fact, they are zero for all trees

* What about the diameter?

48
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* The longest shortest path is a path from a leaf from the
final iteration through the root node out to another leaf

e Sowehave D = 2r and we want to rearrange this for
comparison with our result for lattices

* From our expression for N, we find:

D _ log[(N-1)(b—1)+k]-log(k)
2 log(b)

T =

 Forlarge N, the diameter can be approximated as,
~ o log(N)
D=2 e

+ const

49
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Lattices vs. Cayley trees

We have now seen that the diameter for a lattice 140 -
shows power-law dependence on N, while the Cayley .

tree shows logarithmic dependence - is this
important?

100 A

Diameter

* Yes, because logarithmic growth is “slow” 2>

40

Questions to consider:
1. Why have | used a logarithmic horizontal
scale in the figure?
2. Does it make sense for a ring, 3D lattice,
and Cayley tree to all have the same
“clustering”?

20 A

Imperial College
London
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0_

— lattice,d=3
—— Cayley k=4

10° 101 102 103 104 10°
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Centrality

* Let’s now think about another aspect of graph structure: how can we identify
important nodes?

* The simplest idea is the degree centrality: the higher the degree, the more important
the node

* The degree centrality has a few weaknesses (which we will discuss), so we will look
at a few other centrality measures

* The node with highest degree in the IMDB actor
network (in early 2020) is Nassar, a prolific actor in
South Indian and Bollywood cinema =2

51
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Eigenvector centrality

* Consider one weakness of the degree centrality: say one node has 50 neighbors with
degree=1. Is it as important as a node connected to 50 high-degree nodes?

* Instead, let’s say that a node’s centrality, x;, should be proportional to the centrality of its
neighbors: x; = a X7, A;;x;

* Here «a is a proportionality constant which will be specified shortly

* In matrix-vector form, we have: Ax = Ax with 1 = ¢~

* This is of course an eigenvalue problem, and as with the linearized naive network-SI
model, the Perron-Frobenius theorem will be used for guidance
* For an undirected connected graph, there will be exactly one eigenvector where all
elements have the same sign, and this eigenvector corresponds to a simple positive
eigenvalue of A (this eigenvalue is > in magnitude to all other eigenvalues).

* Scale this leading eigenvector so that all elements are positive (the magnitude of the
scaling is not considered to be important)

 Then the eigenvector centrality of node i is the i*"* element of the scaled vecter
Imperial College
London



* An example:

node ﬁ eigenvector centrality
| k|
1 0.47 0.51
2 0.47 0.51
3 0.63 0.51
4 0.16 0.19
5 0.32 0.38
6 0.16 0.19

* Here, k| = /Z’ivzl kZ and the eigenvector centrality has also

been normalized to have length=1

* Note that node 3 has a higher degree but the same e.c.
(eigenvector centrality) as nodes 1 and 2

Imperial College
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* For the IMDB actor network, the top 5 eigenvector centrality scores are for...

Irving Bacon : 0.05941992771116469

Emory Parnell : 0.058154231305023625

Paul Fix : 0.05565088682410471

Russell Hicks : 0.05563688887989434

J. Farrell MacDonald : 0.05533389610888414

.. 5 actors that | have never heard of!

* These are 5 American “character actors” who appeared in many films over many years
in the mid-20th century (John Wayne is #10)

Imperial Coll i
mperial College Irvmg Bacon

London



If we instead limit the network to movies released in 2019, we see more-familiar
names:

Margot Robbie : 0.17784509362532366
Margaret Qualley : 0.1776352911801254
Brad Pitt : 0.17533278452858408

Clifton Collins Jr. : 0.17529419762375148
Joy Badlani : 0.17382963598017173

The top 4 were all in Once upon a time in Hollywood and we see actors benefitting from
being in a large cast with actors which were in other movies with large casts.

Margot Robbie 55
Imperial College
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Katz centrality

 But what if a graph is directed?
 Then we need to decide between the left- and right-eigenvectors of A

* Let 4;; = 1indicate that there is a link pointing from node j to node i
*  We could then define the centrality as, x; = o Z?Ll XjAji

e But typically it is the original definition that is better. This modified version rewards
nodes which link to nodes that link to many other nodes. Having links pointing
towards a node is usually a better indicator of importance.

 However, there is another important difficulty when considering directed graphs
 We know that if a node has only out-links that its centrality will be zero, and this is fine

 But a node receiving many links from nodes with zero in-links will also have zero
centrality which is difficult to justify

56
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* The Katz centrality adjusts the definition of the eigenvector centrality to address this
issue

* The idea is to give each node a minimum centrality, and then in our example,
the node with several in-links will have a higher centrality than the nodes with
no such links

* The Katz centrality is found from, x; = a X)_; A;jx; + 1
* Sometimes, the “1” is replaced by another parameter, f,0or 1 — a

* We now have to solve the linear system, (I — #A)x = z where zis a N-
element column vector of ones, z = [1,1,1 ..., 1]

* There is now the question of choosing « and we need to ensure that
det(I — ad) # 0, i.e. «~ ! should not be an eigenvalue of A

* We also would like to choose « to be as large as possible

* We will again rely on the Perron-Frobenius theorem, with some
modifications to the previously stated version 57
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* The Perron-Frobenius theorem applied to any non-negative square matrix (all
elements non-negative) tells us that there will be a real non-negative eigenvalue, 14,

with 4, > max(|4;|) withi € {1,2,...,N}
* p(A4) = max({|14], |125], ..., |Ax|}) is the spectral radius of A

« IfA; > 0,weseta! > A, and this will guarantee a non-trivial solution of our
system.

e We exclude peculiar cases where A1; = 0 (e.g. 2 nodes, 1 directed link)

* There is a useful alternative formulation of the Katz centrality based on a series
expansion of (I — aA) ™!
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Katz centrality

e Last time: the Katz centrality adjusts the definition of the eigenvector centrality to
provide better behavior for directed graphs

* The idea is to give each node a minimum centrality, and then nodes with several
in-links will always have a higher centrality than nodes with no such links

* The Katz centrality is found from, x; = « 2?’:1 Aijxj + 1 or equivalently, we

have to find the solution to the linear system, (I — aA)x = z where zis a N-
element column vector of ones, z = [1,1,1 ..., 1]

« Weset a~! > 1; and this will guarantee a non-trivial solution of our
system. Here, 4, is the most positive real eigenvalue of A
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* Another example:

node k:f" eigenvector centrality Katz centrality
|kin| (. =0.5)
1 0.55 0.58 0.59
2 0.55 0.58 0.54
3 0.55 0 0.32
4 0 0 0.16
5 0.28 0.58 0.45
6 0 0 0.16

e Vectors are again normalized to have length=1

 Note that node 3 now has e.c.=0

* With the Katz centrality, all values are non-zero, and node 1 now
has the highest centrality due to “help” from node 3
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There is a useful alternative formulation of the Katz centrality based on a series

expansion of (I — @A) L. First we will state a few general results from linear algebra:

R(M; u) = (ul — M)~ 1is the resolvent for a square matrix, M
e The resolvent is defined when u + 4;,i = 1,2,...,N

M
i ()

If || > p(M), then we can expand the resolvent as, R(u) = )2,

Here, p(M) is the spectral radius of M: the magnitude of the eigenvalue(s) of M
which is/are largest by magnitude: p(M) = max{|44], |1;], ..., [Ax|}

hdl Ddl hdlﬁ-l

Note that (u/ — M) T = 0 2 SO multiplying both sides of (*) with

(ul — M) and truncating the series gives:

) hdl h472+1
[ = ,Il,l_{glo(/u — M) Z{ pl+l =1~ uT+1

T+1

Now, if we let T — oo, it can be shown that S 0if u > p(M), which

MT+1

provides some intuition for why (*) converges 62
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 Applying these results to the Katz centrality, we find, x = )2, a'Alz provided that
la™t] > p(A).

* We require a to be real and positive (otherwise, the resulting centralities will not be
meaningful), so the condition above is equivalent to the condition we stated
previously, a1 > ;.

» The Perron-Frobenius theorem tells us that ; = p(A)

* Whatis A'? If we say B = Al, then B;; is the number of length-! paths from j to i

* So x; is counting the number of length-[ paths to i, weighted by a'. For almost all real
networks, A; > 1, so we will have a < 1 and the Katz centrality will place a larger
weight on shorter paths.
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PageRank centrality

* The Katz centrality is not perfect
e Consider the directed graph corresponding to the world-wide web
*  We would expect google.com to have a very high centrality

* And then any website that has a link from Google would receive a large boost to its
centrality. But is the behavior that we want?

e Google links to many, many websites, but what if it linked to just a few?
* Then those sites would deserve a higher contribution to their centrality

 The idea behind PageRank centrality is to modify the Katz centrality to produce this
behavior
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* PageRank centrality can be defined as a modification to Katz centrality:
xi = aXi-q Ajjx;/max(kf*, 1) + 1

Where we use the max( ) because the expression in the sum would otherwise be 0/0
when node j does not have any out-links

 However, it is usually presented a little differently,

N (1-m)Ajjx; mxj
.= Y <
Xi J=1 <max(quut,1) T N J’ O<m=1

This is not identical to the previous expression, but it will have the same positive features.

* The parameter m weights the 2 terms on the RHS. With m close to 1, there will be a
tendency for all nodes to have the same centrality
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.o Ll L Ll Aij(l_m)
* We can re-write our expression in matrix-vector form: Gx = x where G;; = (kout )
max|k; "1
] )

m
N

* We now need to establish a few properties of x to show that it will be generally useful

» Specifically, we want to show that we can construct it so that all elements are non-
negative and so that there is exactly one linearly independent solution for Gx = x

* First, let’s establish a few properties of G for graphs where kjout > (0 for all nodes:
* By inspection: G is positive (all elements are positive)

* The sum of each column is one (this will help us establish that a solution to the system
of equations above exists)
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e The sum of the jth column is:

N N
Aii(1— m) m
ZG” 2 out N

i=1 =1

N
A;;(1 m) m| 1-—m
Z kout _ kout zAlJ +m.

and,

What is X', A;j? We know that 4;; = 1 if there is a link from j to i, so >N, Ajj is the
total number of links from j to other nodes. l.e. Y1, A;; = k?*" and:
Il-v=1Gij =1-m+m=1
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* Since Z’i":l Gl-j = 1, we also know that 1 = 1 is an eigenvalue of G:
« Why? Consider z'G where z is an N-element column vector of ones as before

« The jth element of zT G is the sum of the jth column of Gso, zTG = z! or GTz=z,
and 1 = 1 is an eigenvalue of GT

* A (square) matrix and its transpose have the same characteristic polynomial, so
they have the same eigenvalues: 1 = 1 is an eigenvalue of G (with /left eigenvector

2)

* So aright eigenvector of G corresponding to eigenvalue A = 1 is a solution to the
PageRank equation.

 We need to use the version of the Perron-Frobenius theorem for positive matrices to
establish that it is the only linearly independent solution and that all elements are
non-negative
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* For a positive square matrix, the Perron-Frobenius theorem tells us that:

* The matrix will have a positive, real, simple eigenvalue strictly larger in magnitude
than all other eigenvalues and

e All elements of the corresponding eigenvector will have the same sign

* There are no other linearly independent eigenvectors where all elements have the
same sign

* Taking all of the above together, we would like to define the leading eigenvector of G as the
PageRank centrality, however does this eigenvector correspondto A = 1?

* |t turns out that it does; this week’s problem sheet asks you to verify this statement.
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* PageRank centrality was introduced by Sergey Brin and Larry Page when thy were PhD
students at Stanford in 1998 as part of their new Google search engine

* This work has proven to be... influential

* They reportedly initially used m = 0.15

* And they were thinking about Network Science at the time — they viewed the web as a
huge directed graph, and were thinking about how to ascribe importance to web pages that

they found while navigating through the graph

* Google still uses PageRank (or at least something similar) as part of its algorithm for
deciding how to order search results

* But defining PageRank was just one important step — they also had to think very carefully
about how to compute it for very, very large graphs
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* There was no way to assemble all of the full matrices they needed on a single computer

* It was (and is) essential to use a sparse representation of the adjacency matrix so that zeros
were not stored or used in additions or multiplications

* Butin the end, it is a matter of crawling the web, collecting links, and constructing a graph,
and then computing the leading eigenvector of the G matrix.

* Let’s now discuss how to efficiently compute this eigenvector
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PageRank Computation

* For a dense matrix, the cost of computing all of the eigenvalues and eigenvectors is roughly
O(N3)
* This is the cost to expect when using np.linalg.eig

 However there are more efficient methods if only 1 eigenvalue is needed

* The simplest of these is the Power method which I'll sketch now
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* The basic idea of the power method is to repeatedly multiply the matrix of interest with a
trial vector. With enough repetitions, the results will be dictated by the largest eigenvalue

* For convenience, let’s assume that G is diagonalizable, so it has a “full” set of linearly
independent eigenvectors.

e Then arandom vector y € R" can be expanded as, y = c;v; + c,vy + -+ + cy vy
where v; is the it" eigenvector of G, corresponding to eigenvalue A,

e Also assume that c; # 0, and that the eigenvalues are ordered so that, |1;| > [4,]| =
43| = - = [An]

Now consider repeated multiplications of G with y:
Gy = Clel + CzGVz + -4 CNGVN

* We know that Gv; = A;v;, so:
Gy == Clﬂ.lvl + C2/12V2 + -+ CN){'NVN

And: Gzy = (1 (/11)2\/1 + (0)) (/12)2\/2 + -+ CN(AN)ZVN
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* And after [ multiplications:
Gly = c;(A)'vy + () vy + 4+ ey(A) vy

* [ can be chosen to be sufficiently large so that the 15t term on the RHS is much larger than
all of the terms that follow, and:
Gly ~ G (/11)ZV1

 The power method is not restricted to diagonalizable matrices, but some of the arguments
above would have to be modified to consider more general square matrices.

* The key is the presence of a strictly dominant eigenvalue, an eigenvalue larger in magnitude
than all other eigenvalues. The Perron-Frobenius theorem tells us that G will always have
such an eigenvalue
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* In practice, computing G! can lead to large numerical errors, so instead a power iteration
normalizes the results after each iteration, e.g.:
(l+1) _ Gy(l) _ Gl+1y(0)
y Gy®] — |GiH1y©)]

and y(*1 is our approximation for the leading eigenvector after [ + 1 iterations of the
power method

 The power method is frequently quite effective though of course this depends on the
“separation” between the 2 first eigenvalues
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e An example:

G= [g 3 y© = [1,0]T, v, = [0.88167, 0.47186]T

l Gly©@/|Gly @) y® = vl * We see very rapid
convergence for this case
1 [0.89442719, 0.4472136 |7 0.0277 ]
e Typically, we would see a
slower rotation of the initial
2 T 0.001439
[0.88235294, 0.47058824] y toward v,
* Note that the computation
3 [0.88170982, 0.4717921 |7 7.466e-5 . P . .
of the denominator is fairly
expensive, and a good
4 [0.88167643, 0.47185451]" SHACE alternative is to use
max(G'y?)
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* Say the eigenvector calculation requires g iterations to obtain a good estimate for the
leading eigenvalue.

» Then the cost will in general be O(g N?) however for sparse networks this can be reduced
to O(q (L + N)) (even though G will not be sparse).

* For networks with small distances, computations indicate that g ~ log(/N) and the overall
cost is estimated as O((L + N)logN)

77

Imperial College
London



Comments on centrality

* We have examined a few of the most widely-used centralities

* There are many other centrality measures out there, some of which are based on very
different ideas

 We will look at one other centrality later (time permitting) based on the shortest paths in
graphs
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Node similarity

How similar are Bruce Lee and Beyoncé?
To answer this question, we will introduce two measures of node similarity

There are a few different approaches to this problem, we will look at two that characterize
similarity based on the number of common neighbors that two nodes share

Bruce Lee, famous American Beyoncé, famous American
actor and martial artist actress and singer
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e Since similarity shouldn’t favor high-degree nodes, the number of common neighbors
should be scaled by the node degrees

 Two popular approaches are the cosine similarity and the Jaccard similarity
* Let n;; be the number of common neighbors of nodes i and j. Then the cosine similarity is

7lij

JEKikj

defined as, 0;; = and for an undirected graph, n;; = N A Ay

* Where does the name come from? Let a; be a vector that corresponds to the ith column of

: _ T _ T, _
A. Then for an undirected graph, n;; = a;a;and k; = aja; = |a;|?

* So, aiTa]- = |ai||a]- |al-j and we see that g;;is the cosine of the angle between a; and 3;

* The Jaccard similarity uses a different scaling, it uses the total number of distinct neighbors
of the two nodes: 0;; = _ My
kitkj—n;j

* Both of these measures have therange 0 < 0;; < 1
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* Inlecture 1, we saw that the distance between Bruce Lee and Beyoncé in the IMDB actor
network is 3, which means that (according to our two measures) they are not at all similar!

e Let’s ask a different question: is Harrison Ford more similar to Bruce Lee or Beyoncé?

Using the cosine similarity:
Beyonce-Harrison Ford: gz =0.009
Bruce Lee-Harrison Ford: ;; =0.005
Using the Jaccard similarity:
Beyonce-Harrison Ford: o5;; =0.0022

Bruce Lee-Harrison Ford: g;; =0.0019

So both measures tell us that Beyoncé is more similar to Harrison Ford than Bruce Lee!
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Node similarity is a deceptively powerful concept
e Itis used for community detection
* Itis also used at the interface between network science and data science

*  We will discuss these applications towards the end of the module
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Perron-Frobenius theorem

 We have applied the Perron-Frobenius (P-F) theorem to three different “classes” of real
square matrices:

1. Positive matrices where each element of the matrix is positive (e.g. the Google matrix)
Then, the theorem tells us that there is a real positive eigenvalue 1 where:
« 1= p(A) > 0 and all other eigenvalues are smaller in magnitude

* This eigenvalue is simple, all elements of the corresponding eigenvector have the
same sign, and there are no other eigenvectors where all elements have the
same sign

2. Irreducible matrices: Let B;; > 0 if there is a link in a graph from node i to j with B;; =
0 otherwise. Then B is irreducible if and only if the corresponding graph is strongly
connected (i.e. every node is reachable from every other node). For irreducible matrices,
there is a real, positive eigenvalue 1 where:
A1 = p(B) > 0 and this eigenvalue is simple

e All elements of the corresponding eigenvector have the same sign, and there are no
other eigenvectors where all elements have the same sign
83
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3. Non-negative matrices where each element of the matrix is non-negative. There is a real,
positive eigenvalue A where:

« A= p(A) = 0; this eigenvalue is real-valued, and there may be other eigenvalues
equal in value or equal in magnitude

* All non-zero elements of the corresponding eigenvector will have the same sign, and
there may be other eigenvectors with the same property

e This version of the P-F theorem is considerably weaker than the other 2
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Random Graph models

*  We will now shift our focus from graph properties to
graph models

* Specifically, we will analyze three important random
graph models

* The aim will be to understand how rules for graph
generation influence the final graph structure

* For simple deterministic models like Cayley trees and W, T . TR
lattices, this influence is easy to understand
Gyp graph with N=400,P=0.05
* |f we instead introduce probabilistic rules for how links
and/or nodes are added to a graph, we will see that even
very simple rules can generate very complicated
behavior

 Random graph models are also helpful for understanding
real network data. For example, we can compare the
degree distribution of a network to a model prediction

Imperial College
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Gy, random graph model

The first model we will analyze is the Gy, random graph model

* Here, N is the number of nodes and p is the probability of a link being placed between
each distinct pair of nodes

* Gy, is a model for generating graphs for a given Nand p

* Anindividual realization of a Gy, graph can be constructed via a sequence of N(N —
1)/2 Bernoulli trials

* Each trial determines if a link is placed between one of the N(N — 1) /2 distinct
pairs of nodes in the graph

 We are interested in computing expectations over the set of graphs produced by the
model for a given Nand p

* Note that the model generates simple graphs: undirected graphs without self-loops or
multiedges (this definition is a little different from Barabasi but more useful)
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* Let’s “simulate” a small graph using the model with N = 4,p = 0.3
 We start with the four nodes and generate 6 uniformly distributed random numbers

between 0 and 1:

In [8]: np.random.random(6)

Out[8]:
@ @ array([0.44646233, 0.10855423, 0.19685276, 0.29337877,
0.66279838,0.76902445])
e Assign the random numbers to the 6 node pairs:
(1,2);(1,3);(1,4);(2,2);(2,3); (2,4); (3,4)
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* Let’s “simulate” a small graph using the model with N = 4,p = 0.3
 We start with the four nodes and generate 6 uniformly distributed random numbers

between 0 and 1:

In [8]: np.random.random(6)

Out[8]:

array([0.44646233, 0.10855423, 0.19685276, 0.29337877,

0.66279838,0.76902445])
(1,2);(1,3);(1,4);(2,3);(2,4); (3,4)

e a * Assign the random numbers to the 6 node pairs:

* And finally add a link between a pair if the corresponding
random number is less than p

Notes: np.random.choice would be more convenient than np.random.random

* You have already seen how to create these graphs using NetworkX
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Check your understanding: What is the probability of generating the graph shown on the
previous slide?
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Check your understanding: What is the probability of generating the graph shown on the
previous slide?

* The graph was generated with 6 Bernoulli trials with probability of success, p. Three
of these were successful. So, the probability of generating the graph is, p3(1 — p)?3

 And there are of course several other graphs that could have been generated

* Let’s now look more closely at this idea of an ensemble of graph realizations
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* The figure on the right shows the sample

2 2
space for Gy, with N = 3>

VAN
 The “realization probabilities” for each graph p(1-p)2 p2(1-p)

are shown (note that they sum to 1) 5 5
* More generally, for a given N, Gy, provides a 1® \ 3 IL' 3
probability measure that assigns a probability p(1-p)? p2(1-p)

for each gzaph in a;,a_r?ple space, G € Qy: 2 2 2
P(G):p (1_p) ® s Lo 1A3
(1-p)3 p(1-p)? p2(1-p)

* Here, () is the set of all N-node graphs

* ( is an L-link realization generated by
Gy

e AndN' = (1;’) is the maximum possible
number of links in the graph

 We can use this probability measure to deduce other statistical properties
of the model (for a given N)
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* Set N = 3, and consider the degree of node 1, k;
e k, isarandom number, what is its
probability distribution?

The probability of a node, i, having a particular
degree, d, is the sum of the realization
probabilities of graphs where k; = d.

* For example: 2

P(ky = 0) = ZGR _P@) o e,

(1-p)?

where the sum is over the two graphs shown where
kl = 0:

P(k; =0)=(1—-p) +p(l—p)* =(1-p)*

Imperial College
London
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We can also compute the expected degree
using this perspective.
VAN

* Let (k;) be the expected degree of node i. D (1-p)> 22(1-p)
2 2
Then, (k;) = Ygea, P(G)k;(G)
N L
* Here, the sum is over the entire sample space p(1-p)? p2(1-p)
for a given N, and k;(G) is the degree of node 2 2 2 2
[ in realization G
e e A
3 2 2 3
*  For our example with N = 3, the sum will be (/P p(I=p) p(1=p) p

over 8 graphs.
* The realization probability for each
graph is shown, and we can also easily
see what k;(G) is for each graph

 We could also have computed the expectation in the more conventional way using
the probability distribution for the degree: (k;) = Y¥_o P(k; = k)k
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* Explicitly considering the ensemble of graph realizations is helpful for building an
understanding of the Gy, model and can help us reach other useful conclusions
about the model.

* For example, the symmetry of the sample space tells us that the probability
distribution and expectation of each node will be the same, e.g. (k;) = (k,) =
(k3) when N = 3.

* However, this is not the best approach for large graphs as we then have to think
about the realization probabilities of a large number of graphs (the size of the

sample space is 2"V')

* So, we need to find a way to generalize the approach we have just discussed.
Fortunately, this is not too difficult!
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Link and degree distributions

*  We'll now find the link distribution, p;, for the Gy, model. This is the probability that a
graph generated by the model has exactly L links.

* The probability that a Gy, graph has exactly L links is:

(# of distinct configurations with L links)*(probability of generating one such configuration)

e There are (’f) distinct ways to place L links in an N-node graph (with a maximum of 1

link per pair of nodes). Recall that N’ = (g’) which is the maximum number of links that a
Gy graph can have.

*  The probability of creating a particular sequence of L links is, p(1 — p)®'~1)

*  Putting it all together gives the binomial distribution: p, = (Ai,) pL(1 - p)V'-D)

* We could have just stated that the probability of L successes from N’ Bernoulli trials is
given by the binomial distribution
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What about the expected number of links, (L)? This can be computed from:

IV’
L)=) Lp,
L=0

and the sum can be evaluated using the binomial expansion.

However, we’ll use a different approach to computing the expectation which uses an
indicator random variable. This will be useful for other problems we will encounter later.

The adjacency matrix is now a random matrix — its elements are random variables. 4;;
will be O or 1 depending on the outcome of a Bernoulli trial. So, A;; indicates if a link is
placed between nodes i and j.

The total number of links in a graphis, L = Y/' 3L, A;
(the double summation is over each distinct node pair)

Then, using linearity of expectation, we have, (L) = Z?’;ll N ]-+1(Al- j)

We now need to determine (Al-j) 97
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* First, use the standard definition of the expectation:
(A;;) =P(A;; =1)* () +P(4; =0)*(0) =P(4;; = 1)

This is the real advantage of an indicator random variable: its expectation is equal to the
probability that it is 1

* For the Gy, model, we know that P(Aij = 1) = p, SO:

N-1 N N-1 N
(L) = Z(Aij)=z ZPZN'P
j=1i=j+1 J=1i=j+1

* This is an intuitive result: the expected number of successes from N’ Bernoulli trials is
N'p.
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The degree distribution can be constructed in a similar manner.

The degree of a node is determined by the outcomes of N — 1 Bernoulli trials

Let p;. be the probability that a node has degree k. Then using the same reasoning used
for the link distribution, we find that, p;, = (lel)pkﬂ — p)N-1-K)

And (k) = (N —1)p
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Node average

* One further point to consider is if there is any relationship between the average over all
nodes in a single graph and the expectation, e.g. can we say something like:

- - 1
k ~ (k) where, k = - YL k;

e Approximations like this are often implicit in network science — e.g. the fraction of
nodes with a given degree in an individual graph is assumed to be comparable to a
probability of a node having that degree

* Heuristic argument: The node average is an average of N realizations of random
variables equal in distribution. As N becomes large, a large portion of the sample space
is included in the node average and we can anticipate convergence to the expectation.

A (somewhat) more rigorous argument relies on the law of large numbers
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Law of large numbers: Let X, X,, ..., Xy be independent random variables, with finite
expected value u = (X;) and finite variance 62 = var(X;). Then for any positive €:

p ( (X1+Xo++XN)

N —u|26)—>0asN—>00.

 However, there is one problem. The degrees of the the different nodes are not
statistically independent. To see this, consider the “extreme” case where N = 2

* Fortunately, we can show that the degrees of two nodes become independentas N —»

. cee k
which leads to the result, P (|(k1+k2+ tkn)

— (k)| = E) — 0 as N — oo for any positive €

» Expressions like this are often stated as: % N ki =(k)w.h.p.

* Here “w. h.p.” is shorthand for “with high probability” and is used to describe the
behavior of random variables when the problem size - o
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* | haven’t given you a complete proof on the previous slide, so you may be skeptical
about the result!

 Solet’s compare the node average to the expectation using simulations of random
graphs with varying N

* Experiment: Vary N with the expected degree held fixed to (k) = 3

* Hypothesis: E/(k) will approach one as N increases
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Comments

*  We will continue working with the G,, model next lecture

 Though the model may appear to be simple at first, it can produce very complicated
behavior, and we will examine a few examples of such behavior
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Notation

N': total number of nodes in graph

L: total number of links in graph

N(N-1)
2

* N': maximum possible number of links in a simple graph with N nodes; N’ =
* p,: probability of exactly L links in the graph

« (L): expected number of links; (L) = Zﬂo Lp,

* ps: probability of a node having k links

* (k): expected degree of node; (k) = Y.¥_5 k py

f : node average of f; f = %Z?Llfi

105

Imperial College
London



Network Science
Autumn 2021

Lecture 5

The Gy, random graph model:
connectivity and structure



Gy, random graphs

* We have analyzed a few properties of the Gy, random graph model, and now we will
examine what happens when we allow N and p to vary.
* We are particularly interested in what happens when N becomes large

* The figure on the next slide shows several graphs for different N and (k).

 Can we understand what is happening? It will be natural to focus on the
connectivity of the graphs. E.g. when can we expect graphs generated by the model
to be connected?
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Triangles in Gy, graphs

Ill

* Let’s start with a “structural” question: what is the expected number of triangles in

Gny graphs?

* To answer this question, we will use an indicator (random) variable, X; .,
which will allow us to count the number of triangles in these graphs

1ifi,j,k formatriangle

. and we require i, j, and k to be distinct.
0, otherwise

® LetXijk = {

Check your understanding: P(X;;, = 1) =?
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* Let’s start with a “structural” question: what is the expected number of triangles in
Gny graphs?

* To answer this question, we will use an indicator (random) variable, X; .,
which will allow us to count the number of triangles in these graphs

1ifi,j,k formatriangle

. and we require i, j, and k to be distinct.
0, otherwise

® LetXijk = {

Check your understanding: P(X;;, = 1) =?

P(X;jx = 1) is the probability that three Bernoulli trials are all successful, so
P(Xijr = 1) = p°.

*  We also know that (X; ) = P(X;jx = 1)
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* Now, we simply need to count the number of triangles in the graph. Let t,,, be
the total number of triangles. Then,
tnp = Daistinct i,j k Xijk, and using linearity of expectation,

(th> = Ddistinct i,j,k(Xijk> = Ddistinct i,jk p°

* The sum is over each distinct “triple” of nodes in the N-node graphs, and we
know there are (1;') such triples. So, the expected number of triangles is simply,

(twp) = (5)P°

* Now, let’s consider what happens when N — oo
* If pis held fixed, then (ty,) — . Not particularly interesting!

* What if we allow p to vary with N, so we have p(N) with p(N) — 0 when
N — oo?

* Then, the rate at which p approaches zero determines whether of not we
expect triangles in infinitely large graphs
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*  We will now prove the following theorem:

Let a(N) be a real-valued function such than « — 0 as N — o, and let p(N) = #

Then ty, = O w.h.p.

* So we need to show that P(th = 1) - 0as N -

*  We will use Markov’s inequality:

If X is a non-negative random variable and a > 0, then P(X = a) < %>

» Setting a = 1 is particularly useful for discrete random variables: P(X > 1) < (X)

* If we can show that (th) — 0 as N — oo, we can then use this form of Markov’s
inequality to prove our theorem
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*  We have already shown that (th) = (g)pS and now, we also have p(N) = %

_ _ iy DOV-DWV-2)a?
* It follows that, I\IIT(;lo(th) = 1\1,1_1}(30 6N3

=0

* Then applying Markov’s inequality with a = 1 tells us that,
P(th > 1) — 0 as N = oo completing the proof.

 This result indicates that we can say that graphs will be “locally tree-like” w. h.p.
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Connectedness with fixed p

* Generally, the Gy, model is not particularly interesting when N — oo with p held
fixed

* We can gain a sense of why from the following result: Gy, graphs have diameter
D <2w.h.p.ifpisheld fixedas N — oo

* This tells us that we will have densely connected graphs where a maximum
of two links separates any two nodes

* Let’s now show that this statement is correct. A graph has diameter D < 2 if
every pair of nodes has at least one common neighbor

*  We will use an indicator variable to count the pairs of nodes that do not have
common neighbors
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1,if distinct nodes i and j do not have a common neighbor
* Let Xl] = )
0, otherwise
* Now, our goal is to compute the sum of X;; over all node pairs and show that the
expectation of this sum goes to zero when N — oo, Then, Markov’s inequality can
be used to complete the derivation.

Thesum: X = Y1 BN . X
Its expectation: (X) = Z?’Qf i j+1<Xij)
And we know that (Xij) = P(Xij = 1)

* Whatis P(Xij = 1)? First consider the probability that nodes i and j both link to
some third node. This probability is p?. So the probability that this node is not a
common neighbor for i and j is (1 — p?). There are N — 2 such “third nodes” to

consider, so P(X;; = 1) = (1 —p?)V72, and (X) = (g) (1—p>)N-2
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* We now need to determine lim () (1 —p*)V~2

N—oo

We have a product of two terms, the first increasing quadratically, and the second
decreasing exponentially (assuming 0 < p < 1), so the limit will be zero.

Or more precisely, we know (1 — p?)V~2 = exp[a(N — 2)] where a = log(1 — p?)
is negative. Then applying I’'Hopital’s rule shows that the limit is zero.

* We have shown that (X) — 0, and Markov’s inequality tells us that, P(X > 1) <
(X),so P(X = 1) - 0, and we can say that the number of node pairs with no
common neighbors is zero w. h. p.

* And this tells us that large graphs with fixed p will tend to have a single densely-
connected component. However, this changes if we allow p — 0.
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Connectedness withp — 0

* We need to specify the rate at which p — 0, and we will focus on one special
log(N)

case:p = ¢ with ¢ a positive constant which must be specified.

* Why this case? It has been found that there is a transition from a disconnected

state to a connected state when c is increased above one, and we will (partially)
analyze this transition

*  We will now prove the following:

log(N)

Assumep = ¢ with ¢ < 1. Then Gy, graphs are not connected w. h.p.

* We will actually prove a stronger result, that graphs will have isolated nodes
w. h.p.
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* We again introduce an indicator variable:
1if iis anisolated node
Xi == .
0, otherwise

and we will show that P(X = 0) > 0 as N - oo where X = Y | X; is the total
number of isolated nodes in a graph.

*  We will first examine the expected value of X and we will see that we will need to
1) use Chebyshev’s inequality and 2) compute (X?).

* We now are familiar with the steps required to compute (X). A node is isolated if
N — 1 Bernoulli trials are unsuccessful, so, P(X; = 1) = (1 —p)" 1 = (X;)

e Then, (X) = N(X;) = N(1 — p)"~1. What happens as N > «?
¢« (1-p)" 1 =-expla(N — 1)] where a = log(1 — p) which for small p we can
approximate as,a = —p = —clog N /N.

« So,(1—p)" 1 =exp l—clog(N) %] ~ exp[—clog(N)] = N¢, and:

(X) =~ N17¢ so the expectation —» x if ¢ < 1.
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* But how can we construct a result related to P(X = 0)?

* Here, we need to use Chebyshev’s inequality:

Let X be a random variable and let € > 0 be any positive real number. Then,
P({X)— x| =€) < Var(X)/e>.

* Var(X) is the variance of X, and Chebyshev’s inequality can be viewed as a
corollary of Markov’s inequality.

*  We now need to manipulate the inequality into a form that is useful for our
problem. We choose € = (X), and note that P(((X) — X) = ¢) < P(|{(X) — X| = ¢€).
Chebyshev’s inequality can then be restated as, P(({(X) — X) = (X)) < Var(X)/
(X)?, or more simply:

P(X <0) < Var(X)/(X)?,

and now we need to evaluate, Var(X)/(X)* when N — oo,
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 The variance is defined as, Var(X) = (X?) — (X)?, and:
(X2) = Y11 X1 (X:X;). The summation can be rearranged as,
(X?) = ZIL(X7) + 220 B 1 (XiX;).

* Now, (X?)=P(X? =1) = P(X; = 1) = (X;), so,

(X2) = (X) + 285 T 1 (XiX)

* The last major step is to derive an expression for (Xin). From the definition of the
expectation, (Xl-Xj) = P(Xi =1X = 1), and then using the rule for conditional
probability, (X;X;) = P(X; = 1 |X; = 1)P(X; = 1).

« We have already stated that P(X; = 1) = (1 — p)”~! and using the same reasoning
but accounting for i being isolated , P(Xj =1]|X;=1) =1 —-p)N2

« So, (X2)=(X)+ N(N —1)(1 —p)2N-3
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Let’s collect our results:
* X)=NA-p"
* (X)) =X)+NWN-1)(A-p)*"3

var(X) _ (x?) _ NA-p)N14N(N-1)(1-p)2N—3

02 e NZ(1-p)2N-2 -1
And simplifying the last expression,
1
Var(X) 1 s 1-w )
(X)>  NA-pVt 1-p
. 1 Var(X) _ . 1 . 1
Now letting N — oo: 1\111_1330 07 Al]l_r& N(1_p)N-1 Since both —and p go to zero.

Earlier we showed that for large N, (1 —p)""1 =~ N7¢, so

Al,im V?;g) ~ Allim N¢~! = 0 if ¢ < 1. The modified form of Chebyshev’s

inequality gives, P(X < 0) — 0, which implies isolated nodes are present w.h.p. m
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* There is a complimentary result for c > 1:

log(N)

Assumep = ¢ with ¢ > 1. Then Gy, graphs are connected w. h. p.

*  We will not prove this, it requires thinking about all subsets of nodes in an N-
node graph

* These results show that a slight change in the rate at which p goes to zero has a
fundamentally important effect on the graph structure
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Giant component

We have argued that if p — 0 faster than %, then graphs will have no triangles w. h. p.
and we expect a (local) tree-like structure

log N
N

We have stated that if p — 0 slower than , then graphs will be connected w. h. p.

What happens “in between” these states when p ~ %?

What we find is that a “giant component” emerges if p = ﬁ, with ¢ chosen such that
(k) > 1
* A connected component is a giant component if its size increases linearly with N.
A connected component is a subset of a graph where there is at least one path
between each pair of nodes in the subset, and there are no links to nodes
outside of the subset.

* This is important. In many large real-world networks there is a large connected
component which contains a tangible fraction of the total number of nodes in
the network and whose connectivity is important for the functionality of the

network.
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e Say that v is the probability that a randomly selected node is in the giant
component. Then u = 1 — v is the probability a node is not in this component.

e But there is another way to view these probabilities.

* A randomly selected node, i, will not belong to the giant component if for every
other node in the graph it either: 1) does not link to that node or 2) does link to
it, but the neighbor is not in the giant component

* The probability of not linking to another node is (1 — p) and the probability
of linking to a node not in the giant component is pu. And there are (N — 1)
such nodes to consider

* So the probability i is not in the giant componentis [(1 — p) + pu]V~?

 Consistency requires: u = [(1 —p) + pu]¥~1
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 So we need to consider solutions to, u = [(1 — p) + pu]" ! or rewriting the

equation in terms of v:

v—1=—[1-pv]¥1

* By inspection, we can see that v = 0 is a solution indicating that there is not a
giant component. Are there solutions with v > 0?

 We will need a computer to answer this, but first we take the log of both sides of
the equation and use p = % :

log(v — 1) = —=(N — Dlog(1 — ‘"—;)

* Forlarge N, log (1 _C_A’,’) ~ —cv/N, and cv(IIVV—1)

= (k)v, so:

v = 1—exp(—(k)v) (for large N)

« Can we choose (k)so that there are non-zero solutions? We will “explore” this
question by choosing a few values for (k) and plotting 1 — exp(—(k)v) vs. v and
examining the results
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* The figure on the left shows 1 — exp(—(k)v) vs. v for (k) = 0.5,0.8, and 1.2. The
dashed curve is simply v vs. v and any intersection between a solid curve and the
dashed curve is a solution to our equation.

2.0

2.5

curve has an intersection for non-zero (k) which occurs at v = 0.31. Non-zero

solutions are found only when (k) > 1
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l—exp(— <k>v)

0.40

0.35 4

0.30 A
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v <k>
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The figure on the right shows the (largest) solution with (k) varying. There is
initially a rapid increase in (k) for (k) > 1, and the figure indicates that the giant
component will contain more than 90% of the graph’s nodes when (k) > 3

Technically, we have only shown that (k) > 1 is necessary for the existence of a
giant component. With further work, it can be shown that this is also a sufficient
condition, and that a unique giant component will exist if and only if (k) > 1 and

N is sufficiently large
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Announcements

Project 1 has been released and is due this Friday
* | will post a few clarifications on Blackboard after today’s lecture

The midterm is Wednesday, 10/11
* |tis a 30 minute test that covers lectures 1-6 and the first video of lecture 7
* | will release last year’s midterm after today’s lecture. | have removed one part
of one question which is on a topic we are not covering this year.

The lecture schedule on the module info pdf indicates a lecture recording will be
released next week. | will delay this to a subsequent week that does not have a
problem class.

Recordings of live lectures are generally available on Teams shortly after the lecture. |
have also posted lectures 1, 2, and 4 on Panopto
* This class has 16 lectures. Nine are live; seven are pre-recorded.

Solutions to problem sheets and labs are posted on Blackboard every week. Solutions
to problem class questions are not released during term. Answers to these questions
will be provided along with the collected slides at the beginning of April. In the
meantime, you can ask questions in one of the three remaining problem class%%.
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Network Science
Autumn 2021

Lecture 6

Critical assessment of G, model
The configuration model



Gy, random graphs

Barabasi, figure 3.7

do>1 (ko »InN
(b) Subcritical Regime (c) Critical Point (d) (e) Connected Regime
* No giant component « No giant component « Single giant component « Single giant component
* Cluster size distribution: p ~ 5% e= « Cluster size distribution: p, ~ 5 77 * Cluster size distribution: p,_~ s e= « No isclated nodes or clusters
« Size of the largest cluster: N, ~InN « Size of the largest cluster: N, ~ N7 * Size of the giant component: N, ~ (p - p_JN  + Size of the giant component: N, = N
« The clusters are trees « The clusters may contain loops * The small clusters are trees

« Giant component has loops
« Giant component has loops

The figure above from Ch. 3 of Barabasi has connections to many of the
ideas covered in lecture 5

Despite the very simple rule for generating graphs, there is a wide variety
of graph structures that can be observed. But is this model useful?
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* Let’s critically compare three graph properties: 1) degree distribution, 2)
clustering, and 3) distances

* The Gy, model degree distribution intemet Protein Interactions

follows the binomial distribution R I TR
-
with most nodes having degrees ey || ] 2 uen
close to (k) ] Wik e .
102 F E %!
« However, most large complex |
ol e a: = 907k d2e. 2l e i
networks exhibit different w S i
behavior. They typically have s ] 2
large-degree hub_s, and the [ 107 b
average degree, k is not SR : (k) AT o
particularly important o ; - [ .
10 .---- L TP BT = 104 N NPT L L i is3s
10° 10! 107 10° 10° 10! 10°
A' A‘

* The figure on the right compares
the degree distribution of two real Barabasi, figure 3.6
networks with p;, for Gy, graphs

setting (k) = k and matching N.
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* Let’s critically compare three graph properties: 1) degree distribution, 2)

| rin n istan
clustering, and 3) distances Barabasi, figure 3.13

(a) All Networks (b) Internet

* Say that node i has degree k; = k 100 | | | 0 | | | . “

with k > 1. What is the expected
o.“\ ;
107" - o o -
\‘f’
C(k) y

number of links amongst these k
neighbors? p('z‘) since the maximum

number of links is (’2‘) The expected '™

Y.,
clustering conditionalon k > 1 is 0% 1 1
: p(2) . 5
defined as (C;)y>1 = W =np.ltis :
2 | 107 | 1 1 1 |
independent of the node degree, o o q 10 1000 152 100 10
and (Cidg>1 _ 1

(k) = N-1 _
* Plot (a) on the right compares ﬁ with %for 10 real networks. The real networks
have much higher clustering than what we would expect based on the G,, model

* Plot (b) shows that for the internet (and essentially all real networks), the clustering
depends on the node degree unlike what the Gy, model predicts.
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Let’s critically compare three graph properties: 1) degree distribution, 2)
clustering, and 3) distances

The diameter of the giant component in Gy, graphs is estimated to be
_ logN
" log(k)
number of nodes.

, i.e. the diameter varies logarithmically (slowly) with the

Consider the global social network. Take N ~ 8 x 10° and k ~ 500. Then,
the Gy, model predicts, D = 3.7. l.e. there are 3-4 “degrees of
separation” between any two people. This is reasonably close to what
social scientists expect!

Generally, it is the average distance d of real networks rather than the
log N
log(k)
main point is that distances are “short” both in G, graphs and in real

complex networks.

diameter that tends to be close to rather than the diameter. The

Imperial College
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* For the most part, the Gy, model does not accurately describe large real-
world networks.

* This is not surprising. We know that networks are not designed or
constructed by randomly placing links based on Bernoulli trials!

e So why study this model? It is a useful reference when making
comparisons with real networks.

e Itis also a useful reference for graph models. We will consider two
more sophisticated models, and a good understanding of the G,

model helps us understand the strengths and weaknesses of these
advanced models which have been developed more recently.

* Many mathematicians over the years have also found it to be
“interesting”.
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Configuration model

e The |:1ext m'odel we will analyze is the Internet Protalri interacHons
configuration model I e————
* The aim is to adapt the Gy, model so TRl S A - v,
that simulated graphs match a specified N’ : L) S
degree distribution 0 ! "
& 103 F 15107 .",.. E
* The model was introduced by Bender & : .
Canfield (1978) and then developed, 104 7 b e
analyzed, and named by Bollobas (1980) ) : = 107 £ :i ‘
T AR e b R |
TP 1 n s R B . PSR
We will: 10° 10! ; 10° 10° 100 10! 102
1. Introduce the model ‘ k
2. Manually build a simple graph
3. Analyze a few important properties of the model
We will not comprehensively investigate the model
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* The configuration model doesn’t specify a degree distribution, rather it specifies a
degree sequence, d = (kq, k,, ..., ky), which sets the degree of each node

 Note: the total degree, K = Z’i\’:l k; , must be even

* For convenience, we do not allow isolated nodes with k; = 0

Generating a graph:
1. Place k; “stubs” on node i for each i
2. Assign a number to each of the K stubs

3. Randomly choose 1 pair of stubs and connect
them (they are then no longer stubs)

4. Repeat step 3 until all stubs have been A node with 2 stubs

connected
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Simple example

* Consider the degree sequence, (2,1,1) 1 3 4
2
* The nodes with labeled stubs are shown 2> é/ @ @
* A realization can be generated with the
following crude algorithm:

1. Create a list of all stubs, (s4,5,,53,54)

2. Select 2 uniformly at random, place a link
between the pair, and remove them from list

3. Repeat step 2 until two stubs remain, and
place a link between them
4. So, if we 1st choose s, and s3, we get > 1 3 4
2
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* This graph, G, is just one realization — the
model defines a sample space of
realizations for a given degree sequence.
We cansaythat G € G.(d = (2,1,1)) where
G.(d) indicates the ensemble of graphs
generated by the configuration model with
degree sequence, d 3

* Any one stub is equally likely to connect to

any other stub with probability 1/(K — 1) Notes:
* This model allows self-loops and

* For this example, there are 3 graphs that multiple links between a pair of nodes

can be generated with equal probability
* Most real networks don’t have these

« However, this is not generally the case. For a kinds of I‘i‘nks, ’P”t it can be Shf’W" that
given degree sequence, it is possible for they are “rare” as the .graph size
some graphs to be generated more becomes large (and with some

frequently than others. constraints on the degree sequence)
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Model properties

Question 1: What is the expected number of links between distinct nodes i and ;?

* Set “a” asone of k; stubs on node i and “b” as one of k; stubs on j

Let X, count the number of links between a and b (it will be either 0 or 1)

Then P(Xqp = 1) = ﬁ as stated earlier, and (X,;,) = i

Finally, let [;; be the number of links between i and j (with i # j)

ikj
-1

ki k __k
Then, (l;;) = X, 2, (Xap) = P
 We immediately see that higher-degree nodes tend to link to each other more frequently

* Of course, this will only be important if the degree sequence contains a reasonably broad
range of degrees!
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Question 2: What is the expected number of self-loops on node i?
 Let “a” and “b” be distinct stubs on node i

* X_,p will again count the number of links between a and b, and: P(X,;, = 1) = (X)) =
1

K-1

e Then, (l;) = ZZ":_ll Z’g":aH(Xab) = % where ([;;) is the expected number of self-

loops on i
 The indices for the double sum have been set to ensure that a and b are distinct

«  We see that if K > k7, the number of expected self-loops on i will be small

140
Imperial College
London



Question 3: What is (s), the expected number of self-loops in a graph? (assuming that K > 1)

N ki(ki=1) ZN k(k —1

* Using linearity of expectation, this is (s) = }>;_; 2(K—D)

* We can put this in a more interpretable form by recognizing that:
k(k 1)

* The sum can be re-written as: kaax N, where N, is the number of nodes with

degree k

K -
* 5= k, the average degree

. % = py, the fraction of nodes with degree k and...
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© Lok =k, N py k2 = k2

2k

(k- z)]

* Putting all of this together, we have:Es) ~

* A key conclusion is that if we hold k2 and k fixed to finite values and consider a sequence

of graphs with L. — oo, then the fraction of edges which are self-loops goes to zero, (i—> -0
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Summary

* We began this lecture pointing out a few important weakness of the G,;,, model

* The configuration model produces network which:
e Can have a realistic degree distribution
* May have higher clustering G, graphs
e Exhibit the small world property

* So, the configuration model is a step forward. But important questions remain as will be
discussed in upcoming lectures

* The discussion here is really just a brief overview. There is much more one can do to
analyze and improve the configuration model. For an advanced and somewhat different
treatment, see the (highly-cited) paper by Newman, Watts, and Strogatz, “Random graphs
with arbitrary degree distributions and their applications”
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Recap

In the previous lecture we introduced the configuration model which:

Is a random graph model that can produce graphs with realistic degree distributions

* Requires the specification of a degree sequence, d = {kq, ko, ..., ky}

* And has the key property that the probability that any two stubs are linked is ﬁ where K
is the “total degree”, K = Z’i\':l k; and is also the total number of stubs in the graph.

*  When analyzing the configuration model, it is often convenient to work with N, the
number of nodes with degree k, or p,,, the fraction of nodes with degree k.

* We then aim (when we can) to provide expressions in terms of the moments of the
degree sequence:

- 1
* k:EZIiV=1ki
— 1
* kZZEZ?’ﬂkiZ
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Configuration model, continued

We continue with a fourth question related to the configuration model:
Question 4: What is the probability that node i does not have any self loops ?

* So we need to find P(l;; = 0)

e Say that the stubs are numbered from 1 to k; . The probability that stub 1 does not
ki—1
K-1

connect to any of the other stubsoniis1 —
* The probability that neither stub 1 nor stub 2 connect to node i is,
k; —1 k; —2
(1-7=2) (1-%=3)
K—-1 K—3

« And continuing on to stub k; — 1, we find, P({;; = 0) = Hfﬁ;i (1 - Kljlz_nﬁl)

* It is more challenging to work with probabilities than expectations when analyzing
the configuration model

[ Check your understanding: Why does the product go to k; — 1 rather than k;? ]
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* Let’s look at an example, the figure shows
the degree distribution for a university’s
Facebook friend network from 2005

e k =68.17 k% = 8495.74
* So,(s)~ 61.81

* Using the configuration model (and
NetworkX) to generate 100 graphs with
this degree sequence gives an average of
61.27 self-loops per graph

61.81
* Note as well that %) ~ (43574)

2
fraction of nodes expected to be self

loops is small.

~ 3e-4. The

Imperial College
London

1072 -
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1073 1

Degree distribution of Facebook network, N=6386, K=435324

; % O.-:ﬁ.":. -
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* Let’s also check our result for the :

oge T
probability that a node does not have e .
self-loops

* Now generating 400 graphs, compute
the total number of nodes with degree

k that do not have self loops and divide
that total by 400N,

0.7 4

Probability that node with
degree k does not have self-loops

* The figure compares this average with
P(l;; = 0) for each unique degree in ol
the degree sequence

0 200 400 600 800

k
* This indicates that the theory works
pretty well, and we also see the
(expected) result that hubs will have a
higher tendency to have at least 1 self-
loop
148
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We will now state a few results for more familiar quantities.

— _\2

k2—k

* The expected clustering for a node with degree k is, (C) ~ %
Nk

* This approximation assumes that the graph is sufficiently large for the influence of self-
loops and multi-edges to be negligible

* Recall that the clustering coefficient for a Gy, graph is p = %

* So we find for both models that the clustering goes to zero as N is increased.

. _\2
 However, for some reasonable degree sequences, the numerator (k2 — k) can be large,

and the configuration model will then produce much more clustering than a G, random
graph (on average).
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* The configuration model exhibits the small world property, i.e. the diameter increases
logarithmically with the graph size

* A giant component in a sparse family of configuration model graphs is present with high
probability if and only if the Molloy-Reed criterion is satisfied: k? —2 k > 0

* A configuration-model graph family is sparse if the average degree remains finite as
N - o

 Here we are considering a sequence of degree sequences with the length of the
degree sequence increasing

* Most large real-world networks satisfy this criterion and also contain giant
components
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Last question: Why (might) your friends have more friends than you?
We consider a related problem:

Construct a degree sequence corresponding to a social network, generate a graph with this
sequence, choose a node, and then: what is 75, the probability that an arbitrary stub on the

chosen node connects to a stub on a node with k friends?

* The graph has N, nodes with degree k, and the probability of a stub connecting to any one

k k
Nk ~ Nk when K > 1
K-1 K

of these nodes is, T}, =

* The numerator is just the total number of stubs connected to nodes with degree k,

and we have assumed that the selected node does not have degree k (how would the
above be modified if it did?)

* Then using the same simplifications used in lecture 6 when computing (s), we find:

“T %
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We can now compute the expected degree of the friend:

. =
(kfriend) — Zk Tl'kk = zzk kzpk = f

* | didn’t specify how we choose a node; we could choose the same node each time and this
result would hold. However, to partially address our initial question, it is best to choose
the node uniformly at random each time a new graph is generated.

* The expected degree of this node will then be k

— _2
k%2-k

k

* And then we can consider (kfn-end) —k =

* The numerator on the RHS is the (biased) sample variance of the degree sequence and the
expression will be positive provided that the degrees are not all the same.

* So we expect the friend to have a higher degree than the degree of the randomly chosen
node. Real complex networks tend to have variances that are much larger than the average

degree, so the “typical” friend can be considerably more popular.
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. k2
* For areal network, do we see anything like, (kfriend) N ?

e Consider the following problem for a real network: Interpret each link as 2 stubs.
Randomly select one stub, follow it via its partner stub to a node, f. What is (kf)?

* This is equivalent to randomly choosing a stub and considering its node:

* We have kN, stubs on nodes with degree k and there are K stubs in total, so
P(k;=k) = Nl’ék = kz_;k where p,, is the fraction of nodes with degree k and N;, =

prN

2 —
* Then, (kf) = % which will again be larger than k, the expected degree of a randomly

chosen node if the degree distribution has finite variance.

* The simple underlying idea here is that choosing links rather than nodes generates a
bias towards high-degree nodes
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Friendship paradox

These ideas about friends of friends are loosely related to what is known as the “friendship
paradox”

A SUMMARY OF THE NUMBERS OF FRIENDS AND THE MEAN NUMBERS OF FRIENDS

° Consider the table Shown taken OF FRIENDS FOR EACH OF THE GIRLS IN FIGURE 1
frOm: Feld, SCOtt L ”Why Your Total Number of Mean Number of
] . Number of Friends of Friends of
Friends Have More Friends Than Friends For Friends Her Friends
. (=) (2x,) Sx,/x,)
You Do.” American Journal of — , ] :
Sociology, vol. 96, no. 6, 1991, pp. iue ................. 4 11 2.75
lice ............... 4 12 3
1464-1477 Jane......cco..... 2 7 3.5
Pam................ 3 10 3.3
Dale................ 3 10 3.3
* This is data from a small social qorol e ’ .
H H H Total............ 20 60 23.92
network in an American high Mo, 2 ot o

school

* The 1st column is the degree of each student (the total is K, the mean is E)

* The 2" column is the total degree of all friends of an individual. Say there was a 9th
student with 8 friends. Then she would contribute 8 to each entry in this column.

* The “Total” and “Mean” in this column are familiar quantities. To see this, we just

need to work with the network adjacency matrix.
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Friendship paradox

« Say that f; is the total number of friends that node i’s friends has. Then, f; = Z?Ll Ajjk;.

* The total number of friends of friends is then: Y.\, f. = XI_, ¥, A;;k;. Swapping the
sums on the right-hand side and rearranging:

§V=1fl- = 2?1=1 k; Z]iv=1 Ajj = Z?]=1 ka = Nk?

* Now we scale the result by the total number of friends:

total number of friends of friends Nk2 k2 . . .
If i = == which is the same as the expression for

total number of friends K

. . i . k2 _ T
(kfn-end) obtained with the configuration model. We know that = > k for networks
with varying degrees, but this does not really tell us what an individual experiences.

* Instead, we should consider the average number of friends that a person’s friends has.
Say that klf is the average number of friends of friends for node i. Then,

kl.f= %Z?Ll Ajjk; . The average of this quantity for the network is,

kf = %Z’i\’zl (k%zy:l Al-jkj) which can’t be simplified easily like the previous case.
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A SUMMARY OF THE NUMBERS OF FRIENDS AND THE MEAN NUMBERS OF FRIENDS

k2 60
We know that f = — = 3 has to be oF FRIENDS FOR EACH OF THE GIRLS IN FIGURE 1

20
greater than or equalto k = 2.5 Total Number of Mean Number of
Number of Friends of Friends of
Friends Her Friends Her Friends
_f . L. (x,) (2x,) (2x/x,)
But k/ is more difficult to analyze Betty. o : . )
Sue........eeveenl. 4 11 2.75
- _ Alice ............... 4 12 3
The relative magnitude of k/and k= 7o ] 10 iy
depends on the details of the graph ~ 22ee : o >
i “ ” Tina ............... 1 2 2
structure, I'e: do p().pu'ar people Total............ 20 60 23.92
tend to be friends with each other?  Mean 2.5% 3t 2.99%

It has been empirically observed that typically kS is tangibly larger than E, and this is
known as the “friendship paradox” — your friends tend to have more friends than you.

Consider a simple illustrative example. A person has 50 friends but each of these friends

has only 1 friend. Then, k = 100/51 but kS = 1+5501*50 > k and most would have far
fewer friends than their friend

e Alternatively if the 50 friends had relatively large degrees, this would reduce the

difference between k_fand k. 156
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Dynamic graphs

* The configuration model resolves many  NPer o people using socia) media platiorms, 2004 10 2019 e
of the weaknesses of the G, model

logged in during the past 30 days. See source for more details.

Facebook

e So is there really any need to consider o
other models? o
5 bilion L
* The configuration model mimics a . -
network with a given degree

distribution o0 milion T
e

* It doesn’t tell us why the network , — e

has a given distribution e

Another key point: most complex networks are not static, they evolve in time
* We know social networks evolve in time, a growing biological network can be

observed here: https://www.nikonsmallworld.com/galleries/2018-small-world-in-motion-
competition/zebrafish-embryo-growing-its-elaborate-sensory-nervous-system

* An explanatory model should show how networks evolve and how degree
distributions develop
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https://www.nikonsmallworld.com/galleries/2018-small-world-in-motion-competition/zebrafish-embryo-growing-its-elaborate-sensory-nervous-system

We need to think about the addition and Number of people using social media platforms, 2004 to 2019
removal of nodes and links over time

Estimates correspond to monthly active users (MAUs). Facebook, for example, measures MAUs as users that have
logged in during the past 30 days. See source for more details.

oo . . 2 billion
The probability of a node (or link) being
added or removed will depend on the
1.5 billion
cost and benefit of the action
. 1 billion
e Some links on Instagram have more
value than others, creating an account
has more value for some than others
//
5%04 2006 2008 2010 2012 2014 2016 2018 2019

How can these ideas be translated to a Souree: Sttt and T 2019

mathematical model?

* Wec

ould assign a fitness to nodes and links which connect to a probability that

nodes and links are added or removed

Imperial College
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Similar ideas are commonly applied in evolutionary biology -- the relative
fitness of a genetic mutation determines if it spreads in a population

Our World
in Data

Facebook

YouTube

Whatsapp

Instagram
WeChat

Tumblr

TikTok
Reddit
Twitter
Pinterest
Snapchat

MySpace

CCBY



Say our model network starts as shown 2>

How do we assign fitness values? Should these values evolve
in time?

These are very complicated questions, a guiding principle to
get started:

“Everything should be as simple as it can be, but not simpler” -

3.

-- Einstein (paraphrased)
How fast should the network grow: 1 node per iteration
How/when should nodes/links be removed? In some
complex networks node/link removal is rare, so once a
node or link is added, let’s keep it forever (see Barabasi,

figure 6.11)

How should links be added? — this requires some thought
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* Let’s add 1 link per iteration
* Where should the new link be placed in our example? 2>
* We can just choose 1 node randomly for this case
* But what about the next iteration?
* If we just place links randomly, the resulting model will

have similar shortcomings to the G, model, i.e. this
would be “too simple”

e So, links should be placed with some consideration of
fitness — which potential neighbor has the most value?

Preferential attachment: links to nodes with higher
degrees have greater value

Imperial College
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Preferential attachment

Preferential attachment: nodes with higher degrees have
greater value

* This needs to be translated into a mathematical statement
* The simplest approach is linear preferential attachment:

The probability of a new link attaching to an existing
node is linearly proportional to that node’s degree
or

ki(t]|Gy(t))
(t+ 1|G,(t)) = 77—
pi( |Ga () Z?I:(Pki(t)

where p;(t + 1|G,(t)) is the probability of a link
connecting to node i in graph G, (t) witht € {1,2,3, ...}

* Simple perspective: interpret each link as 2 stubs. Choose 1
stub at random and place a link between the new node and
the node which this stub connects to.

Imperial College
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* To complete our model specification, we need to set the initial
state of the model

e Again, we will keep things simple:
At t = 0, our network will be 2 nodes joined by a link
* With this initial condition, the size of the network will be:
N(t)=2+tL({t)=1+¢tt€{012,..}

ki(®) ki)
2L(t)  2(1+t)

And: p;(t + 1) =

Note: this probability defines how the state of the graph at time ¢
influences the state at time ¢t + 1
* The probability of a new link connecting node 3 to node 1

isl/2or:p(t=1) =%
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Barabasi-Albert model

Our model belongs to the family of Barabasi-Albert graphs t=0

The Barabasi-Albert model:
* Allows g links to be added each iteration (g can be
greater than 1)
* The initial state consists of N;nodes where each node has

at least one link and N, = ¢q
* The model is “underspecified” — see Box 5.1 in Barabasi

Our model specification (g = 1 Ny = 2) was chosen to simplify
the analysis which follows

Op®
@‘Q

Example withqg = 2, Ng = 3
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* Let’s think carefully about the 1t few iterations of our model

 Att = 0, we have our specified initial state which we label,
G(t=0)

e Att =1, there are two possible graphs which will be generated
with equal probability ¥4, {G,(t = 1), G,(t = 1)} . The subscripts
are “assigned” arbitrarily

 What about t = 2? There are 3 possible “descendants” of each of
the graphs generated at t = 1, so the size of the sample space is 6.
* The probability of generating G,(t = 2) is:

P(G,(2)) = (Probability of generating G, (t = 1) ) * (Probability
of adding link between nodes 2 and 4 to G,(t = 1))

* This is straightforward to evaluate: P(G4(2)) = 0.5%x05 =
0.25. Note that the value is not 1/6 — some graphs are more
likely to be generated than others
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* Generalizing, the size of the sample space at time t is (t + 1)!

* The expectation at time t is computed as:

(F) = TV P(6 () F(EIGR(E))

* Here, P(Gi(t)) is the probability of generating graph G;(t) and
f(t|G;(t)) is an arbitrary quantity evaluated on G;(t)

* Forexample, k,(t = 2|G,(t = 2)) =3

[Check your understanding: what is (k,(t = 2)) ?]

* Let’s now apply these ideas to the computation of the degree
distribution
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Degree distribution

* What is our degree distributionatt = 0?
e All nodes have degree 1
e Att=1?
 Two nodes with degree 1, one with degree 2

 And then it becomes more complicated. Let’s take an inductive
approach
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Say that we know the degree distribution at time ¢, p, (t). Then

what is p, (t + 1)? @_@

* First, we introduce three random variables:

* N, (t): number of nodes with degree k at time t. By definition,

(Ng (1))
pr(t) = Nk(t)
* [, (t +1|G,,(t)): Anindicator variable, [, (t + 1|G,,(t)) is the G,(t=1)

number of links added to nodes in G,,, (t) with degree k. Will be
either 0 or 1 (when k = 1 we will also have to account for the
new node).

* We will characterize an iteration with N, (t + 1|G,,,(t)), the
number of nodes with degree k at time t + 1 given graph G,,,(t)
at time t. This is a random variable which can take on three
values. This notation may be a little confusing, so let’s look at G
this variable more closely...

Gy(t = 2)
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There are three cases to consider for one iteration of our B-A model with k > 1:

* Case A: If a node with degree k receives a link:
N (t + 1|Gp (1)) = N (]G (D)) — 1

e Case B: If a node with degree k — 1 receives a link:
Nk(t + 1|Gm(t)) = Nk(thm(t)) +1

* Case C: Otherwise: N, (t + 1|G,,,(t)) = N, (t|G,,(t))

This perspective suggests the following approach for computing the expectation,

(N, (t+ 1)):
(N (t+ 1)) =
(t+1)!
> P(6n(0) PUIN(EIGw (D) = 1]+ PBIN(t1Gn(£)) + 11+ PCIN, (t]Grn (1))
m=1

Here, P(A) is the probability of case A with equivalent definitions for the other cases,
and P(A) + P(B) + P(C) = 1.
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Next, we replace P(A) and P(B) using our indicator variable and obtain:

oy (N (t+1)) =

t+1)!

Z P(Gn(®) [Ne(tlGn(£)) —[P(Le(t + 116y (6)) = 1) +P (Ui (¢ + LG (1)) = D]
probability of adding probability of adding

link to node with degree k link to node with degree k — 1

 The above holds for k > 1. For kK = 1, we modify the expression to account for a new
node with k = 1 being introduced each iteration and for the fact that there are no nodes
with k = 0:
(N1 (t+ 1)) =
(t+1)!

> P(6n(®) N ¢ (0) = Py (1G4 (6)) = 1) + 1]
m=1

* We can simplify these equations substantially by recognizing that:

kN, (¢1G,p
P(Le(t + 1|Gp () = 1) = kgtLl(t) ®)

* this follows from our definition of p;(t + 1|G,,,(t))
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* We now have the inductive results we need
Master equations:

k> 1:

NCE+ Dpy(t + 1) = Ny (6) — PEONOF - P ON©OK = 1)

O 2L(0)

k=1
p1 (DN (L)

N(t+ Dp(t+1) =N()p.(t) — 2L(0)

 These equations, can be used to compute the evolution of the degree
distribution

* These equations can be used for our next task -- obtaining an interpretable
result whent —» o
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B-A model: degree distribution

* Previously, we derived the master equations for the degree distribution generated
by the Barabasi-Albert (B-A) model

Master equations:

k> 1:

N(E+ Dpu(t +1) = Ny (6) — PEONOK | P ONO K = 1)

2L 2L(0)

k=1:

p1 (E)N(t) N

2L 1

N(t+ Dp(t+1) = N()p.(t) —

* Let’s now examine what happens when the graphs become large
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We start with:

N(t+ Dp(t+1) = N()p.(t) —

p1 (E)N(t) N

O

 When N > 1, we see that we will have p,(t + 1) = p,(t) (remember that
N({t)=2+t L(t)=1+t),andast — oo, we willhave p;(t + 1) = p(t) =
pl,oo

* The same argument can be used for general k giving, p, (t + 1) = p,(t) =
Pk, in the limit ¢ — oo

* In order to find this stationary distribution, we rearrange the equation,

t)(2+t
3p1(t + 1) — 2p1(8) = t[py (&) — p1 (t + D] - %

and evaluate the limit as t — oo while imposing the condition,
t(pr(t+1) —pr(t)) 2 0ast - oo.
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* This gives the result,

P10

pl,oo = 2 + 1 or Simplyr[pl,oo — g]

and using the same approach for general k, we find,

_ Pk ook + Pk—-1,00 (kK — 1)
pk,oo 2 2

N k-1
which is rearranged as,[pk,OO = mpk_LOJ

We’re almost done now, we just have to examine this recurrence
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Rearranging our recurrence slightly:

k
Pk+1,00 = k+3 Pk,

. 2 1 1
and noting that, p; ., = 5P2,00 =7 P10 = ¢
212 1

P30 =5,3= 15

3212_2*1*2_ 1

Paoo = 553 = 6e5ea 30

. 2%1%2 . 2
Ps,0 =7 65~ 105
4 -3
pk,oo -

k+2)(k+Dk

The approximation on the RHS applies for large k

Let’s compare this expression to simulation results...
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we find the degree distribution shown

theoretical result

* We have to remember that the theory

corresponds to an expected value, so we
should run several simulations and average

the computed degree distributions
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Running a simulation with 1000 iterations,

There is some modest similarity with our

Pk, =

100§
10-1é
1072 5
1oﬂé
1043
10-5?

1076 +—

¢ 1 simulation,t=1000
-=-- theory

10°

10!




see much clearer agreement

accurately estimate the expected
frequency of high-degree nodes
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Averaging results from 200 simulations, we

Large degree hubs appear infrequently, so
even more simulations are needed to

Pk,
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1 g —== theory
~
10~1 ‘- \\‘
3 ~
~
‘\
B ‘\‘
_2 .
1072 3 N
] 5‘
A )
-
10-3 . “\
| #\;\
- - e @
107 5 %
] LN
g 5
p \ @ ee o
5 ccqgam o o
107 A b i |
E .&.. o
\\
6 ‘ \\
10521 —
100 10! 102
k




* We see good agreement at earlier times as o

] B e 200 simulations,t=100
well 2> 1 \~\\‘ --- theory
10'1-§ \\~\‘

* A rigorous comparison with theory would f \"\
require independently varying the number 15 o
of iterations and the number of simulations s ] “‘x-\-\,
used for averaging 102 ; \1.\.\. .

* We see that our simple model generates a 10-4-; s
power-law degree distribution which is a Rl
big improvement when compared to the 10-5 L~ e

10° 10!
Gnp model ‘

* This model also produces “ultra-short” * However, the clustering coefficient is

distances: D ~ log(N)/log(log(N)) zero — the model is too simple!

* This is easily fixed by adding more
links per iteration
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B-A model: Node evolution

* QOur last piece of analysis for this model will focus on an individual node:

How does the degree of a node evolve in time?

 Say the node is created at time t,. Then, k;(t = t,) =1

* We again introduce an indicator random variable:
« X;(t+1) =1 ifalinkis added to node i at time t and is 0 otherwise

 So, k;(t+1)=k;(t)+X;(t+1)fort > t,
* Linearity of expectation gives: (k;(t + 1)) = (k;(t)) + (X;(t + 1))
* And we know that (X;(t+ 1)) =P(X;(t+1) =1)

* Whatis P(X;(t+1) =1)?
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 Werewrite P(X;(t+1) = 1) as:
PX;(t+1) =1) = XV P(6, () P(X;(t + 1) = 1[G (1)),

and we know:

’

2+2t
so we have,
ki(t|Gm(t
(gt + 1) = (ky(D) + ZEEY PG () L1 E)
* The summation term is just, ( 1(21) and:

(ke + D) = ki) (1+ 57

* Now using k;(t = t,) = 1, we obtain an explicit expression for the expected degree:

-1
teito +J)) = 1111 [1 T2y 2(10 + n)]
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* With some further work (see below), we can approximate the expected degree of node i

as:Eki(tO +j)) = /tot:% ]

Note: to obtain the result above, we:
1. Use the log function to convert the products into a series
2. Use the 15t term in a Taylor series approximation to convert the series into a harmonic
series
3. Use a standard logarithmic approximation of the harmonic series
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* The figure compares results from
simulations (averaged over 200
realizations) with the trend from theory

—== Theoretical trend

* Aside from the early dynamics of the 10' ;
node introduced at t = 0, we see good
agreement

< ki(t) >

* These trends illustrate the “1st mover
effect” — the earlier a node is
introduced to a network, the more links
it tends to have

100 . . r — r . . v —_—
10° 101 102 103
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Comments

 The simple model introduced here generates graphs with many of the
characteristics that we are looking for.

* By increasing the rate at which links are added, we can improve it further
 But even then, is it “too simple”?
* Yes.

* This becomes apparent when we examine the growth rate of real networks

* And also when we critically consider the model assumptions

* This is a starting point for “modern random graphs” and Network Science

Imperial College
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Barabasi-Albert model

* We have seen that the simple linear preferential attachment model generates a
“realistic” degree distribution, though the resulting graph is a tree with zero clustering

) ) ) e er e . 2q(q+1)
* If we add g links per iteration, the degree distribution is ~
q P ’ & » Pk (k+2)(k+1)(k)
 And the clusteringis (C) ~ (InN)?/N
Internet Protein Interactions Barabasi-Albert
0 e e 0 e g 10°
ot ey i 3 i T~ + 200 simulations,t=1000
. i 4 : \\‘ === theory
101 F %N 4 [ v 1 107! 4 ™,
. . \"I : 101 _E_ = .'-." _E \‘\\
10? F - i ‘ 107 ‘\
2 0f ] 20| \
S : .,
[ 102 F : . - s,
107 '.' ‘ = : ‘ - = o .. 1074 ‘;’
B R 3 (k) % : AN
' . - ] -6 4 . ——rt : —rrt \\
10..3‘: - PR x.*.l PERTTIT | PR ......I— 104 M + s 4 4 saslt M 44 4 2333 10 100 101 102
10° 10! 102 103 109 10! 102 K
k k
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Power law distribution

Let’s examine the power law probability distribution more closely now

* The power law distribution is:
k=Y
Pe=7m

where {(y) is the Riemann zeta function.

. The power Iaw distribution iS deﬁned for . First and second moments for power law distribution
k € Z* and the expected degree and 2" i ::;
moment are:

R ulee) _ {(y—-1) 102-;
<k> — Zk=1 kpk - () ]

|
|
|
|
|
|
|
|
|
1
1
1
|
1
1
\
\

(k*) = Ype1 ko = (v — 2)/¢(¥)

10? -

« (k) diverges fory < 2 and (k?) diverges for
y<3=>

10° 1
Imperial College
London
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* Many, but certainly not all, complex networks have been fit to power laws with
2 <y < 4 (see Barabasi, table 4.1)

 However, real networks are finite, so the variance will be large but of course not infinite

45

* This is nicely illustrated in figure 4.8 from

Barabasi 2 ® @ i
* The standard deviation is shown rather "
than the variance el
* For GNp graphs, Var(k) = (1 - p)(k), 30 @ CITATIONS (N)
so g < ./(k) .
g i . METABOLIC (IN)
* |s alarge variance important? The 20 firie
configuration model provides some
15
gUidance: @ NTERNET
i (SDSEEL’\IACBEORATION
5 i @ evAaLaN) @ ciTATIONS (OUT)
- _ k’-k
— — k»172
(kneighbor) k = X 5 i —————————— oy
_ 2 ' PHONE CALLS (IN.OUT) . ..eccecssssescsccssscss®?
(ﬁ_ k) | aneeeso ™ POWER GRID
° <C> = -3 0 2 4 6 8 10 12 14
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 More generally, the standard deviation tells us how

important the mean is o RS
 Low variance means that most of the nodes will be [
. o . . -1 - L —_
similar to the node with the average degree as in G, 15 ™ e 3
E 2 4
raphs [ ‘e
g p pk L .. d
i i ) i s L HIGH DEGREE
* High variance tells us that the mean carries relatively L , CUTOFE 3
little information and that there will be a broad range : ]
of scales [ LOWDEG REE
109 L SATJRATION ]
* In practice, complex networks “have” high variance, but
they do not follow a power law across all degrees = I (| blerte e il v nsmer
10° 10" Kk 102 10°

 Small-degree nodes, intermediate-degree nodes, and
hubs all play distinct roles in networks

From Barabasi Figure 4.23

A word of caution: reliably fitting a power-law to network data is not straightforward,
and it is generally very difficult to argue that a given distribution follows a power law
rather than a log-normal distribution
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Preferential attachment

* |Is network data consistent with this idea of linear preferential attachment?

e Barabasi et al. “measured” preferential attachment in real networks

Imperial College
London

The idea is to observe a network over a timespan (say, between t; and ¢, )

Typically, links will be added in an irregular manner, so a precise comparison
with the linear model is not possible

Instead, define S; as the set of all nodes present at time t; and measure L, the
number of links added to nodes in S; with degree k.

Let L, be the total number of links added to nodes in S; during the observation

i . . - L
period, then, linear preferential attachment indicates that we should have L—k ~
0

21D where L(t,) is the total # of links at t;



Preferential attachment

It was observed that results were easier to Barabasi, figure 5.10
interpret when mulative function was 100 [T e [T T
terpret eK a cumulative IR R
USEd, HK = Zk=1 Lk/LO Network

and linear preferential attachment gives:

e ~ Xk=1 2L(ty)  4L(ty)

* Soin the figure, measured II,. is compared
to linear and quadratic trends which
correspond to random attachment and

102 L S AL LR D RE ) =y 102

linear preferential attachment, respectively c. Collaboration
Network g

* The networks are fairly close to the £

expected trend, all show some sort of
preferential attachment

(k)

1072

107

10°¢

10° 10"k 102

Imperial College

London dashed green: k2, solid black: k



Preferential attachment

* Their results suggest that the attachment
model should be generalized, e.g., p; = 10°
C(k{ + B) where a and 3 are model
parameters and C is a normalization

constant
. ~(3+5) .
* Witha=1:p, ~k 1 where q is the
number of links added per iteration

* Withf=0,a<1:

pr ~ k™% exp(—2u(@)/(< k> (1 —a) k'™9)

This is the stretched exponential distribution 10°

(Barabasi §4.10)

 With a > 1, an unrealistic hub-and-spoke i
structure is generated Te(k)

* This generalization provides an avenue for
improving agreement between the model
and observations via adjustment of o and

Imperial College
London

Barabasi, figure 5.10
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Spreading processes on networks

* The dynamics of many interesting and important complex systems can be modeled as
spreading processes on complex networks

* Picture below: epidemic spreading via global air transportation network

Other examples:

 Memes spreading on
social networks

* Viruses spreading via
the internet

 Blackouts
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How can/should we model these sorts of processes?

The starting point is to think about diffusion
 Examples: perfume spreading in room
e adrop of ink spreading in water
* thermal energy (heat) spreading through your dinner

e Diffusion is driven by the seemingly random motion of
particles

* Large numbers of collisions between air and perfume
molecules “push” some perfume away from its source

e Let’s model this particle motion using random walks

* This will lead to the diffusion equation which we will
then modify to obtain a graph diffusion equation

Imperial College
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1-D diffusion

» Consider n(x,, t) particles in the box shown 2
We will say there are n;,; particles distributed
across an infinite “line” of such boxes it (xo, ) J" (xg,t)

* How does (n(xy, t)) change in time?

e Each particle is undergoing a random walk
defined as follows
 During atimestepfromttot + At, a h
particle will move a distance +h or —h with
equal probability.
e So all particles inside the box at time t will
be in an adjacent box at t + At

* Letj"(x(,t) be the number of particles that enter the box crossing its right boundary
between t and t + At. Then, what is (j" (x,, t))? This will depend on the number of
particles in the box centered at x, + h and the number of these particles that take a step
to the left:

Neot A

| (7 (0, 0) = D) P(nlro +h,6) = 0,/ (x0,6) = b) b

London a=0 b=0



e We know that:

P(n(xy+ ht)=a,j"(x9,t) =b) = P(j"(xq,t) = b|n(xy + h,t) = a)P(n(xy + h,t) = a)

so,
(" (xp, t)) = Z P(n(xy+ h,t) = a) Z P(j"(xy,t) = b|n(xy + h,t) =a) xb
a=0 b=0

* The inner sum is straightforward to evaluate. We can think of a step of a random walk as
a Bernoulli trial with p = 0.5. The inner sum is just the expected number of successes

. . . a
from a such trials which is pa = > and:
Ntot

G700, 0) = ) [Plrro + 10 = ) ]

a=0
* This sum is even more straightforward to simplify: it is simply half of the expected

number of particles in the box on the right:

(n(xy + h,t))
2

(" (xp,t)) =
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 We are almost done now; we need to account for the box on the left and then consider
what happens when At —» 0

* Using identical arguments as before: (jl(xo, t)) = onz—_h't)),

n(xy, t + At) = j' + j7 and using linearity of expectation, (n(x, t + At)) = (j!) + (j7)

* Our primary interest is in the change in the expected number of particles:

(n(xo, t + AD) — (nlxo, 1)) = (j*) + () — (n(xo, 1)) or,

(n(xo—h,t))—(n(xo,t)) n (n(xo+h,t))—(n(xo,t))

(n(xg, t + At)) — (n(xy, t)) = 5 2

* Now we will let At — 0 but note that At and h are not independent. Particles move larger
2

distances over larger time steps and empirical observations indicate, vkl constant
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* The final steps in the derivation of the diffusion equation require the use of Taylor series
expansions:

on
n(xo, to + At) - n(xo, to) + N At + O(Atz)
at Xo,to

n(xy + h, ty) = n(xy, ty) + Ixo toh + "4 0(h3)

dx 2|th0 2

* Substituting these expansions (and the analogous expansion for n(x, — h, t,)) into our
equation for the expectation and working through some arithmetic gives:

d(n)  0%(n)
ot ¢ dx?

+ 0(At) + 0(h?)

* Nowifwelet h — 0 then, the number of particles in a box should also go to zero.
(x 2 . Then, letting At > 0and h — 0,

Instead, introduce the particle density, p(x,t) =

gives the 1D diffusion equation:
dp  9%p
at " ox?
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* We will not delve into the solution of the diffusion equation in any detail

* One basic result:
The solution of dp/dt = a 92p/dx? with p(x,0) = e~ %" is:

1 _ ax
p(x, t) = e 1+4aZt
1+ 4a?t
* This is a “spreading Gaussian”:
1.0
0.8 1
0.6
0.4 -
0.2 1
0.0 T
oy} -2 0 2
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Diffusion in networks

With networks, we no longer have spatial derivatives

Can we use similar ideas?

Let’s think about the net flux of particles along a link between two nodes

Then the change in (n) at a node will be the sum of these fluxes from its neighbors

So how do we model this flux? Let’s go back to our 1-D example:

(n(xo, t + At)) — (n(xo, 1)) = <”<xo-h't>2>-<n(xo:t>> n <n<xo+h,t)2>—<n(xo.t)>
\ ) | |

Y Y
J'/2 J'/2

Using Taylor series expansions as before, this can be rewritten as,

0
;l) = az(]l +J7) + 0(At)

Here, /' and J"are the net fluxes of particles into the box at x, across its boundaries.
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* There is no natural equivalent to & in a graph, so we ignore it and interpret /! and J”
as the net flux of particles from two nodes adjacent to a node at x,,.

* Generalizing, for two arbitrary nodes, the net flux of particles from node j to node i
will be]ij = <Tl]> — (Tli>

* And the expected number of particles at node i will satisfy:

d{n;
Zz ! =« Z Jij(t) = a Z ((nj) — (ny))

JEN; JEN;

where the sum is over all neighbors of i and we have taken the limit At — 0.

The sum can be rewritten using the adjacency matrix of the graph:

d{n;) _ N

dt j=14ij ((nj> — (ni)) (graph diffusion equation)
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* Moving forward, | will use n; instead of (n;) for convenience.
* The graph diffusion equation can be simplified by noticing that: ¥ _; A;;n; = n; ¥0_; A;;
and Z?’zl Ajjis k; , the degree of node i,

* Now define a diagonal matrix, D, where D;; = k;. Then our graph diffusion equation
becomes, % = —qa Z?Ll Lijn; whereL = D — Ais the graph Laplacian matrix
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N
dn;
* We have our model for diffusion on graphs: d_tl = —az Lijn;
j=1

* How do we find solutions?
* The initial values need to be specified for each node

* Then, this is a system of linear constant-coefficient ODEs
* j.e.it’s an eigenvalue problem

* For undirected networks, the Laplacian is real-valued and symmetric
* So its eigenvalues are real (they are also non-negative)

« How do we compute eigenvalues in Python?
* np.linalg.eig
e scipy.sparse.linalg.eigs, scipy.sparse.linalg.eigsh

You should think about the relative advantages/disadvantages of these functions
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An example:
In [3]:

nx.erdos_renyi_graph(15,0.2)

G

A = nx.adjacency_matrix(G)

In [6]:

A.todense()

In [7]:

Out[7]:

A A A A A A A A A A A A A A
Lo B e B e B i B e B s B s B e B, B e B s B s B e M Bl |

””””””””

””””””””

””””””””

””””””””

””””””””

””””””””

””””””””

””””””””

””””””””

””””””””

””””””””

] b e ] e e ] ] e ] ] ] e ] ]

matrix([
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e An example:
In [22]: D = A.toarray().sum(axis=1)

In [23]: L = np.diag(D)-A.toarray()

In [27]: e,v = np.linalg.eig(L)

In [28]: e

Out[28]:

array([8.46780548e+00, 6.22084072e+00, 5.59130087e+00, 4.25530240e+00,
3.73535212e+00, 1.66002435e-15, 2.55436419e+00, 2.37762994e+00,
1.87790207e+00, 1.69700500e+00, 1.46423645e+00, 8.66087659e-01,
8.92173104e-01, 0.00000000e+00, 0.00000000e+00])

* Important questions for you:
* What is the significance of the signs of these eigenvalues?
* There are three eigenvalues with value zero — are these important? What is their
physical interpretation?
* What should be done with the eigenvectors?
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Let’s consider another example:
. . dn;
 We’'ll use a Barabasi-Albert graph with a=1, so: % = — Z?Ll Lijn;

* Initially all nodes have n; = 0 (blue) except one with degree close to the average degree for
the graph; for that node, n; = 1(yellow).

* The size of each node reflects
its degree

t= 0.00

e |If we look carefully at the early
stages of the animation, we can
clearly see the initial spread
from the “yellow” node to its
neighbors

* At later times, we see all nodes
seem to have the same value...




* ltis also helpful to look at plots of n; vs time, the plots are the same with different limits
for the vertical axis — proximity to the “source” node is important!

Linear diffusion simulation results Linear diffusion simulation results
T 0.12 :

10 {— I [ I 1 0:10 \
ek A A - A - f\\?\\\\\

0.6 N
\ & 0.06 1 \
0.4 \

Pi

0.04
0.2
0.02 4f = ==
—

0.0 ‘ | ; i \ ‘
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» At later times, we can see clear convergence:

0.12

0.10 +

0.08 -

& 0.06 A

0.04 1

0.02

0.00 -
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By thinking carefully about the eigenvalues of
the Laplacian matrix as well as the

eigenvector of the zero eigenvalue(s), you
should be able to develop an explanation of
this behavior for large times
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Spectral properties of graphs

*  We will be working with eigenvalues
and eigenvectors a fair amount in this
part of the module

* Here, we will review some useful
ideas/results
*  We will omit the proofs which
can mostly be found in standard
linear algebra textbooks

* We will also state some results on the
bounds of eigenvalues

Linear diffusion on a graph
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* Eigenvalues and eigenvectors (and linear algebra more generally) are hugely important in
science and engineering applications
* When you hear terms like stability, control, and optimization, there is a good chance
that linear algebra is relevant

* The properties of graph eigenvalues (graph spectra) have also been studied for several
decades because mathematicians find them “interesting”

* But as we have seen, eigenvalues (and eigenvectors) of graphs are also important for
applications

 When discussing the spectral properties of graphs, we typically focus on the adjacency and
Laplacian matrices (A and L)

 However, there are other important matrices as well such as the “google matrix”, G
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* Unless noted otherwise, we will be working with N x N square matrices with real-valued
elements (RY*") where N is the number of nodes in the graph of interest

«  We will also say that v; € CV is the i-th eigenvector of B with Bv; = A,v;, and 1, is the i-th
eigenvalue of B
* Note: if ; # A; then v; and v; are linearly independent

* Note for later that the spectral radius of a general square matrix B is defined as,
p(B) = max{[4,[, |1z, ..., [An]}

* For undirected networks, both A and L are symmetric, so let’s quickly review a few useful
properties of symmetric matrices:

* All eigenvalues are real, and eigenvectors can be chosen to be real

* The eigenvectors of the matrix form a basis for RY (even if some eigenvalues are
repeated)

e A square matrix is orthogonally diagonalizable if and only if it is symmetric
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* Orthogonal diagonalizability means that a symmetric matrix B can be diagonalized as,
B = VAVT where:
* Visan orthogonal N x N matrix whose i-th columnis v; , and vl-ij =1ifi =]
and VlTVj = 0if i # j (the eigenvectors are orthonormal, and VTV = )
* Ais a diagonal matrix where A;; = A;

* Orthogonal diagonalization is useful when working with differential equations, and it can
also be used to derive the following result:

* Order the eigenvalues: 1, > 1, = -+ > Ay
T

. . . . Bx ..
* For a symmetric matrix B, the Rayleigh quotient, (B, x) = XXTXX , is maximized when

T
X = v; in which case XXTXX = A4 (to show this, you can orthogonally diagonalize B and

show that A, is an upper bound for r)

* It may not seem like it, but this is an extremely useful result. We will use it here to
develop bounds for A; and use it again later when analyzing communities
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 We now narrow our focus to finding bounds for graph eigenvalues

e Gershgorin’s theorem can be used to develop an upper bound for the spectral radius of a
square matrix:

Let B € CY *N and suppose that X" 'BX = H + F where H is diagonal and F has zeros on
its main diagonal. Then, the eigenvalues of B lie on the union of the discs A, A,, ..., Ay
where A; ={l € C: |l — Hy| < XY, |F;; | }

* Frequently, we simply choose X to be the identity matrix
e Let’s apply this theorem to the adjacency matrix for a simple undirected graph with X = |
* Then,F = Aand the i-th disc is defined by: |I| < Y}_; 4;; = k;

* The largest possible radius of a disc is k,,,, and it follows that p(A) < k.4
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* We can develop a lower bound for 1, using our earlier result (in a slightly different form):

T
X Ax
< A
xTx — 71

* If we choose x = z (where z is an N-element column vector of ones), we then find, 1, >
% = k and since A1 < p(A), we know that: k< M < kmax

* This is a pretty nice result!

* And the upper bound can be used when setting the proportionality constant for the
Katz centrality

*  We will use it next week when studying the spread of infectious diseases on networks
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* The Laplacian matrix is defined as L = D — A where D is the diagonal degree matrix, D;; =
ki

 We have seen that the Laplacian arises naturally when considering diffusive processes, we
will later consider how it connects to graph partitioning

* A few notes on the eigenvalues of L for undirected graphs:
* Using a similar approach to what we used for A, we find, k,,,,,, < 11 < 2k,4x

* We can show that all eigenvalues are non-negative and that L has at least one zero
eigenvalue with eigenvector z (problem sheet exercises)

* These results taken together are helpful for understanding graph diffusion)
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Synchronization

* The graph diffusion equation provides a simple linear coupling between linked nodes:
an; _ N

dn
il j=14ij(n; —n;) or more compactly: o —aln

* Coupling of this form and in more complicated nonlinear forms can lead to synchronization.

* Real-world examples of synchronization:
* An audience clapping: https://youtu.be/Au5tGPPcPus?t=42
* Fireflies glowing: https://youtu.be/QCWkzQgO7Ro
* Neurons activating in the human brain
* Muscles flexing in the human heart

 We'll model the different elements in a system as a network of interacting nodes. Links will
indicate where there are interactions, and we will have to decide how to model the
interactions.

* The goal here is to analyze a simple model related to synchronization, but keep in mind that
this is an active area of research where more-sophisticated models are typically used.
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https://youtu.be/Au5tGPPcPus?t=42
https://youtu.be/QCWkzQqO7Ro

e Let’s say that there is an “oscillator” on each node of a connected undirected graph with
the oscillation on node i described by, x; = a cos(@i(t)).

* So each oscillator is assumed to have the same amplitude of oscillation (a), and we will
focus on the phase, 0;(t), which has initial condition 6;(t = 0) = 6, ;

We’ll assume that the phase of each oscillator is influenced by two effects: 1) a natural
frequency, w, and 2) coupling with other linked oscillators with general form, f (6, — 6,)

* These assumptions lead to the following phase equation:

ad;
—t=w+aXl A f(6—6;); f(0)=0
* Note that there are other reasonable assumptions we could have made, e.g. each

oscillator could have a distinct natural frequency, w;.
* Here, a sets the relative importance of the coupling

* What happens when a = 0? Then, 0; = wt + 0, ; and each oscillator oscillates with the
same frequency, but depending on the initial condition, the oscillators may be out of phase
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What should the coupling function be? In principle, this should be guided by the
physical system being investigated

A popular choice is to use sinusoidal coupling, f(Hj — Hi) = sin(6; — 6;)

We will take a simpler approach Let h;; = 6; — 6;, and assume that |hl]| < 1 then
f(hij) f(0) + h” ang Ih =0 and we have required f(0) = 0. So, assuming that

af
dhij

lh..—0 # 0, our model becomes:
9

o _ . = df
de ~ T Lidhy; In
j=

Al] (91 B Hi)

Finally, we assume that = Ih ;=0 is the same constant for each (i, j) and its effect can

dhi;
be “absorbed” into a giving a model very similar to graph diffusion:

do; -
E = w + aZAU(QJ — 91)
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* So, our (very simple) model for a system of coupled oscillators in matrix-

. do :
vector form is, — = wz — aLb with 6,z € RY

* The question we want to consider is if/when the system will be fully
synchronized, i.e. |6; — 6;| = 0 for all distinct pairs of oscillators (assuming
that the initial phases are not all the same)

* There are a few different ways to approach this. We will simply find the
general solution and then consider 6; — 6; when t — o

« Step 1: Orthogonally diagonalize the Laplacian: L = VAVT
* Step 2: Left-multiply both sides of the model equation with V':

T
%te) = wVTz — aAVTO where we have used VIV = |

« Step 3: definew = VT0: C;—‘: = wV1iz — aAw
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« Step 4: simplify V'z. Assume that the first column of V contains the

\/iﬁ which is orthogonal to all other columns in V. We then also

have A{; = 0. So the inner product of the first row of VT and z will be VN

and the inner product of all other rows with z will be zero: VTz = v/Ne,
wheree; = [1,0,0, ...,0]T. The model equation is now:

eigenvector

dw

— = wVNe; — aAw

dt

e Step 5: solve the system of equations above:

T
z 0

wy = wtVN + .
VN

W; = eXp(—aAiit) V;-I‘eo,l. > 1
Here, w; is the i-th element in w, O is the vector of initial conditions
for the phase, and v; is the i-th column in V.

Check your understanding: why does the solution for w; not have an
exponential term?
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* Final steps: find the solution for 6; and examine 6; — 6,. We know w = VTo. Using
the orthogonality of V, we find, 6 = Vw, so:

0 =viw; +Vvow, + -+ vywy

* All eigenvalues for the Laplacian are non-negative, and for a connected graph, only
one eigenvalue is zero (we will discuss this in more detail later)

* So,ast — oo, w; = 0fori > 1 assuming that the graph is connected and o > 0.

* In this long-time limit, we see that w; — oo, but what we are interested in is, 6; —
6;. We know that v; = — 5o 0; = wit + wy, foreachiand 6; — 6; — 0 for all

VN
node pairs.

* The system synchronizes at long times even if the initial phases are all different.
This is a simple illustration of how the “smoothing” effect of diffusion can produced
synchronization on a network. Current research works with more complicated
versions of this model. For example we could have: nonlinear coupling, a
distribution of frequencies, a distribution of amplitudes, external noise...
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Random walks on graphs

* Previously, we considered random walks on a line and derived the 1-D diffusion equation

* An intermediate step in this derivation required consideration of the net flux of particles
across the boundary of a box, and when we move to graphs, we chose the flux per unit
time between nodes on a graph to be: J;;(t) = a (nj (t) — ni(t)) -- this represents the

tendency for transport from nodes with high numbers of particles to neighbors with low
numbers

* But what if we directly modeled random walks of particles moving from one node to
another? Would the resulting dynamics be similar to what we have seen with “graph
diffusion” as | defined it?
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* Say a particle’s position in a graph at time t is x(t) with x € {1,2, ..., N}. One step of a
random walk from t to t + At on a graph is then defined as follows: A particle will select a
link on node x(t) uniformly at random and follow it to a neighbor of x(t)

*  We will restrict ourselves to undirected connected graphs for now, but will consider directed
graphs a little later

A. .
* The probability that a particle moves from node i to j is the transition probability, T;; = k—”
l

* Itis convenient to analyze random walks on graphs (RWGs) in terms of the probability that a
particle is at node i at time t: P(x(t) = i)

* The probability that a particle is at node i at time tand is at node j att + At is:
P(x(t+At) =j,x(t) =i) =P(x(t + At) = j|x(t) = i) P(x(t) = i) or

P(x(t + At) = j,x(t) = i) = T;jP(x(t) = 1)
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 Then noting that P(x(t + At) = j) = XN, P(x(t + At) = j, x(t) = i), we can write
down the master equation for RWGs:

P+ ==y LD ZDA

i=1 ki

* Let’s now write this as a difference equation in matrix-vector form:
 Lett; =I[At,1=0,1,2,..
* And say that p() is an N-element row vector whose i-th element is:
P(x(t = IAt) =1).

* Then, the master equation becomes,
p(l+1) — p(l)D_lA = p(l)T
where D is the usual diagonal degree matrix and T = DA is the transition matrix

e Our analysis of this equation will examine (1) the stationary state for this system and (2)
the “relaxation” to this state
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A stationary state, p.., exists if there is a non-trivial solution where p(*1) = p() = p
or equivalently, p,, = poo T

This is quite similar to the equation we had for the PageRank centrality, and we can again
establish that A = 1 will be an eigenvalue:

. Ajj .
» Since Y., Ty; = ¥j_; =% = 1, we have Tz = z where z is the usual column vector
l

of ones

* Combined with Perron-Frobenius (version 2), this also tells us that p(T) = 1

We know that p, is the left eigenvector for T corresponding to this eigenvalue, and we
can figure out what it will be by writing out the equation for its first element:

__ DPoo,2421 | Poo,3431

Poo,NAN1
pool — + + ...+ FooNTTNT
’ ko k3

N

and then noticing that the equation will be

satisfied if we choose, p,; = k;. The same thing will happen for the other nodes, and then

after normalizing, the solution for the stationary state is,|p., ; = k;/K
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* This stationary state is very different from what we had for graph diffusion! There, at
long times, each node tends to have the same density. With RWGs, the stationary state
suggests a particle is more likely to end up on a node with high degree.

* The next part of our analysis will consider the evolution of p in time, and we will
determine if the solution moves to this stationary state.
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* Let’s now consider the evolution of p(l) and check if/how the probability vector
approaches this stationary state

+  We need to solve, p(+1) = p(UD71A = pOT or,
p® = p T! where p(® is the specified initial condition

* Now, T is not symmetric, however we can use a similarity transformation to produce an
equation with a symmetric operator that is relatively straightforward to solve

* First, notice that DY/2T(D'/2)"1 = (D¥/?)~1 A (D¥/?)~! and the matrix on the RHS is

A. .
symmetric (using index notation, the RHS is ——)

NLILY,

* The goal is to introduce a transformation of p which leads to a system governed by this
symmetric matrix
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* The desired transformation is, w() = p()(D1/2)~1
* This gives, w(*D = w® Twith T = (D'/2)"t A (D¥/2)7?
« We then orthogonally diagonalize T: T = VAV7, to obtain, w(*D = w® yVAYT

 Then one more transformation, y(l) = wV, gives us the decoupled system of equations,
y+D) = y(D A, and since A is diagonal: y(' = y(©Al, We now need to think about the (real)
eigenvalues of T

* A few notes:
* If there are eigenvalues with magnitude larger than 1, then |y(l)| will grow
exponentially

. Zﬂyﬂ\/%\/k_j . \/E SO [\/kj, \/k_z, ...,\/E]Tis an eigenvector of T with eigenvalue, 1

* Then for a connected graph, we can apply P-F version 2, we know the spectral radius is
1, p(T) = 1, and that the eigenvalue A=1 is simple and strictly larger than all other
eigenvalues
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So we know that —1 < A;< 1 Vi and there will not be exponential growth

We will assume that the eigenvalues are strictly larger than -1. Aside from particular classes
of multipartite graphs, this assumption is correct.

T
Let’s say that A; = 1 with orthonormal eigenvector v, = \/% [w/kl, VKo, o, w/k,\,] :

Then for sufficiently large [: y(l) ~ lyl(o), 0,0, ..., O]

And going “backwards” from y to p: we have w® = y(* yT and

(0)
p® = w®pz = %where k = [k, ks, ..., ky] and Lis large

i i i 1 i .
By inspection, we can see that we would like yl(o) = — and if we use our transformations

VK
to relate yl(o) to p(®) we find that this is indeed the case if >N pi(o) = 1 which is necessary

for the problem to be well-posed.

And we see that the probability vector will evolve towards the stationary distribution
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1

* Consider the initial condition where a walker is placed on node x so, p,(co)

Initially this probability will “spread” from node x to its neighbors and eventually to the

entire (connected) graph

Ultimately exponential decay will “win” and the probability will relax towards its stationary

state
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 Comparing RWGs to graph diffusion we see a basic similarity — exponential relaxation
towards an equilibrium/stationary distribution — and a substantive difference, the RWG
stationary state has a degree-dependence.

* So which model is better? It depends on what you are modeling! Graph diffusion is a
natural choice if synchronization (or consensus of opinion) is possible while RWGs (with
minor modification) naturally model a search engine moving through the web and
occasionally “teleporting” to another part of the web (see problem sheet 6)
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Lecture 12

Epidemics on networks |



Background

* Picture below: confirmed Covid cases by country, 29/2/20

e Accurate predictions of the spread of Covid within and between countries could have saved
countless lives. Unfortunately, dubious models and reasoning were widely used in the early
stages of the pandemic.

COVID-2019 Coronavirus
confirmed cases by country/region

I 1.000+ p P,

I 100999 % 11

B 090 R\; Date

B 0 ' L rrrrrrrrrrrpd
[ EY Fe b...........................-.29/02

1-4
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 “Compartment models” are widely used as a 15t step for
understanding/simulating/predicting spread of
infectious diseases
Susceptible
* The progress of a disease is characterized by distinct
states, for example S = | = R indicates that a
Susceptible person can become Infected (and I

contagious) and will then Recover with immunity

. “« ” . . InfectiOUS
* Thereis a “z00” of such models with various states

connecting to each other in various ways (SI, SIR, SIS,
SEIR, MSEIR, ...) I

*  We will focus on the simplest of these: the SI model.
Recovered
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e Rather than think about the detailed mechanisms
of infection, we characterize a disease with a
probability of infection and an expected rate of
recovery

* With the SI model, there is no recovery: an
infected person remains infected

* We start by considering these models and disease
spread in a community
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* There are simpler approaches which ignore social networks and simply model the fraction
of people in a a community that are infected (and how that fraction evolves in time)

 However, these models assume that every susceptible individual is equally likely to contract
the disease from an infectious person

* Like most complex networks, large social networks typically have multiscale degree
distributions, so some people will come into contact with many others and could
potentially be “superspreaders” which we know are important:

NEWSLETTERS - -
Sign up to read our regular email ‘E!!"\" ' I‘EE!"' I!E;
newsletters

News Podcasts Video Technology Space Physics Health More ¥ Shop Tours Events Jol

Finding coronavirus superspreaders
may be key to halting a second wave

HEALTH 30 July 2020

By Clare Wilson
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Network SI model

So how do we proceed?

* We place individuals at the vertices of an N-node graph (with adjacency matrix, A) and
place undirected links between people who are in “regular” contact with each other

* We could place weights on the links indicating the "significance” of these contacts, but
we will treat each link as the same here

* For simplicity we will assume there are 2 states, susceptible and infected
* The model parameter [ determines how easily a disease is transmitted:

* [At: Probability that a susceptible person is infected via a link to an infectious person
over a timespan of duration, At
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* Averysimple example — consider the 5 node network
shown with node 1 initially infectious and all other nodes

susceptible
* A node that become infectious always stays infectious

* Moving forward 1 time step, At, we carry out a Bernoulli
trial for each link to node 1 with probability fAt
* Let’s say fAt = 0.25 and we generate three random
numbers for links 1-2,1-3,1-5:
np.random.rand(3)
Out[45]: array([0.39142964, 0.28799901, 0.20457327])

* So there will be transmission along link 1-5 2> \

* Now, we generate random numbers for 1-2,1-3,5-2: 0
np.random.rand(3)

Out[46]: array([0.81424296, 0.04301428, 0.45276639]) ‘
and there will be transmission along link 1-3 e 9
Imperial College
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* Now, we generate random numbers for 1-2,1-3,5-2:

np.random.rand(3)
Out[46]: array([0.81424296, 0.04301428, 0.45276639])

and there will be transmission along link 1-3

Gy =

* We can continue this process until all nodes are infected to complete one
simulation/realization
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* But one particular realization, particularly for larger networks, is not that interesting. Can
we predict what will happen on average?

* Let’s say we have a graph with N nodes; at a given time, node i is either susceptible
(x; = 0) or infectious (x; = 1)

* Here, x;(t) is a random variable which indicates the state of node i at time, ¢

* As we have seen before with indicator variables: (x;(t)) = P(x;(t) = 1) where
P(x;(t) = 1) is the probability that x;(t) = 1

* QOur goal is to relate the state of a node at time t 4+ At to the state of the network at time ¢
* We know that a node will be infected at ¢ + At if either:
* The node was already infected or

* |t acquired the disease from a neighbor during between times ¢t and t + At
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e So we have:

(Probability that node i is infected at time t + At ) =
(Probability that node i is infected at time t or that node i is infected by a neighbor
between times t and t + At )

which we write as,
Plx;(t+At) =1)=P(x;(t) =1)+P(x; » 1)

where P(x; — 1) is the probability that node i is infected by a neighbor between
timestand ¢t + At

* Transmission from neighbor j to node i depends on the joint probability:
P(xl-(t) =0,x;(t) = 1) and over the timespan At, the probability that node i
becomes infected by j is: fAt A;P(x;(t) =0, x;(t) = 1)

 What is the probability of transmission from any one neighbor of i?
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* Summing the influence of each neighbor gives:
P(x; » 1) = BAt 374 Ay P(x;(t) = 0,x;(t) = 1) + 0(At?)

« The 0(At?) accounts for cases where transmission via two or more neighbors occurs
during the same time step. We can neglect such cases if At is sufficiently small

* The expression above leads to the master equation for the network SI model:

P(x;(t + At) = 1) = P(x;(8) = 1) + BAL X}y Ay P(x:(t) = 0,x;(¢) = 1) + 0(At?)
* |t is convenient to restate this in terms of expectations:

(x; (¢ + At) = (x;(0)) + BAL XI5 Ajj ( (1 = x;(8))x;(D)) + O(AL?)

* Next, divide both sides by At and let At — 0:

[ % =F Z?’=1 Ajj ((1- xl-)xj) (network SI model) ]

Imperial College
London



* There is one problem, here — there are more unknowns than equations!

 The problem is that the expectation of a product is not generally the product of an
expectation. Some sort of approximation of the RHS is needed to make progress

* Naive approach: assume that the states of nodes are all statistically independent of each
other: ( (1-— xi)xj) ~(1—x;) (xj) (naive approximation)

and our equation becomes,

d{x;) .

d—t‘ = B(1—x;) Z?’:lAij (xj) (naive network SI model)

*  We will discuss the “naive approximation” and more accurate approaches later, but for
now, I'll just state that this approximation works reasonably well for large complete graphs
and graphs with a tree-like structure (i.e. few loops)

 How can we analyze the naive network SI model? A good first step when analyzing

differential equations is to look for equilibrium states (i.e. fixed points) where the solution

is time-independent: %’;") = 0 for all i.
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* We have an equilibrium state if, (1 — x;) .1 4;; (x;) =0 Vie{12,..,N}
* We can see that there is an equilibrium infection-free state: (x;) = 0 for each node
* Now, there is also an equilibrium “everyone is infectious” state: (x;) = 1 for each node

e |tis important to understand if an equilibrium state is stable. Here, we will analyze the
response of the infection-free state to small perturbations

e Let(x;)=0+ey; + 0(e?) withe < 1,y; ~ 0(1)
* This represents the addition of a small amount of infection to the infection-free state.

The parameter € indicates how small the perturbation is but its precise value will not
be needed.

* The naive network SI model is then, e = L(1 —ey;) Z _1 €4 y; +0(e?)
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* Dividing by € and letting ¢ — 0 gives the linearized naive network SI model:
dyi
—r =B X145y

* We now have a linear eigenvalue problem, and we need initial conditions for each node,
yi(t =0) =y,

* Then assume that y; = 7; e*t and let ¥ = [¥, 75, ..., 1T

* This gives, Ay = % y and for a given graph, we can solve for the eigenvalues and

eigenvectors using Numpy as discussed for linear diffusion

 However, we can use our results on bounds of eigenvalues of the adjacency matrix
here. From lecture 11, we know that k < max(41) < k4«

* This tells us that there will initially be exponential spread of the disease, and that the
graph structure will determine the rate of spread. The infection-free equilibrium state

is unstable. Keep in mind though that the linear assumes (x;) < 1. The full nonlinear
model will be needed when this condition is violated.
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Explanatory note on derivation of network-SI model:
e Earlier in this lecture, the master equation for the network-SI model is presented as:

P(xi(t+At) =1) =P(x;(¢) = 1) + At X1 Ay P(x;(t) = 0,x;(t) = 1) +
0(At?)

e Why do we need this 0(At?) term? Consider the following illustrative example. Say that
node i has two neighbors which are nodes a and b.

* Let T, represent the event of node i being infected by node a during a time step
* Then, our master equation for node i is,

P(x;(t+At) =1) =P(x;(t) =1)+ P(T,UTp)
* Now, P(T,UT,) =P(T,) +P(Tp) —P(T,NTy)

* The first two terms on the RHS correspond to the summation term in the master equation

The O(At?) factor accounts for “multiple transmission events”, like P(T, N T})
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* Sowhatis P(T, N T;,)? The two events are independent so, P(T, N T,) = P(T,)P(Ty)
and, P(T,)P(Tp) = [(BA)P(x; = 0,x, = D][(BADP(x; = 0,x, = 1)]

« So, we see that the term is 0(At?) and when we take the limit At — 0, this term
vanishes.

* More generally, a node may have more than 2 neighbors and then we will have higher-
order terms like O (At3), 0(At*), etc ..., but these will all vanish as well when At — 0.
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Lecture 13

Epidemics on networks Il: degree-based approximation and pair
approximation



Epidemics on networks (continued)

Let’s continue thinking about
epidemics on networks

1. Can we obtain a clearer
understanding of the connection

between the network structure
and epidemic spread?

2. How do we improve upon the
“naive approximation”?
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Evolution of disease using network S| model on graphs with

* The figure shows simulation results N=2000.K = 8

for the naive network SI model (with 0 [
f = 0.1) on a B-A and a Gy, graph ] — Ew e

e Both graphs have 2000 nodes and 10 4
roughly the same average degree :

>

* Initially, a node with degree equal to 1072 5
the average degree is infected ‘

 We can see that the disease spreads =5
more easily in the B-A graph. Why?

e We can guess that this may be due to
the presence of hubs
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Degree-based approximation

 We saw previously that the early spread of an epidemic is connected to the most-
positive eigenvalue of the network adjacency matrix, and this partially supports our
guess.

* A more direct connection to network structure can be made by using the degree-
based approximation for a random graph:

* Assume all nodes with degree k have the same probability of being infected:
P(x;=1) = P(x]- = 1) if k; = k;. Let ¢ be the probability that nodes with
degree k are infected. We then have, P(x; = 1|k; = k) = ¢,

« Assume that probability of a link on a node with degree k being connected to a
node with degree k' is a function of the degrees only, H(E, k’). Also assume that
this probability and ¢;, are independent for any k

* This approach is not something we can justify rigorously in advance, but it does
simplify the problem to considering distinct degrees in the degree distribution
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 How does the probability that a node with degree k is infectious evolve in time? We
just need to adapt our previous work with (x;)

* As before, we will have x;(t + At) = 1if (A) x;(t) = 1 or (B) it acquires the disease
from a neighbor between times t and t + At

* How do we compute P(B)? The probability of transmission to i from an infectious
neighbor is still:

P(x; = 1) = At Y1 Ay P(x;(t) = 0,x;(t) = 1) + 0(At?)
and we re-write this as a sum over the neighbors of node i:

P(x; » 1) = BAt X ey, P(x:(t) = 0,x;(t) = 1) + O(At?).
Note: all probabilities here are conditionalon k; = k

Imperial College
London



* Next restate the joint probability as a conditional probability, P(xl-(t) =

0,x;(t) = 1) = P(xj(t) = 1|xi(t) = O)P(xl-(t) = 0) and the probability of
transmission becomes:

P(x; » 1) = BAtP(x;(t) = 0) z P(x;(t) = 1|x;(t) = 0) + 0(At?)

JEN;

By definition, P(x;(t) = 1|k; = k) = ¢;, and all of the probabilities above are
conditional on k; = k, so we can replace P(x;(t) = 0) with 1 — ¢, .

We have to be more careful with the conditional probability. Since we know that
one neighbor of node j is susceptible, it will be infectious if nodes with degree
k; — 1 are infectious. We have assumed that the network has been generated by
a random graph model, so we also have to consider the distribution of values k;
can take. With these considerations, we write:

Icﬂlaﬁf

P(5(0) = 1xi(®) =0) = ) 100k k')

k'=1

* We have used ¢, /_,instead of ¢,/ since we know that i is susceptible.
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e QOur final expression for the probability of transmission is:
"n1ax: !
P(x; » 1) = BAt(1 — ¢ (2)) Zjezvizkr=1 brr_1 (©)O(k, k") + 0(At?)

= BAL(1 — ¢y () T prr_1 ()0 (k, k') +0(At?)

 And the “degree-based” master equation is,

O (t + At) = ¢y () + BAL(L — dr (VK T yr_1 ()0 (K, k') +0(At?)

* Finally, dividing by At and letting At — 0 gives,

Kmax
A _ ,
T = kB0 kzl 00k K )by
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To make further progress, we need to specify 0(k, k'), the probability that nodes with
degrees k and k'are linked.

Assume that the network was generated by the configuration model. For the
k’pk/

configuration model, we know that 0(k, k') = =", SO we have
d¢ Kmax K’
k P’
G SR 00 ) b

k'=1

Now, let’s consider the initial spread of infection when ¢, < 1.

We let ¢, = e, + 0(€?) with € « 1. Substituting this expression into our equation
above:
kmax !
7 Pr' +
= kB(1— ey) E ET(pk’—l +0(e?)

k'=1

4
dt
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* Dividing by € and letting ¢ — 0 gives the linearized system:
Wi _ gyl E g (x)

The indices in the sum have been rearranged for convenience with the assumption
that ¢, = 0.

_1k'+1p
These equations can be solved analytlcally Let Y = ka“" 1 k'

——L e (*¥)

and the equation above becomes, = kpyY

Differentiating (**) with respect to time and using (*), we find,

d _1k'+1p
IIJ — ,Bl,b kaax 1 Ek'+1 kl

_1 k' / /
and kaax 1 +1Epk +1 [ Zgnalx pk (k/ 1) — kz/k —1
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e So, our linearized equations now read as:

dp
— = Bv(/k = 1)

and we can write down the solution:

~

Br = L0 (ev — 1) + Gy(t = 0)

[,8 (— — 1)] — smaller T = faster spread

/ Y = Poet’" \

+1pk/

\ Yo=Y =0)= kaax

——= g (t = (D

Imperial College
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The initial rate at which the
disease spreads is dictated by 7
so we now have a much clearer
connection between the
network structure and the
dynamics on the network

But keep in mind that we made
a number of simplifying
assumptions to allow us to
obtain this “elegant” result!



Let’s look back at our motivating
example — our assumptions for

6(k, k') apply to the G, model if we
replace k with (k). They do not
directly apply to the B-A model, but
let’s use the results anyway.

| have used the derived expressions
for T to make the trend lines 2

And we see pretty good agreement!

In mathematical terms, the disease
spreads more rapidly in the B-A graph
because its degree distribution has
much higher variance

Imperial College
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Pair approximation

. d{x;)
e Our network SI model is, P p Z?’=1 Aij ( (1- xl-)xj)

* And up to now, we have used the “naive approximation”: ((1 - xl-)xj) ~ (1— xi)(xj)

* However, this is only reasonable in certain special (artificial) cases — complete graphs and
tree-like graphs with few loops

* Many real-world networks will have high enough clustering for this approximation to be
poor — think about how many of your social network neighbors are themselves neighbors

 Can we do better? A common approach is to use a “second-moment closure”
* The idea is to derive an equation for ((1 — xi)xj) for linked node pairs where 4;; = 1
* This equation will have terms with third moments, e.g. ((1 — xl-)xjxl)

* But, approximating these terms (in terms of the 1t and 2" moments) produces much-
improved results compared to the naive approximation on graphs with high clustering
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How do we derive an equation for ( (1-— xl-)xj)? Using the same approach we did to obtain
our equation for (x;)

We know that { d?;;)x,) = i;]) — %‘:ﬂ , and it is easier to develop an equation for (xl-xj)

which means we need to consider, P(x;(t + At) =1, x;(t + At) = 1)

We can use essentially the same reasoning as before. We just need to account for two
nodes being infectious at t + At rather than one:

P(x;(t+4t) =1, x;(t + 4t) = 1) =
Px;(®) =1, x®) =D +P(x;®) =Lx>1)+ P(x; » Lx;(t) =1) + P(x; > 1,x; > 1)

x; — 1 means that node i is susceptible at time ¢ and infectious at t + At, and check that
you understand what each of the four terms on the RHS represents.

The first term on the RHS will be absorbed into the time derivative when At — 0 and the
last term will disappear as it is O (At?)

We need to find expressions for the 2" and 3" terms
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Term 2:

N
P(xi(t) = Lx; > 1) = ,BAtZAﬂP(xi(t) = 1,2;(6) = 0,x,(t) = 1)
=1

Term 3:

N
P(x; > 1,x;(t) = 1) = ﬁAtzA”P(xi(t) = 0,x;(t) = 1, x,(t) = 1)
l=1

The reasoning used to obtain these expressions is the same as for the network-SI model:
x; = 1 requires j to be susceptible at t and it acquires the disease from an infectious
neighbor.

* Now rewriting these expressions as expectations and letting At - 0

d(xixj
dat

! = B XiL1|An(xisjx) + Aufsixjx,)] wheres; = 1 — x;

and we can write down an equation for (s;x;) ...
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Our new equation:

d(s x]

=B Y|4 (sisix) — Au(sixix;)]
* We now have to find approximations for the two 3" moments.

* Term 1: Ajl<Siijl>
* We are only interested in cases where nodes i and j are linked, and here we will
also have nodes [ and j linked. Assume that the only path from i to [ is via node
j. Then if node j is susceptible, node i will not influence [. So we assume:

P(xl = 1|sl- =15 = 1) ~ P(xl = 1|sj =1 ) and approximate term 1 as
follows:

ApP(si=1,s;=1,x=1)=A4;P(x; =1|s; =1)P(s; = 1,5, =1) =
lP(xl 1,55 = 1)P(sl =1,5; = 1)
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 The same reasoning can be applied to the second term:

AiiP(x;=1,5;=1)P(s;=1,x;=1)
AgP(si =10 =1x =1) » = —— —-=—

Converting probabilities into expectations, we have the equations that we want:

d{xi) _

o = BEi=1 Ay (six)

a{s;x;

<d—t]) = B EiLalAj (esp)sisi)/(sj) — Au (six){six;)/(si)]
 We initially had N equations and N 4+ L unknowns

* Wenowhave N + L equationsand N + L unknowns - is this really an improvement?

* The key is that simple approximations for ((1 — x;)(1 — x]-)xk) and ((1 — xl-)xjxk)
have been introduced which are much more effective than the naive approximation
for ((1 — Xl')x]'>
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* With these approximations, we have closed our model equations

* Closure problems are not unique to epidemics or network science, they typically arise when
developing statistical models for complex nonlinear systems (e.g. atmospheric dynamics)

* The equations can be rearranged and written in a simpler form, but we will stop the

theoretical development here. The last step is to critically consider the approximations we
used.

* How can we justify: P(xk =1lx; = 0,x; = 0) ~ P(xk =1|x; = O)?

* As with the degree-based approximation, there isn’t a rigorous argument we can
apply. We use it because it has been found to work well
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* The figure on the right compares
“simulation” with “theory” for 2 graphs with

different amounts of clustering

*  “Simulation” refers to calculations using
Bernoulli trials as sketched for the 5-node
network in the previous lecture

* “First-order” theory refers to the network Sl
model with the naive approximation

 “Second-order” uses the 2"-moment closure

* “Transitivity” refers to the amount of
clustering, and while the naive
approximation is ok for the tree-like low-
transitivity network, the 2"9-moment closure
works very well even when the graph
contains many triangles
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Lecture 14

Communities in networks
Modularity and modularity maximization



Communities in networks

Imperial College
London

The behavior of a
population of social animals
can be characterized by a
network

But are there important
“sub-networks”?

From our own experience,

we know communities can
form with interactions that
are distinct from the full

group

How can we “scientifically”
identify these communities?



* The figure shows a social network for a group of 62 bottlenose dolphins observed over

a number of years near New Zealand

* Links have been placed between dolphins observed spending more time near each
other than would be expected from random pairings

* How do we analyze this graph?

* We can look at the usual quantities
like clustering and the degree
distribution

* But can we identify communities
based on the graph structure?
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* Looking at the graph, we can guess that there could be 2 communities
 But how do we “draw” the partition? How do we compare 2 different partitions?

e Graph partitioning is an old problem in computer science.
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Modularity

 We need to define a quantity that will quantify the “quality” of a partition of a graph
into 2 non-overlapping groups of nodes

e Qualitatively, nodes within each group should be densely connected relative to the
connections between the groups

* One of the most widely-used such quantities is the modularity

* The basic idea is to compare the number of links within a group to the number
expected if the nodes had been connected randomly (while preserving their degrees)

* |If the difference is large, we assume that the partition captures a relative
preference for contacts within that group

* And from our discussion of the configuration model, we know that the expected

number of links between 2 nodes in a “randomly-wired” graph with a given
e L. . . - kikj
degree distribution is, (/;;) ~
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kik;
* The modularity of a set of nodes, S, , is defined as: M, = iziesa 2jes, (Aij — 2L])

* Notethat )5 Zjesa(Aij) is twice the number of links connecting nodes in the set to
other nodes in the same set.

kik (Kq)?

1
* Also note that ZiESa Zjesa (?) = Zziesa k; Zjesa kj =
number of stubs attached to nodes in S,

where K, is the total

* For a given partition of a graph into 2 (disjoint) sets of nodes, S; and S,, the modularity of
the partitioned graph is just the sum of the modularities of each set: M = M, + M,

* And this generalizes as you would expect to any number of disjoint sets. For g disjoint sets:
M :M1+M2 +M3 +M4++Mq
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* A simple example from Barabasi (figure 9.16) is shown below

* Check your understanding: what is the modularity of the set of 4 purple nodes in the
community on the right in example (a) below?

(a) OPTIMAL PARTITION (b) SUBOPTIMAL PARTITION
M =0.41 M =0.22
(c) SINGLE COMMUNITY (d) NEGATIVE MODULARITY
M=0
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* A simple example from Barabasi (figure 9.16) is shown below

* Check your understanding: what is the modularity of the set of 4 purple nodes in the
community on the right in example (a) below?

* The total number of links connecting purple nodes to other purple nodes is 5, so
Dies, Z]-ESa(Aij) =2 x5 = 10. The total number of stubs attached to purple nodes is, K, =
2
11,and M, = — (10 — =) with L = 13.
2L 2L

(@ OPTIMAL PARTITION SUBOPTIMAL PARTITION Notes:

) (b)
M =0 .41 M =0.22
 |f all nodes are in the same
community, M = 0

* |t can be shown that the
maximumis M =1

(c) SINGLE COMMUNITY (d) NEGATIVE MODULARITY
( M =-0.12

* The definition can be extended
to partitions with an arbitrary
number of parts — an example is
shown in (d)
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Modularity maximization

* Thinking back to our dolphin example, our goal, is to assign each node to either S; or S, so
that the graph modularity is maximized

* There is a problem though: there are 2V ~! such partitions and it is infeasible to compute
the modularity for all of them for large graphs

* In fact, there is no good way to find the maximum for large graphs. Instead, we aim to find
a split that gives a result close to the maximum (modularity maximization is NP-hard)

* There are multiple approaches for this, we will look at a spectral method

* First, we introduce an indicator variable s; = 1 1 which tells us if node i isin S;or S,
. Then,% (si sj + 1) =1 if nodes i and j have been assigned to the same group and is 0
otherwise

* The modularity for a given partition can be written as,

1 kik;j
M = ZZIL'V:l ¥ (Aij _Z_LJ) (s;sj+1)
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* Introducing the modularity matrix B, B;; = (Aij -

_ 1N yN _ 1.7
M = 4LZi=1Z]‘=1Bz‘j5i Sj =4S Bs

* We then have a discrete constrained optimization problem:
Find s such that sTBs is maximized with the constraint that each element of s is +1

* Finding a precise solution to this problem in a reasonable amount of time is extremely
difficult in general, so instead, approximate methods have been developed which aim to
“get close” to the maximum in a reasonable amount of time

 An effective approach is to relax the constraint to |5|> = N where the elements of 5 are
allowed to be real numbers. As we will see, this gives a much simpler optimization problem
but then we will have to “adjust” the solution to find s withs; = + 1
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* We enforce the new constraint using the Lagrange multiplier, y, so the optimization
problem becomes:

Find 3,y such that Q =5TB3 — y(375 — N) is maximized
) ) 0 AT N . g
* Notice that if we set % = 0, we have 3§75 = N and the constraint is satisfied

* Itis easier (for me) to work with this expression in index notation,

Q= 225 jSj — yZ(s —N)

i=1j=

. 0 . .
And we require a—Q = 0 which, after some arlthmetlc, leads to, Zj=1 B;Si = v5
S1

* This is of course an eigenvalue problem with eigenvalue y and eigenvector S. So S should be
an eigenvector of B with length VN, but which eigenvector should it be?

* B is symmetric so the eigenvalues will be real but may be positive or negative. Note that
there will also be at least one zero eigenvalue which corresponds to the case where all
nodes are assigned to the same community
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* Order the eigenvalues of B such that , 4, > 1, > 13 > --- > Ay with Bv; = A;v; and setS =
v;, with |v;|? = N. The approximate modularity is then,

AN

* We can see that we should choose ¥y = 1, and § = v; which will give M = 41—L.
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* There is one last task, to “adjust” the solution vector so that its elements are all 1 or —1

* Let s be this adjusted vector. The inner product of s with the eigenvector, 3, isS's = N cos 0
where we have scaled s so that |s|> = N and 9 is the angle between the two vectors

* The goal then is to construct s so that |8| is minimized or equivalently so that 3's is
maximized

* This will occur if each element of s is chosen to have the same sign as the corresponding
element of S (if an element of S is zero, it does not matter which choice is made)

* The geometric interpretation of this adjustment is that S points to the surfaceofa N — 1
sphere and s must point to a corner of a N-cube. We choose the corner that minimizes the
angle between the two vectors.

Example: For N = 2, the possible solutions are the 4
dashed vectors, while the optimization problem will
give an S pointing to a point on the circle which has

radius V2
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In summary, the spectral modularity maximization method requires the following steps
1. Construct modularity matrix B

2. Compute leading eigenvalue of B and corresponding eigenvector, S

3. Construct s based on the signs of the elements in S

It is straightforward to implement this in Python with numpy, scipy, and networkx.
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Dolphin communities

* Let’s apply this method to the dolphin social network
 The NetworkX visualization is shown as well as the original
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* Applying the spectral method, we obtain the communities shown
* This seems reasonable enough, however we can form a stronger conclusion

* During the period that these dolphins
were observed, one dolphin left the
pod for a while and then returned

* While this dolphin was away, the pod
split into 2 separate groups

* Those 2 groups correspond almost
exactly to the communities identified
by the spectral method! There are two
dolphins misclassified as “orange”.
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Lecture 15

More on modularity
Laplacian graph partitioning



More on modularity

e Our initial view of community detection
was based on modularity maximization

 However, there are weaknesses to this
approach which we will now examine

Barabasi figure 9.1: communities in a Belgium mobile
phone operator’s call network
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Let’s take a critical view of modularity:

* First, for very large networks, there are typically a large number of partitions
with similar modularity scores

* Itis used to compare different partitions for a single network but cannot (and
should not) be used to compare different networks

* Nodes are not allowed to belong to multiple communities (see §9.5 in Barabasi)

* |t also suffers from a “resolution limit” which we will now discuss in more detail

Imperial College
London



* Consider cases where the number of distinct sets of nodes in a partition may be
greater than 2

. . . 1 kik:
* The modularity of one set, S, is still, M, = ZZiESa Yjes, (Al-j — ZlLJ)

kik
 But consider what happens when # « 1 for each node-pair in the set.

* There will then be a general “preference” to combine small sets

* As aresult, modularity maximization can combine two sets which are clearly
distinct communities
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* Consider these 6 nodes in a larger graph

e Say the 15t 3 nodes are in set 1 and the rest
are in set 2

2
* Then M; = %(6 — %) = M, where K is the
total degree for the graph (including other
nodes and links not shown)

 What happens if we combine these 2 sets?

* Then, the modularity for the 6-node 7-link set will be,

M ! 14 14° M;+M +1 2—2 77
= — —_—) = — — *
1,2 K( K) 1 2 K( K

)

and if K > 49, the modularity of the combined set will be larger than the sum of the
modaularities of the 2 sets and a modularity maximization method will prefer the
combined set.
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* This simple example is straightforward to generalize.
Say that:

* L, is the number of links connecting nodes within set a

. Za,b is the number of links that connect nodes in set a with nodes in set b

* K, is the number of stubs connected to nodes in set a (so, K, = 2L,)

* M, is the modularity of the set of nodes formed by combining sets a and b

Then, My = - (2Lg — 7 ) and My, = Mo + My + = (Lo p — =22

Kab

* If K is larger, there will be a tendency Za,b > 0 and for modularity

maximization to combine sets a and b. This can be a problem when working with very
large networks

* Applied to students in the department, modularity maximization may place you and
your friends in a community, but when applied to students in the college, it may
combine you and your friends with other communities

e A partial solution is to re-apply the method to the smallest communities found
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* We have just taken a brief look at community detection

* Modularity and the spectral method were introduced about 15 years ago and have
proven to be hugely influential

* There have been a large number of other methods that been developed since then

* The Louvain method maximizes modularity more efficiently than the spectral
method (but is much more complicated) — see Barabasi §9.12.1

* There are methods based on information theory (Barabasi §9.12.2) and statistical
inference that are also popular

* And there are methods that allow nodes to belong to multiple communities
(Barabasi §9.5)

* This is one topic where there is quite a lot of useful information in Barabasi that we
will not cover — read through chapter 9 if you are interested and would like to learn
more!
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Network Science and data science

In the last part of this module we will look at problems at the intersection of network
science and data science (and computer science)

We will focus on clustering, trying to find ways to automatically group data into different
clusters. As we will see, there are natural similarities with community detection.

Two motivating examples:

1. Image segmentation,
automatically identifying
“objects” in images

From Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888—905.

a 2. More general data clustering:

C) i f\\' given a set of m-dimensional

{ - { vectors, assign each vector to one
o )\‘w') of g clusters

T T T T T T T T T
00 05 1.0 00 05 10 00 05 1.0

10

o

o

0.0
1 1 1 1 1
1

1

-1.0
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* There are two questions we have to consider:
1. How do we represent an image or a collection of vectors as a graph?
2. Given a graph representation, how do we construct clusters?

* We will consider the 2" question first as it naturally follows from our discussion of
community detection

 The methods we focus on here take advantage of useful properties of the graph Laplacian
whose eigenvalues and eigenvectors can be connected to the structure of the graph.
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* First consider a graph with multiple connected components. The number of zero
eigenvalues of L is equal to the number of connected components in the graph

* To see how this works, recall that the adjacency matrix of a graph with multiple
components can be put in block diagonal form:

(a) (011(1 0 0 ()\
N 0 0 0 0

N 0 0 0 0

o 0 o I

0 0 0 [EEEEEENI.

0 0 O [N

0 )

Barabasi, figure 2.15(a) \() 0 O [N

* The corresponding Laplacian will also be in block diagonal form

* Then, for the example above, consider the eigenvectors where 1) the first three elements
are 1, and all other elements are zero, and 2) the first three elements are zero, and all other
are 1. These are linearly independent eigenvectors with eigenvalues=0
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* Are there any other linearly independent eigenvectors? Note that z is equal to the sum of
these two vectors and is not linearly independent.

* We can show that there are no other linearly independent eigenvectors corresponding to
A = 0 by showing that all elements of a zero eigenvector corresponding to nodes in a
component must be the same — you will be given an exercise which examines this question
in greater detail.

e |t is natural to consider distinct connected components of graphs as distinct clusters. What
about the identification of clusters within a connected component? The Laplacian is also
helpful for this question and we now consider Laplacian graph partitioning
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Laplacian graph partitioning

* The idea behind Laplacian partitioning is to break a connected graph into two groups of
nodes where the number of links crossing from one group to the other (the cut size, c) is
minimized

* As we did when considering spectral community detection, we assign each node to one of
two groups (a and b) with s; = 1 if node i is in group a and s; = —1 if node i isin group b

 Then, % (1 —s;5;) =1 if nodes i and j are in different groups and is zero if they are in the
same group.

* |t follows that the cut size for a partition is,

Rl
C:_ZZ' Aij(]-_SiSj)
=l

which we now want to minimize.
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 The “trick” with Laplacian partitioning is to notice that:
N N N N
i—1 7! i—1 7!

e Then,c = isTLs. With modularity maximization, we had M = isTBs and the task was to
find s such that M is maximized with the constraint that each element of sis +1.

* Here, the task is to find s such that c is minimized with each element of s setto +1

 As with spectral modularity maximization, we relax this constraint to |5|> = N and then we
will later convert S to a vector of positive and negative ones

« How do we find the minimum of ¢ = §TL5? Well, we know that if § = z then, ¢ = 0,
however this is just the trivial result that all nodes are in the same group.

* Instead consider the eigenvector, vy_4, corresponding to the smallest positive eigenvalue
. . . . 1 .
of L, Ay_;. Setting S = vy_, (with the length scaled to vV N) we find, ¢ = ZN/lN_l and with a
bit more work we can show that this is the desired non-zero minimum.
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* Toshow that S = v, _, is the “correct” choice, we will first expand S as a weighted sum of
the eigenvectors of L:

S=a,vy +avy, + -+ ayvy = Va
where V is the orthogonal eigenvector matrix for Land a = [a; a, ...ay]”
* Then, after orthogonally diagonalizing L, we find, §TL§ = aTVTVAVTVa = aTAa (*)
» Say that the eigenvalues are orderedas A; = 1, = --- = Ay_1 > 0 and rewrite (*) as,
¢=Naf+ a5+ -+ Ay_1a5_4
* The minimum positive ¢ occurs when a; = 0 for i < N — 1. We still have to decide what to

do with a,. We set it to zero, otherwise the minimization problem will again lead to the
trivial result of all nodes being placed in the same group.
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* The final step could be the same as what we had with the spectral method — we set s by
setting all positive elements of S to one and all negative elements to negative one

* This method tends to produce nice results when 1,,_; < A5_, but it has some obvious
shortcomings. E.g. if a node has degree=1, then placing the node in its own group will give
the minimum non-zero cut-size

e Additional rules are usually imposed to ensure that one of the groups is not “too small”
* For example, place all nodes with 5; < median(5) in a group.

* vy-1 and Ay_; are known as the Fiedler vector and the algebraic connectivity, respectively.
A key result from Fiedler is that if we select a real number, y, and place all nodes
corresponding to the elements of v,,_; < y in group a, and all other nodes in b, then each
group will be connected.

* Next week, we will look at “modern” clustering methods which can be viewed as
extensions of Laplacian graph clustering
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Lecture 16

Converting data to graphs
Normalized cut size and spectral clustering
Network science and climate science



Converting data into graphs

In this lecture we will continue our discussion of clustering

Recall that there are two questions to consider:
1. How do we represent an image or a collection of vectors as a graph?

2. Given a graph representation of the data, how do we construct clusters?

* We partially answered the 2" question when we looked at Laplacian graph partitioning.
We will briefly discuss two methods which adopt ideas from Laplacian partitioning but are
more sophisticated

e But first, let’s address the first question above. Let’s assume that a dataset can be arranged

as a set of N m-element vectors: D = {a;,a,, ..., ay}, a; € R™. How do we “convert” this
into a graph?
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* Then the simplest “graphical” representation of the data is a weighted complete graph
where the weight of a link between 2 distinct nodes (data points), IV;;, is a function of the

distance between the i*" and j" vectors in D. The function should convert smaller distances
into larger weights, and usually, W/;; = 0.

* Let d;; be the distance between a; and a;. Which distance measure should we use?

T
* The obvious choice is the Euclidean distance: d;; = \/(ai — aj) (a; — a]-)

 But we may be more interested in the degree of alignment of two vectors in which
case the cosine distance may be preferred: d;; = cos‘l(aiaj/lai | |a]- |) where the
distance is chosen to be between O and 7

* A black-and-white image can be represented as a set of 1-D vectors where each vector
corresponds to the intensity of a pixel.

 Animage can also be represented as a single 1-D vector where each element corresponds

to a pixel intensity. Then we can construct a network where each node corresponds to an
image. Let’s look at a very simple example...
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* Consider the 3 images shown below:

* Each image corresponds to a 295 x 500 x 3 matrix of
pixel brightnesses scaled to be between 0 and 1

*  We only use the 15t of the 3 “third dimensions”
which correspond to red, green, and blue

e And convert each matrix into a 147500 element
column vector

* Let’s use these vectors to form a 3-node weighted

Imperial College
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* Let the vectors {a,, a,, a3} correspond to the three images and let d;; be the Euclidian
distance between distinct vectors a; and a;.

* We then use a Gaussian kernel to convert the distances to weights,
Wi = exp[—dizj (202)], where o is a parameter which | will set to 100 and:

We can see that the 2
beagles have the highest
edge weight, but there is
also a comparably high
weight for the two
“horizontal” dogs.
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Image segmentation

Let’s now return to the first of our two motivating examples:

1. Image segmentation,
automatically identifying
“objects” in images

From Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888—905.

The image on the left corresponds to an 80 x 100 matrix of pixel brightnesses. First, we
construct a complete weighted graph with N = 8000 nodes (each node corresponds to a

pixel). Let I; be the brightness of i and let x; correspond to the pixel’s spatial position. Then
the weight for the link connecting distinct nodes i and j is given by:

2
_dij

_ (1=1;)" : _
Wij —eXp [—0_—1] *Fl] WlthFL] —eXp
We also set W;; = 0

] if d;j < djand F;; = 0 otherwise.

02

* Here, d;; = |x; — ;| is the Euclidian distance between the two vectors, and o,, 0,, and d,
are parameters that must be specified. With these weights, two nodes are strongly linked if
they have similar pixel brightness and are close together in the original image.
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We have specified how to convert the image into a weighted network. How do we
construct a partition consisting of two groups of nodes? We will minimize the normalized
cut size.

Laplacian graph partitioning aimed to minimize the cut size, ¢, the number of links crossing
from a node in one group to a node in the other. However, if a node has just one link, this
can lead to the partition where that node is in a group by itself which is not useful. The

normalized cut size addresses this problem. The normalized cut size is defined as:

§ =c (Ki + Ki) Here, K, is the total degree for nodes in group a, and K, is the total
a b

degree for nodes in the other group in the partition. Now, if one group has a small number
of small-degree nodes, it will be “penalized.”

Since we are working with weighted graphs, we have to modify the definitions above. The
sum of the weights on links attached to a node will be taken to be its degree and, K, =
Ziesa Z?Ll W;; where the outer sum is over all nodes assigned to group a

The cut size will also be redefined to account for the weights.
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* As before, we define the partition with a vector, s, where s; = 1 if node i is assigned
to group a and s; = —1 if node i is in group b

* The weighted cut size for the partition is,

1 oV
= Zz Z . Wi (1 = s;s;)
i=1 /"

and the weighted normalized cut size is,

. 1
(mm) s, Z,Wl "

which we now want to minimize. We again relax the problem to finding § € R" with
|5]> = N such that ¢ is minimized where,

. 1
= (G f) g2 ma s
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e Laplacian partitioning required the computation of an eigenvector of the Laplacian.
The solution to the normalized cut problem is more complicated:

* First, compute v, _1, the eigenvector corresponding to the second smallest
1

~ /\_l Py S ——
eigenvalue of the weighted normalized Laplacian: L = D Z(D — W)D 2 where
D is a diagonal matrix with D;; = 2?’:1 Wi;

1
* Then, computey = D 2v,_; which will be used to construct s

* Choose i*, a “threshold element” in y, and construct s so that s; = 1ify; > y;-
and s; = —1 otherwise. Choose i* so that the weighted normalized cut size, ¢, is
minimized.

* Each node in the graph corresponds to a pixel in the original image, and we can then
use the computed partition to construct two images. For example, for each pixel
where s; = —1, set the pixel intensity in the image matrix to zero (black); leave all

other elements in the matrix as they were.
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From Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888—905.

The images in the middle and on the right were constructed using this approach (the
authors used g; = 0.1, 0, = 4, and d;, = 5 to construct the weighted graph)

| have described the algorithm, but | have not explained why it is correct. You will be given
a few exercises which will fill in some of the details.
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Spectral clustering
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* Our 2" motivating example is related to the image above. Given a set of N 2-
dimensional vectors, assign each vector to one of two clusters

 The image in the middle was constructed using K-means clustering. For this class, all
you need to know about this method is that given a set of N m-dimensional vectors
and a positive integer, K, it assigns each vector to exactly one of K clusters.
* ltis a simple but very well-known method. It is easy to find more information
online if you are interested (e.g. https://en.wikipedia.org/wiki/K-means clustering)

* However, we can see that the middle image is not that useful. The image on the right is
better and was generated using spectral clustering which combines K-means clustering
with ideas taken from Laplacian partitioning
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https://en.wikipedia.org/wiki/K-means_clustering

We will take a very brief look here at spectral clustering. | just want to give a sense of how
it is connected to Laplacian partitioning, but a detailed analysis will not be presented

Our dataset will be represented as a set of vectors, {x,,X,, ..., Xy}, X; € R™. The first step is
to construct a weighted graph from the N vectors,. The general approach is similar to what
we have already discussed and is based on the Euclidean distance between two vectors,
d;j = |x; — X;| . The weight matrix for the graph is defined as:

2

d2.
Wij = eXp(—#) ifi ijand Wii =0

After constructing, W, construct D (the diagonal matrix with D;; = Y.}_; W;;) and A =
1 1

Compute the orthogonal eigenvectors of A corresponding to the K largest eigenvalues of A
and collect them in a N x K matrix, X.

Construct a new dataset of N K-dimensional vectors, {r{,r,, ..., 'y}, where r; is the i" row
of X, and apply K-means clustering to this dataset (after normalizing each vector to have

Imperial College unit Iength).
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» Spectral clustering is a little different from the methods we have previously discussed:

It doesn’t work directly with a Laplacian (or Laplacian-like) matrix, however the
eigenvectors and eigenvalues of A can be related to those of L (problem sheet
exercise)

It requires a set of eigenvectors rather than a single one and doesn’t disregard
eigenvectors where all non-zero elements are the same

Consider a weighted graph with multiple connected components. Then it can be
shown that vectors r; and r; will be identical if nodes i and j are in the same
component and will be orthogonal otherwise (we previously discussed a similar
property for eigenvectors of the Laplacian matrix)

We won’t go into why this then leads to good results when K-means clustering is
applied. This is an example of a potential topic for further study which follows
naturally from this class.

* There are also other important methods in machine learning which use ideas from Network
Science (e.g. graph neural networks)
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Network science and climate science

*  We will conclude this lecture and the class with a brief discussion of a 2017 study which
used tools from network science to analyze climate dynamics:

Network analysis reveals strongly localized impacts
of El Nifo

Jingfang Fan®', Jun Meng®""', Yosef Ashkenazy®?, Shlomo Havlin®, and Hans Joachim Schellnhuber“®?

*Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel; "Department of Solar Energy & Environmental Physics, Blaustein Institutes for Deseri
Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; ‘Potsdam Institute for Climate Impact Research, 14412 Potsdam,
Germany; and “Santa Fe Institute, Santa Fe, NM 87501

* The main points we will touch upon are:
* Whatis El Nino?
* What is the dataset used for the analysis?
* How is a network constructed from the dataset?
* How is the network analyzed and what does the analysis tell us?
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e Whatis El Nino?

* El Nino refers to periods with abnormally high water temperatures in the central and
eastern tropical Pacific ocean. This affects temperature and rainfall globally.

* El Nino events typically last for a few years and then “go away” for a few years

4 -3 -2-15-1-050 051152 3 4

https://commons.wikimedia.org/wiki/File:El_Ni%C3%B1o_1982-83.png

Imperial College
London



 What is the dataset used for the analysis?
* The dataset corresponds to daily near-surface temperature from 1948-2016
* Itis constructed via a mix of measurements and simulations
e Daily temperatures are available for 10512 regions on the Earth’s surface.

* 57 of these regions are within the E/ Nino Basin
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e How is a network constructed from the dataset?

Each of the 10512 regions corresponds to a node and we construct a network for a
365-day period

A weighted directed link is created for each distinct node pair

Let T;(t,) be the temperature at node i on day t,. Define the annual time average as:

1
i = 5o 302 T (ta)

The link between i and j is constructed using the cross-correlation between T; and T;:

— Y388 [Ti(t)T(ta—T)]-TiT

N — 365
Cl] (T) O_io_j
* 0; is the standard deviation of T;(¢,), and o; is the standard deviation of
Tj(ta _ T)

* The time delay, 7, is varied between 0 and 200 and let 7* be the value of 7 for
which |C;;(7)| is maximized. Let this maximum be C".
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* The sign of 7" tells us the direction of the link:

C*—mean(Cj)

e Iftr > 0, Wl] = Std(Cy)) (and Vle' = 0)
. . o C*—mean(Cij) o
If 7 <0, W; = sta(Cip (and W;; = 0)

* We also set W;; = 0 and this weight matrix defines the network to be analyzed (the paper
also considers one other network which we will ignore)
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 How is the network analyzed and what does the analysis tell us?

* A simple quantity to analyze is the weighted in-degree for regions outside of the El
Nino basin: ). ;czyp W;j where the sum is over nodes within the basin. This provides a

simple view of which regions are most strongly affected by El Nino.

7 Nisic 32 . .
g Ll The top figure shows these in-degrees and

there is a tangible (imperfect) correlation with
regions with abnormal temperatures during N.
American winter

SO°E 180°90"W
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 Community detection (or clustering) methods can be applied to identify groups of regions
which show unusually similar dynamics

 The 2017 study uses community detection differently. It constructs a weighted network
where each node corresponds to a year in which El Nino occurred, and the link weight
indicates how similar the two years were. Then modularity maximization (via the Louvain
method) was used to construct three communities which represent three “types” of El Nino
events (i.e. events where different areas are strongly influenced)

 Among the study’s main conclusions are the identification of these different types of El
Ninos and the observation that El Nino periods are characterized by stronger temperature
anomalies in more localized regions
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