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Notes on these slides

© Prasun K. Ray (2021) These slides are provided for the personal study of students 
taking Network Science at Imperial College London during the 2021-22 academic year. 
The distribution of copies in part or whole is not permitted. 

Examinable material: You will not be asked to analyze or write any Python code or 
pseudocode. You will not be tested on your understanding of NetworkX. The material 
on “Diffusion in 1D” in lecture 10 and “Network science and climate science” at the end 
of lecture 16 will also not be examined.
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The science of networks is an 
important, rapidly growing field

Examples of significant networks:

Twitter, Facebook

Air transportation network

World-wide web

Human brain

images from: 
https://en.wikipedia.org/wiki/Complex_network
D.S. Bassett, How You Think: Structural Network Mechanisms of 
Human Brain Function
Brockmann & Helbing, The Hidden Geometry of Network-Driven 
Contagion Phenomena

Weighted links Fnm quantify direct air traffic
(passengers per day) from node m to node n.
The GMN is constructed from the worldwide air
traffic between 4069 airports with 25,453 direct
connections. Details on the data and network con-
struction are provided in the supplementary mate-
rials (e.g., fig. S1 and table S1) (5, 13, 20, 29). The
total network traffic is approximately F ¼ 8:91"
106 passengers per day. Assuming that the total
traffic in and out of a node is proportional to its
population size, Eqs. 1 and 2 can be rewritten as

∂t jn ¼ asn jnsð jn=eÞ − b jn þ g ∑
m≠n

Pmnð jm − jnÞ

∂tsn ¼ −asn jnsð jn=eÞ þ g ∑
m≠n

Pmnðsm − snÞ

with sn = Sn/Nn, jn = In/Nn, and rn = 1 – sn – jn. A
detailed derivation is provided in the supplemen-
tary text. The mobility parameter g is the average
mobility rate, i.e.,g ¼ F=W, whereW ¼ ∑nNn is
the total population in the system. This yields nu-
merical values in the range g =0.0013–0.0178day–1.
The matrix P with 0 ≤ Pmn ≤ 1 quantifies the
fraction of the passenger flux with destinationm

emanating from node n, i.e., Pmn = Fmn/Fn,

where Fn ¼ ∑
m
Fmn. The additional sigmoid func-

tion sðxÞ ¼ xh=ð1þ xhÞwithgainparameterh >>0
accounts for the local invasion threshold e and
fluctuation effects for jn < e (30–32). Typical
parameter choices for e and h areh ¼ 4,8,∞ and
−log10 e ¼ 4,…,6. Our results are robust with re-
spect to changes in these parameters (e.g., figs. S5
and S13).

Figure 1B shows a temporal snapshot of the
dynamical system defined by Eq. 3 for a hy-
pothetical pandemic with initial outbreak loca-
tion (OL) in HongKong (HKG) (see also Fig. 2B
and fig. S2 for temporal sequences of the dy-
namical system for various other OLs). General-
ly, the metapopulation model above and related
models used in the past generate solutions that
are characterized by similar qualitative features.
First, only during the early stage of the process
does the prevalence jn(t) (i.e., the fraction of
infected individuals) correlate significantly with
geographic distance from the OL. Second, at in-

termediate and later stages, themultiscale structure
of the GMN induces a spatial decoherence of
the spreading pattern. Third, despite the global
connectivity, the spatiotemporal patterns do not
converge to the same pattern, i.e., spatiotemporal
differences are not a transient effect (figs. S3 to
S6 andmovies S1 to S3). This type of complexity
sharply contrasts the generic behavior of ordinary
reaction-diffusion systems, which typically ex-
hibit spatially coherent wavefronts.

Most Probable Paths and Effective Distance
The key idea we pursue here is that, despite the
structural complexity of the underlying network,
the redundancy of connections, and the multiplic-
ity of paths a contagion phenomenon can take, the
dynamic process is dominated by a set of most
probable trajectories that can be derived from the
connectivity matrix P. This hypothesis is analogous
to the dominance of the smallest resistor in a strong-
ly heterogeneous electrical network with parallel
conducting lines.Given the flux-fraction0≤Pmn≤1,
i.e., the fraction of travelers that leave node n and
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Fig. 1. Complexity in global, network-driven contagion phenomena. (A)
The global mobility network (GMN). Gray lines represent passenger flows along
direct connections between 4069 airports worldwide. Geographic regions are
distinguished by color [classified according to network modularity maximization
(39)]. (B) Temporal snapshot of a simulated global pandemic with initial outbreak
location (OL) in Hong Kong (HKG). The simulation is based on themetapopulation
model defined by Eq. 3 with parameters R0 = 1.5, b = 0.285 day–1, g = 2.8 ×
10–3 day–1, e = 10–6. Red symbols depict locations with epidemic arrival times
in the time window 105 days≤ Ta≤ 110 days. Because of themultiscale structure
of the underlying network, the spatial distribution of disease prevalence (i.e.,
the fraction of infected individuals) lacks geometric coherence. No clear wave-
front is visible, and based on this dynamic state, the OL cannot be easily deduced.
(C) For the same simulation as in (B), the panel depicts arrival times Ta as a
function of geographic distance Dg from the OL [nodes are colored according to
geographic region as in (A)] for each of the 4069 nodes in the network. On a

global scale, Ta weakly correlates with geographic distance Dg (R2 = 0.34). A
linear fit yields an average global spreading speed of vg = 331 km/day (see also
fig. S7). Using Dg and vg to estimate arrival times for specific locations, however,
does not work well owing to the strong variability of the arrival times for a given
geographic distance. The red horizontal bar corresponds to the arrival time
window shown in (B). (D) Arrival times versus geographic distance from the
source (Mexico) for the 2009 H1N1 pandemic. Symbols represent 140 affected
countries, and symbol size quantifies total traffic per country. Arrival times are
defined as the date of the first confirmed case in a given country after the initial
outbreak on 17 March 2009. As in the simulated scenario, arrival time and
geographic distance are only weakly correlated (R2 = 0.0394). (E) In analogy to
(D), the panel depicts the arrival times versus geographic distance from the
source (China) of the 2003 SARS epidemic for 29 affected countries worldwide.
Arrival times are taken from WHO published data (2). As in (C) and (D), arrival
time correlates weakly with geographic distance.

(3)
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Network Science overview
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Ultimately, the aim is to understand how the 
structure of a network influences its 
functionality
• E.g. how does the structure of the air 

transportation network influence a global 
pandemic?

This requires careful thinking about:
• graph theory
• probability
• statistics
• linear algebra
• differential equations
• algorithms

“Coincidentally” this strongly overlaps with your 
1st-year modules!

https://en.wikipedia.org/wiki/Complex_network

10



Imperial College
London

Syllabus

• Weeks 2-3: Graph properties and structure; using NetworkX

• Weeks 3-5: Random graph models

• Weeks 6-9: Dynamics on graphs: modeling, analysis, and simulation

• Week 10-11: Communities, community detection, networks & data science

Questions we will consider:

• How does Google order your search results?

• How can we predict the spread of an infectious disease in a 
community social network?

• How can we identify communities in a pod of dolphins?

• How can we model the evolution of the Facebook friends network?
11
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Module structure

• A detailed module guide has been posted on Blackboard, I’ll just provide a quick 
overview here

• This module runs weeks 2-11 of term

• We have 9 live lectures (also streamed via Teams and recorded) and 7 pre-
recorded lectures

• So some weeks will have 2 lectures and some will have 1. I will post an 
outline of the week ahead on Blackboard at the beginning of each week 
(starting next Sunday)

• Slides will be posted on Blackboard in advance of live lectures and at the 
same time as pre-recorded lectures

• A single navigable pdf with all slides will be provided at the beginning of the 
exam revision period at the beginning of April. These are the typed lecture 
notes for the module.
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• We will also have 6 computer labs (in the MLC) and 5 problem classes

• The first computer lab is this Friday and the first problem class is next 
Thursday (see the module guide)

• There are weekly office hours on Teams: Tuesdays, 3-3:40pm

• Problem sheets will typically be posted on Mondays around noon.

• This week: Monday lecture, Tuesday office hour, and Friday computer lab

13
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Assessment

2 Projects (10%, 20%)

1 Midterm (10%)

Final exam (60%)

Projects will contain substantial computational and open-ended components

Tentative project dates:

Project 1: Assigned 29/10,  due 5/11

Project 2: Assigned 3/12 due 17/12
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Online resources

• Module Blackboard page

• All course material will be posted here

• Ed discussion board (similar to Piazza): https://edstem.org/us/courses/15185/discussion/
Ask (and answer) questions on nearly all module-related topics here

• Questions on Ed will be prioritized over emails

• You can post questions privately (only instructors/GTAs will see them)

• You can also post questions where you are anonymous to other classmates (but not 
to instructors/GTAs)

• Microsoft Teams page: MATH50007 - Network Science (Autumn 2021-2022)

• Meetings will be started here for live lectures and office hours

15
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Computing

We will be using Python and it is recommended that you use/install the 
standard Anaconda package: https://www.anaconda.com/products/individual

• This will give you the Spyder IDE and all of the packages that you need 
(Numpy, Scipy, Matplotlib, NetworkX, Pandas,…)

• For more information on software installation: https://imperial-fons-
computing.github.io/

• If you have installation/software/hardware problems, please post your issue 
on Ed within the “Computer issues” category

16
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Reading

We will use Network Science by Barabasi, one of the pioneers in 
the field

• The book is freely available online: 
http://networksciencebook.com/

• It provides great context and motivation for most of the 
module topics with frequent comparisons with data from real 
networks

• It is not written for mathematicians and much of the 
mathematical development lacks rigor – the lectures will 
attempt to compensate for this

• You should read chapters 2 of the book this week

• Afterwards, the required reading will be substantially reduced

• If you are unsure of what Network Science is, browse through chapter 1

17
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Getting started (week 1)

• Make sure you are happy with your access to Python (terminal + editor)

• Read Chapter 2 of Barabasi: http://networksciencebook.com/

• Much of the material will be familiar and/or straightforward, and you should go  
through those parts quickly

• You can skip the “Boxes” and historical discussions

• Don’t skip section 2.13

• Ask questions during the Tuesday office hour, during the computer lab on Friday, or on 
Ed

18
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• The title of this module is Network Science

• So we should always keep our minds on important questions related to the real world

• For example, how close (or far apart) are Bruce Lee and Beyoncé?

Distances in real-world networks

Bruce Lee, famous American 
actor and martial artist

Beyoncé, famous American 
actress and singer

19
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• We first have to define “distance”

• Let’s say two actors are “linked” if they have appeared in the same film

• We could then place a weight on a link based on the number of shared films

• For example, Jackie Chan was a stuntman in 3 Bruce Lee films, so:

3
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• Let’s ignore the edge weights, and count the smallest number of links to get from Bruce Lee 
to Beyoncé:

Image generated at oracleofbacon.org

• We see that there is a path of distance 3 
from Beyoncé to Bruce Lee

• Which is shorter than what I would have 
guessed! 

• And there is more than one shortest path

• It is possible to study a much larger group 
of actors (say all actors in IMDB) and 
construct a collaboration graph

21



Imperial College
London

• A collaboration graph is a single-graph projection of a bipartite actor-movie graph:

Actor1

Actor 2

Actor 3

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Movie 6

Actor1

Actor 2

Actor 3
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Here’s a small example:

Tom Hardy

Anne Hathaway

Joseph Gordon-Levitt

Marion Cotillard

Maggie Gyllenhaal
Heath Ledger

Aaron Eckhart

Katie Holmes

Liam Neeson

Rutger Hauer

Ken Watana

Tom Wilkinson

Cillian Murphy

Morgan Freeman
Christian Bale

Gary Oldman

Michael Caine

Batman Begins
The Dark Knight
The Dark Knight Rises

Figure 1: Relationships between actors appearing in The Dark Knight Trilogy.

one of the movies. The cluster at the top-right shows the actors who appeared in Batman Begins, the cluster at
the bottom contains the stars of The Dark Night, and the cluster on the left shows the actors from The Dark Night

Rises. We also see, for example, that Tom Hardy was in the same movie as Joseph Gorden Levitt (in The Dark

Knight Rises), but did not appear alongside actors such as Liam Neeson (who was a star of Batman Begins), or
Heath Ledger (who appeared in The Dark Night).

3 A Dataset of All Movies
While the Batman example shown in Figure 1 is helpful for illustrative purposes, in this article we are interested
in investigating the social network of all actors from all movies. As mentioned, for this study we use information
taken from the Internet Movie Database [3]. Specifically, we use a dataset compiled by the administrators of the
Oracle of Bacon website [5]. Complete and up-to-date versions of this dataset can be downloaded directly from [1].

Our version of this dataset was downloaded at the start of January 2020 and contains the details of 164,318
different movies. Each movie in this set is stored as a JSON object containing, among other things, the title of
the movie, a list of the cast members, and the year of its release. The complete dataset it is obviously too large to
reproduce here, but to illustrate the basic format, the box below shows the three-movie example used to produce
the small social network shown in Figure 1.

{" title ":" Batman Begins","cast ":[" Christian Bale","Michael Caine","Liam Neeson
","Katie Holmes","Gary Oldman","Cillian Murphy","Tom Wilkinson ","Rutger
Hauer","Ken Watanabe","Morgan Freeman "],"year ":2005}

{" title ":"The Dark Knight","cast ":[" Christian Bale","Michael Caine","Heath
Ledger","Gary Oldman","Aaron Eckhart","Maggie Gyllenhaal ","Morgan Freeman
"],"year ":2008}

{" title ":"The Dark Knight Rises","cast ":[" Christian Bale","Michael Caine","Gary
Oldman","Anne Hathaway","Tom Hardy","Marion Cotillard ","Joseph Gordon -Levitt
","Morgan Freeman "],"year ":2012}

Before proceeding with our analysis, note that is was first necessary to remove a few “dud” movies from this
dataset. In our case, we decided to remove the 44,075 movies that had no cast specified. We also deleted a further
5,416 movies that did not include a year of release. This leaves a final “clean” database of 114,827 movies with

2

From: R. Lewis, Who is the Centre of the Movie Universe?
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• Our Bruce Lee – Beyoncé question is a variation of the “6 degrees of Kevin Bacon” game

• The concept is that any (Hollywood) actor can be reached from Kevin Bacon via links in the 
actor collaboration network in 6 or less steps

• The underlying idea is that distances in large social networks tend to be “small”
• And short distances are found in a large variety of complex networks 
• We will make this idea of “short distances” more precise soon

Kevin Bacon, famous 
American actor

• 6 degrees of Kevin Bacon is a play on the idea of 6 
degrees of separation which comes from the work of 
social psychologist Stanley Milgram in the 1960s

• The claim is that any 2 people are no more than 6 links 
apart in the global social network of acquaintances

• Network Science is generally considered to be about 
20 years old, but this ignores the foundation provided 
by social network analysis which is considerably older
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Question for you: given data for the IMDB actor collaboration network, what would 
you want to explore and analyze?
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Simple networks

• We are primarily interested in large complex 
networks like a national power grid à

• But we should first make sure we can analyze 
simpler cases!

• This will build intuition about useful quantities like 
the diameter and clustering coefficient

• And later, will provide a reference when analyzing 
complicated real-world problems

From: Tamrakar, S., Conrath, M. & 
Kettemann, S. Propagation of 
Disturbances in AC Electricity 
Grids. Sci Rep 8, 6459 (2018)
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Warm-up question:
• What does this adjacency matrixà

correspond to?
(𝐴!" = 1 if there is a link to node 𝑖 from 
node 𝑗 and 𝐴!" = 0 otherwise)

A =

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
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Warm-up question:
• What does this adjacency matrixà

correspond to?
(𝐴!" = 1 if there is a link to node 𝑖 from 
node 𝑗 and 𝐴!" = 0 otherwise)

• This is a cycle graph with 𝑁 = 6 nodes 
and 𝐿 = 6 links
• This is an unweighted, undirected 

graph

• And if we set the “top-right” and 
”lower-left” elements to zero, we have 
a chain à

A =

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
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Simple example #1: lattices

We can think of a chain as a “1-D lattice”

The two- and three-dimensional versions 
are both familiar 
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• The adjacency matrix of a 2D lattice (A#) has 
a block tridiagonal structure as shown below

• Here, A1 is the adjacency matrix for an m-
node 1D lattice, I is the 𝑚 x 𝑚 identity 
matrix, and the 2D lattice has 𝑁 = 𝑚2 nodes

Optional exercise: what is the structure of the 
adjacency matrix for a 3D lattice?

AAT

ATA

|Ax|2 = xTATAx

0

BBBBBB@

0 1 0 0 1 0

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

0 0 0 1 0 0

1

CCCCCCA

0

BBBBBB@

0 1 0 0 1 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 0 0

1

CCCCCCA

A2 =

0

BBBBB@

A1 I

I A1 I

. . .
. . .

. . .

I A1 I

A1 I

1

CCCCCA

R = D/2 =
log [(N � 1)(b� 1) + k]� log(k)

log(b)
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Let’s now think about node degrees in 
lattices. The degree of a node is the number 
of links it has.

• First consider “interior” nodes (as 
opposed to “boundary” nodes)

• Interior nodes have degree, 𝑘 = 2𝑑 , 
where 𝑑 is the lattice dimension

• The degrees of boundary nodes depend 
on the dimension

• For 𝑑 = 3 and 𝑁 = 𝑚3 nodes, the 8
corner nodes have 𝑘 = 3, and all other 
boundary nodes have 𝑘 = 4
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Now, let’s think about the graph diameter, 𝐷, 
the longest shortest path between two nodes 
(assuming that the graph is connected)

• For 𝑑-dimensional lattices, with 𝑁 = 𝑚$

nodes, we have 𝐷 = 𝑑(𝑚 − 1)

• What we are interested in generally is how 
the diameter scales with 𝑁, particularly as 
𝑁 becomes large

• Rearranging the above expressions, we 
find, 𝐷 = 𝑑 𝑁%/$ − 𝑑

• So for large 𝑁, 𝐷 ∼ 𝑁%/$

• Are distances “short” in lattices? No, we 
will look at another simple model next 
lecture with different behavior. 32
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Chapter 2 of Barabasi introduces the local,  
average, and global clustering coefficients. 
Check your understanding by evaluating 
the following claim:  The average and 
global clustering coefficients for these 
lattices are zero.

Note: Here we have only considered “rectangular” lattices. Lattices are constructed 
via regular tilings, and we could, for example, construct a triangular lattice 33
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A quick aside:

• 1- and 2D rectangular lattices are 
frequently found in manmade networks 
(e.g. small computer networks, planned 
cities)

• 3D lattices are commonly found in nature -
- crystals and crystalline solids have 
lattice-like molecular structure

• But we’re mainly using them as 
preparation for analysis of complex 
networks…

https://www.andrewalexanderprice.com/image
s/blog20-14.jpg

https://saylordotorg.github.io/text_general-chemistry-
principles-patterns-and-applications-v1.0/
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NetworkX

We are generally interested in large 
complex networks

Analysis of such networks can be 
complicated and expensive (classical 
example: computing shortest path 
between nodes)

NetworkX package provides a suite 
of tools for working with complex 
networks

More generally: avoid writing own 
code whenever possible! Many 
powerful highly-efficient libraries 
are available
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NetworkX: basics

• Let’s work with this graph in NetworkX

• First, import the module, and initialize a 
graph:

• There are numerous methods for building 
a graph

In [55]: import networkx as nx

In [56]: G = nx.Graph()

In [57]: G.add_edge(1,2)

In [58]: G.edges()
Out[58]: [(1, 2)]

In [59]: G.nodes()
Out[59]: [1, 2]
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In [65]: e = [(1,5),(2,5),(2,3),(3,4),(4,5),(4,6)]

In [66]: G.add_edges_from(e)

In [67]: G.edges()
Out[67]: [(1, 2), (1, 5), (2, 3), (2, 5), (5, 4), (3, 4), (4, 6)]

In [68]: G.nodes()
Out[68]: [1, 2, 5, 3, 4, 6]

We can add several
edges (or nodes) at once 
using an edge list:

37



Imperial College
London

In [69]: import matplotlib.pyplot as plt

In [70]: plt.figure() 
Out[70]: <matplotlib.figure.Figure at 0x1515e3fef0>

In [71]: nx.draw(G, with_labels=True, font_weight='bold')

Use nx.draw to visualize 
the network:
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In [74]: A = nx.adjacency_matrix(G)

In [75]: type(A)
Out[75]: scipy.sparse.csr.csr_matrix

In [76]: A.toarray()
Out[76]:
array([[0, 1, 1, 0, 0, 0],
[1, 0, 1, 1, 0, 0],
[1, 1, 0, 0, 1, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 1, 1, 0, 1],
[0, 0, 0, 0, 1, 0]], dtype=int64)

We can now analyze the graph:

• Most complex networks are sparse, and the sparse format uses memory more efficiently
• And some calculations (e.g. matrix-vector product) are more efficient as well 39
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It is straightforward to compute the local clustering and to get the degree of each node:

The degree distribution, 𝑝', is also extremely important. For a single network, it is defined 
as:

𝑝' = fraction of nodes with degree 𝑘

In [57]: 
nx.clustering(G)

Out[57]: {1: 1.0, 2: 0.3333333333333333, 3: 0, 4: 0, 5: 0.3333333333333333, 6: 0}

In [58]: 
nx.degree(G)

Out[58]: DegreeView({1: 2, 2: 3, 3: 2, 4: 3, 5: 3, 6: 1})
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The degree distribution can be computed using the output from nx.degree_histogram:

• The ith element of h corresponds to the number of nodes with degree i
(degree distributions are more interesting for large networks!)

In [83]: nx.degree_histogram?
Signature: nx.degree_histogram(G)
Docstring:
Return a list of the frequency of each degree value.
Returns
-------
hist : list
A list of frequencies of degrees.
The degree values are the index in the list.

In [84]: h = nx.degree_histogram(G)

In [85]: h
Out[85]: [0, 1, 2, 3]
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In [119]: Grandom = nx.gnp_random_graph(1000,0.05)

In [120]: nx.draw(Grandom,node_shape='.')

NetworkX also contains a number of functions for graph models
• Here, we generate and visualize a graph generated with the GNp random graph 

model: the graph has 𝑁 nodes, and a link is placed between each pair of nodes with 
probability 𝑝
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Now the degree distribution is more interesting. We will analyze this distribution later in 
the term.

• I should compute degree distributions 
for several graphs (with fixed 𝑁, 𝑝) and 
then average them

• Generally, when there is randomness in 
the problem, statistics are the quantities 
of interest (mean, variance, etc…)
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• Read the online tutorial: https://networkx.github.io/documentation/stable/tutorial.html

• Browse through the online reference section: 
https://networkx.github.io/documentation/stable/reference/index.html

• Use NetworkX 2.x (I’m using 2.4)

• Come to lab 1 on Friday!

NetworkX: getting started
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Simple example #1: lattices

• 1- and 2D lattices are frequently found in 
manmade networks (e.g. small computer 
networks, planned cities)

• 3D lattices are commonly found in nature -
- crystals and crystalline solids have 
lattice-like molecular structure

• But we’re mainly using them as 
preparation for analysis of complex 
networks

https://www.andrewalexanderprice.com/images/blog2
0-14.jpg

https://saylordotorg.github.io/text_general-chemistry-
principles-patterns-and-applications-v1.0/
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Simple example #2: Cayley trees

• The image shows a “4-regular” Cayley tree

• Each node in the outer ring has degree=1

• All other nodes have degree=4

• A “tree” is a graph with no loops

Construction of a 𝑘-regular Cayley tree:

• Iteration 0: start with a single ‘root node’

• Iteration 1: add 𝑘 nodes that link to the root

• Iteration 𝑖, 𝑖 > 1: For each node 𝑛 added during 
iteration 𝑖 − 1, add 𝑘 − 1 nodes which link to 𝑛

Check your understanding: how many iterations were used to make the graph pictured?
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• After 𝑟 iterations, a 𝑘-Cayley tree has:

𝑁 = 1 + 𝑘(1 + 𝑏 + 𝑏2 +⋯ + 𝑏()%) nodes  where 
𝑏 = 𝑘 − 1

This simplifies to, 𝑁 = 1 + ' *!)%
*)%

And there are 𝐿 = 𝑁 − 1 links

• The global and average clustering coefficients for all 
Cayley trees is zero

• In fact, they are zero for all trees

• What about the diameter?
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• The longest shortest path is a path from a leaf from the 
final iteration through the root node out to another leaf

• So we have 𝐷 = 2𝑟 and we want to rearrange this for 
comparison with our result for lattices

• From our expression for 𝑁, we find:

𝑟 = +
#
= ,-. /)% *)% 0' ),-.(')

,-.(*)

• For large 𝑁, the diameter can be approximated as,
𝐷 ≈ 2 ,-. /

,-. *
+ 𝑐𝑜𝑛𝑠𝑡
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Lattices vs. Cayley trees

We have now seen that the diameter for a lattice 
shows power-law dependence on 𝑁, while the Cayley 
tree shows logarithmic dependence – is this 
important?

• Yes, because logarithmic growth is “slow” à

Questions to consider:
1. Why have I used a logarithmic horizontal 

scale in the figure?
2. Does it make sense for a ring, 3D lattice, 

and Cayley tree to all have the same 
“clustering”?
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Centrality

• Let’s now think about another aspect of graph structure: how can we identify 
important nodes?

• The simplest idea is the degree centrality: the higher the degree, the more important 
the node

• The degree centrality has a few weaknesses (which we will discuss), so we will look 
at a few other centrality measures

• The node with highest degree in the IMDB actor 
network (in early 2020) is Nassar, a prolific actor in 
South Indian and Bollywood cinema à

51



Imperial College
London

Eigenvector centrality

• Consider one weakness of the degree centrality: say one node has 50 neighbors with 
degree=1. Is it as important as a node connected to 50 high-degree nodes?

• Instead, let’s say that a node’s centrality, 𝑥!, should be proportional to the centrality of its 
neighbors: 𝑥! = 𝛼∑"3%/ 𝐴!"𝑥"

• Here 𝛼 is a proportionality constant which will be specified shortly

• In matrix-vector form, we have: Ax = 𝜆x with 𝜆 = 𝛼)%

• This is of course an eigenvalue problem, and as with the linearized naïve network-SI 
model, the Perron-Frobenius theorem will be used for guidance
• For an undirected connected graph, there will be exactly one eigenvector where all 

elements have the same sign, and this eigenvector corresponds to a simple positive 
eigenvalue of A (this eigenvalue is ≥ in magnitude to all other eigenvalues). 

• Scale this leading eigenvector so that all elements are positive (the magnitude of the 
scaling is not considered to be important)

• Then the eigenvector centrality of node 𝑖 is the 𝑖45 element of the scaled vector52
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• An example:

1 2

344

5

6

1 2

344

5

6

node 𝒌𝒊
𝒌

eigenvector centrality

1 0.47 0.51

2 0.47 0.51

3 0.63 0.51

4 0.16 0.19

5 0.32 0.38

6 0.16 0.19

• Here, 𝑘 = ∑!3%/ 𝑘!# and the eigenvector centrality has also 

been normalized to have length=1

• Note that node 3 has a higher degree but the same e.c.
(eigenvector centrality) as nodes 1 and 2 53
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• For the IMDB actor network, the top 5 eigenvector centrality scores are for…

… 5 actors that I have never heard of!

• These are 5 American “character actors” who appeared in many films over many years 
in the mid-20th century (John Wayne is #10)

Irving Bacon : 0.05941992771116469
Emory Parnell : 0.058154231305023625
Paul Fix : 0.05565088682410471
Russell Hicks : 0.05563688887989434
J. Farrell MacDonald : 0.05533389610888414

Irving Bacon
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• If we instead limit the network to movies released in 2019, we see more-familiar 
names:

The top 4 were all in Once upon a time in Hollywood and we see actors benefitting from 
being in a large cast with actors which were in other movies with large casts.

Margot Robbie

Margot Robbie : 0.17784509362532366
Margaret Qualley : 0.1776352911801254
Brad Pitt : 0.17533278452858408
Clifton Collins Jr. : 0.17529419762375148
Joy Badlani : 0.17382963598017173

https://commons.wikimedia.org/wiki/File:Margot_Robbie_at_%22Once_Upon_A_Time_In..._Hollywood
%22_Photocall_in_Berlin_2019_(cropped).jpg
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• But what if a graph is directed?

• Then we need to decide between the left- and right-eigenvectors of A

• Let 𝐴!" = 1 indicate that there is a link pointing from node 𝑗 to node 𝑖

• We could then define the centrality as, 𝑥! = 𝛼∑"3%/ 𝑥"𝐴"!

• But typically it is the original definition that is better. This modified version rewards 
nodes which link to nodes that link to many other nodes. Having links pointing 
towards a node is usually a better indicator of importance.

• However, there is another important difficulty when considering directed graphs

• We know that if a node has only out-links that its centrality will be zero, and this is fine

• But  a node receiving many links from nodes with zero in-links will also have zero 
centrality which is difficult to justify

Katz centrality
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• The Katz centrality adjusts the definition of the eigenvector centrality to address this 
issue

• The idea is to give each node a minimum centrality, and then in our example, 
the node with several in-links will have a higher centrality than the nodes with 
no such links

• The Katz centrality is found from, 𝑥! = 𝛼∑"3%/ 𝐴!"𝑥" + 1
• Sometimes, the “1” is replaced by another parameter, 𝛽, or 1 − 𝛼

• We now have to solve the linear system, I − 𝛼A x = z where z is a 𝑁-
element column vector of ones, z = 1,1,1… , 1 6

• There is now the question of choosing 𝛼 and we need to ensure that 
det I − 𝛼𝐴 ≠ 0, i.e. 𝛼)% should not be an eigenvalue of A

• We also would like to choose 𝛼 to be as large as possible

• We will again rely on the Perron-Frobenius theorem, with some 
modifications to the previously stated version 57
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• The Perron-Frobenius theorem applied to any non-negative square matrix (all 
elements non-negative) tells us that there will be a real non-negative eigenvalue, 𝜆%, 
with 𝜆% ≥ max |𝜆!| 𝑤𝑖𝑡ℎ 𝑖 ∈ 1, 2, … , 𝑁

• 𝜌 𝐴 = max { 𝜆% , 𝜆# , … , 𝜆/ } is the spectral radius of A

• If 𝜆% > 0, we set 𝛼)% > 𝜆% and this will guarantee a non-trivial solution of our 
system.

• We exclude peculiar cases where 𝜆% = 0 (e.g. 2 nodes, 1 directed link)

• There is a useful alternative formulation of the Katz centrality based on a series 
expansion of I − 𝛼A )%

58
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• Last time: the Katz centrality adjusts the definition of the eigenvector centrality to 
provide better behavior for directed graphs

• The idea is to give each node a minimum centrality, and then nodes with several 
in-links will always have a higher centrality than nodes with no such links

• The Katz centrality is found from, 𝑥! = 𝛼∑"3%/ 𝐴!"𝑥" + 1 or equivalently, we 
have to find the solution to the linear system, I − 𝛼A x = z where z is a 𝑁-
element column vector of ones, z = 1,1,1… , 1 6

• We set 𝛼)% > 𝜆% and this will guarantee a non-trivial solution of our 
system. Here, 𝜆% is the most positive real eigenvalue of A

Katz centrality
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• Another example:

node 𝒌𝒊𝒊𝒏

𝒌𝒊𝒏
eigenvector centrality Katz centrality

(𝛼 = 0.5)

1 0.55 0.58 0.59

2 0.55 0.58 0.54

3 0.55 0 0.32

4 0 0 0.16

5 0.28 0.58 0.45

6 0 0 0.16

• Vectors are again normalized to have length=1

• Note that node 3 now has e.c.=0

• With the Katz centrality, all values are non-zero, and node 1 now 
has the highest centrality due to “help” from node 3

1 2

344

5

6

1 2

344

5

7
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• There is a useful alternative formulation of the Katz centrality based on a series 
expansion of I − 𝛼A )%. First we will state a few general results from linear algebra:

• R M; 𝜇 = 𝜇I − M )% is the resolvent for a square matrix, M
• The resolvent is defined when 𝜇 ≠ 𝜆! , 𝑖 = 1,2, … , 𝑁

• If |𝜇| > 𝜌 M , then we can expand the resolvent as, R 𝜇 = ∑7389 :"

;"#$
(*)

• Here, 𝜌 M is the spectral radius of M: the magnitude of the eigenvalue(s) of M
which is/are largest by magnitude: 𝜌 M = max{ 𝜆% , 𝜆# , … , 𝜆/ }

• Note that 𝜇𝐼 − M :"

;"#$
= :"

;"
− :"#$

;"#$
, so multiplying both sides of (*) with 

𝜇𝐼 − M and truncating the series gives:

I = lim
<→9

𝜇𝐼 − M ∑76
:"

;"#$
= I − :%#$

;%#$

• Now, if we let 𝑇 → ∞, it can be shown that :
%#$

;%#$
→ 0 if 𝜇 > 𝜌 M , which 

provides some intuition for why (*) converges
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• Applying these results to the Katz centrality, we find, x = ∑7389 𝛼7A7z provided that 
|𝛼)%| > 𝜌 A .

• We require 𝛼 to be real and positive (otherwise, the resulting centralities will not be 
meaningful), so the condition above is equivalent to the condition we stated 
previously, 𝛼)% > 𝜆%.

• The Perron-Frobenius theorem tells us that 𝜆% = 𝜌 A

• What is A7? If we say B = A7, then 𝐵!" is the number of length-𝑙 paths from 𝑗 to 𝑖

• So 𝑥! is counting the number of length-𝑙 paths to 𝑖, weighted by 𝛼7. For almost all real 
networks, 𝜆% > 1, so we will have  𝛼 < 1 and the Katz centrality will place a larger 
weight on shorter paths.
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• The Katz centrality is not perfect

• Consider the directed graph corresponding to the world-wide web

• We would expect google.com to have a very high centrality

• And then any website that has a link from Google would receive a large boost to its 
centrality. But is the behavior that we want? 

• Google links to many, many websites, but what if it linked to just a few?

• Then those sites would deserve a higher contribution to their centrality

• The idea behind PageRank centrality is to modify the Katz centrality to produce this 
behavior

PageRank centrality
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• PageRank centrality can be defined as a modification to Katz centrality: 

𝑥! = 𝛼∑"3%/ 𝐴!"𝑥"/max(𝑘">?4 , 1) + 1

Where we use the max( ) because the expression in the sum would otherwise be 0/0 
when node j does not have any out-links

• However, it is usually presented a little differently,

𝑥! = ∑"3%/ %)@ A&'B'
CDE ''

()*,%
+

@B'
/

, 0 < 𝑚 ≤ 1

This is not identical to the previous expression, but it will have the same positive features.

• The parameter 𝑚 weights the 2 terms on the RHS. With 𝑚 close to 1, there will be a 
tendency for all nodes to have the same centrality
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• We can re-write our expression in matrix-vector form: Gx = x where 𝐺!" =
A&' %)@

CDE ''
()*,%

+ @
/

• We now need to establish a few properties of x to show that it will be generally useful

• Specifically, we want to show that we can construct it so that all elements are non-
negative and so that there is exactly one linearly independent solution for Gx = x

• First, let’s establish a few properties of G for graphs where 𝑘">?4 > 0 for all nodes:

• By inspection: G is positive (all elements are positive)

• The sum of each column is one (this will help us establish that a solution to the system 
of equations above exists)
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• The sum of the 𝑗𝑡ℎ column is:

n
!3%

/

𝐺!" =n
!3%

/
𝐴!" 1 − 𝑚

𝑘">?4
+
𝑚
𝑁

,

and,

n
!3%

/
𝐴!" 1 − 𝑚

𝑘">?4
+
𝑚
𝑁 =

1 −𝑚
𝑘">?4

n
!3%

/

𝐴!" +𝑚.

What is ∑!3%/ 𝐴!"? We know that 𝐴!" = 1 if there is a link from 𝑗 to 𝑖, so ∑!3%/ 𝐴!" is the 
total number of links from 𝑗 to other nodes. I.e. ∑!3%/ 𝐴!" = 𝑘">?4 and: 

∑!3%/ 𝐺!" = 1 −𝑚 +𝑚 = 1
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• Since ∑!3%/ 𝐺!" = 1, we also know that 𝜆 = 1 is an eigenvalue of G:

• Why? Consider  z<G where z is an 𝑁-element column vector of ones as before

• The 𝑗𝑡ℎ element of z<G is the sum of the 𝑗𝑡ℎ column of G so, z<G = z< or G<z=z, 
and 𝜆 = 1 is an eigenvalue of G<

• A (square) matrix and its transpose have the same characteristic polynomial, so 
they have the same eigenvalues: 𝜆 = 1 is an eigenvalue of G (with left eigenvector 
z)

• So a right eigenvector of G corresponding to eigenvalue 𝜆 = 1 is a solution to the 
PageRank equation. 

• We need to use the version of the Perron-Frobenius theorem for positive matrices to 
establish that it is the only linearly independent solution and that all elements are 
non-negative
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• For a positive square matrix, the Perron-Frobenius theorem tells us that:

• The matrix will have a positive, real, simple eigenvalue strictly larger in magnitude 
than all other eigenvalues and

• All elements of the corresponding eigenvector will have the same sign

• There are no other linearly independent eigenvectors where all elements have the 
same sign

• Taking all of the above together, we would like to define the leading eigenvector of G as the 
PageRank centrality, however does this eigenvector correspond to 𝜆 = 1?

• It turns out that it does; this week’s problem sheet asks you to verify this statement.
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• PageRank centrality was introduced by Sergey Brin and Larry Page when thy were PhD 
students at Stanford in 1998 as part of their new Google search engine

• This work has proven to be… influential

• They reportedly initially used 𝑚 = 0.15

• And they were thinking about Network Science at the time – they viewed the web as a 
huge directed graph, and were thinking about how to ascribe importance to web pages that 
they found while navigating through the graph

• Google still uses PageRank (or at least something similar) as part of its algorithm for 
deciding how to order search results

• But defining PageRank was just one important step – they also had to think very carefully 
about how to compute it for very, very large graphs
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• There was no way to assemble all of the full matrices they needed on a single computer

• It was (and is) essential to use a sparse representation of the adjacency matrix so that zeros 
were not stored or used in additions or multiplications

• But in the end, it is a matter of crawling the web, collecting links, and constructing a graph, 
and then computing the leading eigenvector of the G matrix.

• Let’s now discuss how to efficiently compute this eigenvector
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PageRank Computation

• For a dense matrix, the cost of computing all of the eigenvalues and eigenvectors is roughly 
𝑂(𝑁3)
• This is the cost to expect when using np.linalg.eig

• However there are more efficient methods if only 1 eigenvalue is needed

• The simplest of these is the Power method which I’ll sketch now
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• The basic idea of the power method is to repeatedly multiply the matrix of interest with a 
trial vector. With enough repetitions, the results will be dictated by the largest eigenvalue 

• For convenience, let’s assume that G is diagonalizable, so it has a “full” set of linearly 
independent eigenvectors.
• Then a random vector y ∈ R/ can be expanded as, y = 𝑐%v% + 𝑐#v𝟐 +⋯+ 𝑐/v/

where v𝒊 is the 𝑖𝑡ℎ eigenvector of G, corresponding to eigenvalue 𝜆!

• Also assume that 𝑐% ≠ 0 , and that the eigenvalues are ordered so that , |𝜆%| > |𝜆#| ≥
|𝜆I| ≥ ⋯ ≥ |𝜆/|

Now consider repeated multiplications of G with y:
Gy = 𝑐%Gv% + 𝑐#Gv𝟐 +⋯+ 𝑐/Gv/

• We know that GvJ = 𝜆!v!, so:

Gy = 𝑐%𝜆%v% + 𝑐#𝜆#v𝟐 +⋯+ 𝑐/𝜆/v/

And: G#y = 𝑐% 𝜆% #v% + 𝑐# 𝜆# #v𝟐 +⋯+ 𝑐/ 𝜆/ #v/
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• And after 𝑙 multiplications:
G7y = 𝑐% 𝜆% 7v% + 𝑐# 𝜆# 7v𝟐 +⋯+ 𝑐/ 𝜆/ 7v/

• 𝑙 can be chosen to be sufficiently large so that the 1st term on the RHS is much larger than 
all of the terms that follow, and:

G7y ≈ 𝑐% 𝜆% 7v%

• The power method is not restricted to diagonalizable matrices, but some of the arguments 
above would have to be modified to consider more general square matrices.

• The key is the presence of a strictly dominant eigenvalue, an eigenvalue larger in magnitude 
than all other eigenvalues. The Perron-Frobenius theorem tells us that G will always have 
such an eigenvalue
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• In practice, computing G𝑙 can lead to large numerical errors, so instead a power iteration 
normalizes the results after each iteration, e.g.:

y(70%) = KL "

KL " = K"#$L +

K"#$L +

and y(70%) is our approximation for the leading eigenvector after 𝑙 + 1 iterations of the 
power method

• The power method is frequently quite effective though of course this depends on the 
“separation” between the 2 first eigenvalues
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• An example:

G = 6 3
3 2 , y(8) = 1, 0 <, v% = 0.88167, 0.47186 <

𝑙 G#y $ /|G#y($)| |y(#) − v'|

1 [0.89442719, 0.4472136 ]T 0.0277

2 [0.88235294, 0.47058824]T 0.001439

3 [0.88170982, 0.4717921 ]T 7.466e-5

4 [0.88167643, 0.47185451]T 3.872e-6

• We see very rapid 
convergence for this case

• Typically, we would see a 
slower rotation of the initial 
y toward v1

• Note that the computation 
of the denominator is fairly 
expensive, and a good 
alternative is to use 
max(G7y8)
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• Say the eigenvector calculation requires 𝑞 iterations to obtain a good estimate for the 
leading eigenvalue. 

• Then the cost will in general be 𝑂(𝑞 𝑁2) however for sparse networks this can be reduced 
to 𝑂(𝑞 (𝐿 + 𝑁)) (even though G will not be sparse). 

• For networks with small distances, computations indicate that 𝑞 ~ log(𝑁) and the overall 
cost is estimated as 𝑂((𝐿 + 𝑁)log𝑁)

77



Imperial College
London

• We have examined a few of the most widely-used centralities

• There are many other centrality measures out there, some of which are based on very 
different ideas

• We will look at one other centrality later (time permitting) based on the shortest paths in 
graphs

Comments on centrality
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• How similar are Bruce Lee and Beyoncé?

• To answer this question, we will introduce two measures of node similarity

• There are a few different approaches to this problem, we will look at two that characterize 
similarity based on the number of common neighbors that two nodes share

Node similarity

Bruce Lee, famous American 
actor and martial artist

Beyoncé, famous American 
actress and singer
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• Since similarity shouldn’t favor high-degree nodes, the number of common neighbors 
should be scaled by the node degrees

• Two popular approaches are the cosine similarity and the Jaccard similarity

• Let 𝑛!" be the number of common neighbors of nodes  𝑖 and 𝑗. Then the cosine similarity is 
defined as, 𝜎!" =

M&'
'&''

and for an undirected graph, 𝑛!" = ∑73%/ 𝐴!7𝐴7"

• Where does the name come from? Let aJ be a vector that corresponds to the ith column of 
A. Then for an undirected graph, 𝑛!" = aJ<aN and 𝑘! = aJ<aJ = aJ #

• So, aJ<aN = aJ aN 𝜎!" and we see that 𝜎!"is the cosine of the angle between aJ and aN

• The Jaccard similarity uses a different scaling, it uses the total number of distinct neighbors 
of the two nodes: 𝜎!" =

M&'
'&0'')M&'

• Both of these measures have the range 0 ≤ 𝜎!" ≤ 1
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• In lecture 1, we saw that the distance between Bruce Lee and Beyoncé in the IMDB actor 
network is 3, which means that (according to our two measures) they are not at all similar!

• Let’s ask a different question: is Harrison Ford more similar to Bruce Lee or Beyoncé?

Using the cosine similarity:

Beyonce-Harrison Ford: 𝜎OP =0.009

Bruce Lee-Harrison Ford: 𝜎QP =0.005

Using the Jaccard similarity:

Beyonce-Harrison Ford: 𝜎OP =0.0022

Bruce Lee-Harrison Ford: 𝜎QP =0.0019

So both measures tell us that Beyoncé is more similar to Harrison Ford than Bruce Lee!

Photo credit: Gage Skidmore
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• Node similarity is a deceptively powerful concept

• It is used for community detection

• It is also used at the interface between network science and data science

• We will discuss these applications towards the end of the module
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• We have applied the Perron-Frobenius (P-F) theorem to three different “classes” of real 
square matrices:

1. Positive matrices where each element of the matrix is positive (e.g. the Google matrix) 
Then, the theorem tells us that there is a real positive eigenvalue 𝜆 where:

• 𝜆 = 𝜌 A > 0 and all other eigenvalues are smaller in magnitude

• This eigenvalue is simple, all elements of the corresponding eigenvector have the 
same sign, and there are no other eigenvectors where all elements have the 
same sign

2. Irreducible matrices: Let 𝐵!" > 0 if there is a link in a graph from node 𝑖 to 𝑗 with 𝐵!" =
0 otherwise. Then B is irreducible if and only if the corresponding graph is strongly 
connected (i.e. every node is reachable from every other node). For irreducible matrices, 
there is a real, positive eigenvalue 𝜆 where:
• 𝜆 = 𝜌 B > 0 and this eigenvalue is simple

• All elements of the corresponding eigenvector have the same sign, and there are no 
other eigenvectors where all elements have the same sign

• There may be other eigenvalues equal in magnitude to 𝜆

Perron-Frobenius theorem
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3. Non-negative matrices where each element of the matrix is non-negative. There is a real, 
positive eigenvalue 𝜆 where:

• 𝜆 = 𝜌 A ≥ 0; this eigenvalue is real-valued, and there may be other eigenvalues 
equal in value or equal in magnitude

• All non-zero elements of the corresponding eigenvector will have the same sign, and 
there may be other eigenvectors with the same property

• This version of the P-F theorem is considerably weaker than the other 2
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Random Graph models

• We will now shift our focus from graph properties to 
graph models

• Specifically, we will analyze three important random
graph models

• The aim will be to understand how rules for graph 
generation influence the final graph structure

• For simple deterministic models like Cayley trees and 
lattices, this influence is easy to understand

• If we instead introduce probabilistic rules for how links 
and/or nodes are added to a graph, we will see that even 
very simple rules can generate very complicated 
behavior

• Random graph models are also helpful for understanding 
real network data. For example, we can compare the 
degree distribution of a network to a model prediction

GNP graph with N=400,P=0.05
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𝐺𝑁𝑝 random graph model

The first model we will analyze is the 𝐺𝑁𝑝 random graph model

• Here, 𝑁 is the number of nodes and 𝑝 is the probability of a link being placed between 
each distinct pair of nodes 

• 𝐺𝑁𝑝 is a model for generating graphs for a given 𝑁and 𝑝

• An individual realization of a 𝐺𝑁𝑝 graph can be constructed via a sequence of 𝑁(𝑁 −
1)/2 Bernoulli trials

• Each trial determines if a link is placed between one of the 𝑁(𝑁 − 1)/2 distinct 
pairs of nodes in the graph

• We are interested in computing expectations over the set of graphs produced by the 
model for a given 𝑁and 𝑝

• Note that the model generates simple graphs: undirected graphs without self-loops or 
multiedges (this definition is a little different from Barabasi but more useful)
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• Let’s “simulate” a small graph using the model with 𝑁 = 4, 𝑝 = 0.3
• We start with the four nodes and generate 6 uniformly distributed random numbers 

between 0 and 1:

• Assign the random numbers to the 6 node pairs: 
1, 2 ; 1, 3 ; 1, 4 ; 2, 2 ; 2, 3 ; 2, 4 ; (3, 4)

1 2

34

1

In [8]: np.random.random(6)
Out[8]:
array([0.44646233, 0.10855423, 0.19685276, 0.29337877, 
0.66279838,0.76902445])
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• Let’s “simulate” a small graph using the model with 𝑁 = 4, 𝑝 = 0.3
• We start with the four nodes and generate 6 uniformly distributed random numbers 

between 0 and 1:

• Assign the random numbers to the 6 node pairs: 
1, 2 ; 1, 3 ; 1, 4 ; 2, 3 ; 2, 4 ; 3, 4

• And finally add a link between a pair if the corresponding 
random number is less than 𝑝

Notes:  np.random.choice would be more convenient than np.random.random

• You have already seen how to create these graphs using NetworkX

1 2

34

1

In [8]: np.random.random(6)
Out[8]:
array([0.44646233, 0.10855423, 0.19685276, 0.29337877, 
0.66279838,0.76902445])
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Check your understanding: What is the probability of generating the graph shown on the 
previous slide? 
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Check your understanding: What is the probability of generating the graph shown on the 
previous slide? 

• The graph was generated with 6 Bernoulli trials with probability of success, 𝑝. Three 
of these were successful. So, the probability of generating the graph is, 𝑝I 1 − 𝑝 I

• And there are of course several other graphs that could have been generated

• Let’s now look more closely at this idea of an ensemble of graph realizations
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• The figure on the right shows the sample 
space for 𝐺𝑁𝑝 with 𝑁 = 3à

• The “realization probabilities” for each graph 
are shown (note that they sum to 1)

• More generally, for a given 𝑁, 𝐺𝑁𝑝provides a 
probability measure that assigns a probability 
for each graph in a sample space, 𝐺 ∈ Ω/:
𝑃 𝐺 = 𝑝Q 1 − 𝑝 /,)Q

• Here, Ω/ is the set of all 𝑁-node graphs
• 𝐺 is an 𝐿-link realization generated by 
𝐺𝑁𝑝

• And 𝑁R = /
# is the maximum possible 

number of links in the graph

• We can use this probability measure to deduce other statistical properties 
of the model (for a given 𝑁)
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• Set 𝑁 = 3, and consider the degree of node 1, 𝑘%
• 𝑘% is a random number, what is its 

probability distribution?

The probability of a node, 𝑖, having a particular 
degree, 𝑑,  is the sum of the realization 
probabilities of graphs where 𝑘! = 𝑑.

• For example:

𝑃(𝑘% = 0) = n
S,'$38

𝑃 𝐺

where the sum is over the two graphs shown where 
𝑘% = 0:

𝑃 𝑘% = 0 = 1 − 𝑝 I + 𝑝 1 − 𝑝 # = 1 − 𝑝 #
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• We can also compute the expected degree 
using this perspective.

• Let 𝑘! be the expected degree of node 𝑖.

Then, 𝑘! = ∑S∈U- 𝑃 𝐺 𝑘!(𝐺)

• Here, the sum is over the entire sample space 
for a given 𝑁, and 𝑘! 𝐺 is the degree of node 
𝑖 in realization 𝐺

• For our example with 𝑁 = 3, the sum will be 
over 8 graphs.
• The realization probability for each 

graph is shown, and we can also easily 
see what 𝑘! 𝐺 is for each graph

p 2(1−p)(1−p)3 (1−p)p 2
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2
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2
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• We could also have computed the expectation in the more conventional way using 
the probability distribution for the degree: 𝑘! = ∑'38/)%𝑃 𝑘! = 𝑘 𝑘
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• Explicitly considering the ensemble of graph realizations is helpful for building an 
understanding of the 𝐺/V model and can help us reach other useful conclusions 
about the model.
• For example, the symmetry of the sample space tells us that the probability 

distribution and expectation of each node will be the same, e.g. 𝑘% = 𝑘# =
𝑘I when 𝑁 = 3.

• However, this is not the best approach for large graphs as we then have to think 
about the realization probabilities of a large number of graphs (the size of the 
sample space is 2/,)

• So, we need to find a way to generalize the approach we have just discussed. 
Fortunately, this is not too difficult!
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• We’ll now find the link distribution, 𝑝Q, for the 𝐺𝑁𝑝 model. This is the probability that a 
graph generated by the model has exactly 𝐿 links.

• The probability that a 𝐺𝑁𝑝 graph  has exactly 𝐿 links is:

(# of distinct configurations with 𝐿 links)*(probability of generating one such configuration)

• There are /,
Q distinct ways to place 𝐿 links in an 𝑁-node graph (with a maximum of 1 

link per pair of nodes). Recall that 𝑁R = /
# which is the maximum number of links that a 

𝐺𝑁𝑝 graph can have.

• The probability of creating a particular sequence of 𝐿 links is,  𝑝Q 1 − 𝑝 (/,)Q)

• Putting it all together gives the binomial distribution: 𝑝Q = /,
Q 𝑝Q 1 − 𝑝 (/,)Q)

• We could have just stated that the probability of 𝐿 successes from 𝑁′ Bernoulli trials is 
given by the binomial distribution

Link and degree distributions
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• What about the expected number of links, 𝐿 ? This can be computed from:

𝐿 = n
Q38

/,

𝐿 𝑝Q

and the sum can be evaluated using the binomial expansion.
•
• However, we’ll use a different approach to computing the expectation which uses an 

indicator random variable. This will be useful for other problems we will encounter later.

• The adjacency matrix is now a random matrix – its elements are random variables. 𝐴!"
will be 0 or 1 depending on the outcome of a Bernoulli trial. So, 𝐴!" indicates if a link is 
placed between nodes 𝑖 and 𝑗. 

• The total number of links in a graph is, 𝐿 = ∑"3%/)%∑!3"0%/ 𝐴!"
(the double summation is over each distinct node pair)

• Then, using linearity of expectation, we have, 𝐿 = ∑"3%/)%∑!3"0%/ 𝐴!"

• We now need to determine 𝐴!" 97
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• First, use the standard definition of the expectation:
𝐴!" = 𝑃 𝐴!" = 1 ∗ 1 + 𝑃 𝐴!" = 0 ∗ 0 = 𝑃(𝐴!" = 1)

This is the real advantage of an indicator random variable: its expectation is equal to the 
probability that it is 1

• For the 𝐺/V model, we know that 𝑃 𝐴!" = 1 = 𝑝, so:

𝐿 = n
"3%

/)%

n
!3"0%

/

𝐴!" =n
"3%

/)%

n
!3"0%

/

𝑝 = 𝑁R𝑝

• This is an intuitive result: the expected number of successes from 𝑁R Bernoulli trials is 
𝑁R𝑝. 
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• The degree distribution can be constructed in a similar manner. 

• The degree of a node is determined by the outcomes of 𝑁 − 1 Bernoulli trials

• Let 𝑝' be the probability that a node has degree 𝑘. Then using the same reasoning used 
for the link distribution, we find that, 𝑝' = /)%

' 𝑝' 1 − 𝑝 (/)%)')

• And 𝑘 = 𝑁 − 1 𝑝
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Node average

• One further point to consider is if there is any relationship between the average over all 
nodes in a single graph and the expectation, e.g. can we say something like:                  

𝑘 ≈ 𝑘 where, 𝑘 = %
/
∑!3%/ 𝑘!

• Approximations like this are often implicit in network science – e.g. the fraction of 
nodes with a given degree in an individual graph is assumed to be comparable to a 
probability of a node having that degree

• Heuristic argument: The node average is an average of 𝑁 realizations of random 
variables equal in distribution. As 𝑁 becomes large, a large portion of the sample space 
is included in the node average and we can anticipate convergence to the expectation.

• A (somewhat) more rigorous argument relies on the law of large numbers
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Law of large numbers: Let 𝑋%, 𝑋#, … , 𝑋/ be independent random variables, with finite 
expected value 𝜇 = 𝑋! and finite variance 𝜎# = 𝑣𝑎𝑟(𝑋!). Then for any positive 𝜖: 

𝑃 W$0W.0⋯0W-
/

− 𝜇 ≥ 𝜖 → 0 𝑎𝑠 𝑁 → ∞.

• However, there is one problem. The degrees of the the different nodes are not 
statistically independent. To see this, consider the “extreme” case where 𝑁 = 2

• Fortunately, we can show that the degrees of two nodes become independent as 𝑁 → ∞
which leads to the result, 𝑃 '$0'.0⋯0'-

/
− 𝑘 ≥ 𝜖 → 0 𝑎𝑠 𝑁 → ∞ for any positive 𝜖

• Expressions like this are often stated as: %
/
∑!3%/ 𝑘! = 𝑘 𝑤. ℎ. 𝑝.

• Here “𝑤. ℎ. 𝑝.” is shorthand for “with high probability” and is used to describe the 
behavior of random variables when the problem size → ∞
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• I haven’t given you a complete proof on the previous slide, so you may be skeptical 
about the result!

• So let’s compare the node average to the expectation using simulations of random 
graphs with varying 𝑁

• Experiment: Vary 𝑁 with the expected degree held fixed to 𝑘 = 3

• Hypothesis:  𝑘/ 𝑘 will approach one as 𝑁 increases    
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• Result: the average 
degree “approaches” the 
expected value as 𝑁
increases

• For a given 𝑁, a 
computed node average 
will depend on the graph 
realization

• So what we see is that at 
larger 𝑁, there is a 
higher probability that 
the node average of a 
realization will be close 
to the expected value
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• We will continue working with the 𝐺/V model next lecture

• Though the model may appear to be simple at first, it can produce very complicated 
behavior, and we will examine a few examples of such behavior   

Comments
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Notation

• 𝑁: total number of nodes in graph

• 𝐿: total number of links in graph

• 𝑁′: maximum possible number of links in a simple graph with 𝑁 nodes; 𝑁′ = / /)%
#

• 𝑝Q: probability of exactly 𝐿 links in the graph

• 𝐿 : expected number of links; 𝐿 = ∑Q38/, 𝐿 𝑝Q

• 𝑝': probability of a node having 𝑘 links

• 𝑘 : expected degree of node; 𝑘 = ∑'38/)% 𝑘 𝑝'

• 𝑓 : node average of 𝑓; 𝑓 = %
/
∑!3%/ 𝑓!
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𝐺𝑁𝑝 random graphs

• We have analyzed a few properties of the  𝐺𝑁𝑝 random graph model, and now we will 
examine what happens when we allow 𝑁 and 𝑝 to vary.
• We are particularly interested in what happens when 𝑁 becomes large

• The figure on the next slide shows several graphs for different 𝑁 and 𝑘 .

• Can we understand what is happening? It will be natural to focus on the 
connectivity of the graphs. E.g. when can we expect graphs generated by the model 
to be connected?
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𝑘 = 𝑛 − 1 𝑝

See also: video 3.2 in Barabasi
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• Let’s start with a “structural” question: what is the expected number of triangles in 
𝐺𝑁𝑝 graphs?

• To answer this question, we will use an indicator (random) variable, 𝑋!"',  
which will allow us to count the number of triangles in these graphs

• Let 𝑋!"' = �1 𝑖𝑓 𝑖, 𝑗, 𝑘 𝑓𝑜𝑟𝑚 𝑎 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 and we require 𝑖, 𝑗, and 𝑘 to be distinct.

Check your understanding: 𝑃(𝑋!"' = 1) =?

Triangles in 𝐺�� graphs
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• Let’s start with a “structural” question: what is the expected number of triangles in 
𝐺𝑁𝑝 graphs?

• To answer this question, we will use an indicator (random) variable, 𝑋!"',  
which will allow us to count the number of triangles in these graphs

• Let 𝑋!"' = �1 𝑖𝑓 𝑖, 𝑗, 𝑘 𝑓𝑜𝑟𝑚 𝑎 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 and we require 𝑖, 𝑗, and 𝑘 to be distinct.

Check your understanding: 𝑃(𝑋!"' = 1) =?

• 𝑃(𝑋!"' = 1) is the probability that three Bernoulli trials are all successful, so 
𝑃(𝑋!"' = 1) = 𝑝I.

• We also know that 𝑋!"' = 𝑃(𝑋!"' = 1)
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• Now, we simply need to count the number of triangles in the graph. Let 𝑡/V be 
the total number of triangles. Then,

𝑡/V = ∑$!Y4!MZ4 !,",' 𝑋!"', and using linearity of expectation,
𝑡/V = ∑$!Y4!MZ4 !,",' 𝑋!"' = ∑$!Y4!MZ4 !,",' 𝑝I

• The sum is over each distinct “triple” of nodes in the 𝑁-node graphs, and we 
know there are /

I such triples. So, the expected number of triangles is simply, 
𝑡/V = /

I 𝑝I

• Now, let’s consider what happens when 𝑁 → ∞
• If 𝑝 is held fixed, then 𝑡/V → ∞. Not particularly interesting!
• What if we allow 𝑝 to vary with 𝑁, so we have 𝑝(𝑁) with 𝑝 𝑁 → 0 when 
𝑁 → ∞? 

• Then, the rate at which 𝑝 approaches zero determines whether of not we 
expect triangles in infinitely large graphs
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• We will now prove the following theorem:

Let 𝛼 𝑁 be a real-valued function such than 𝛼 → 0 as 𝑁 → ∞, and let 𝑝 𝑁 = [ /
/

. 
Then 𝑡/V = 0 𝑤. ℎ. 𝑝.

• So we need to show that 𝑃 𝑡/V ≥ 1 → 0 as 𝑁 → ∞

• We will use Markov’s inequality:

If 𝑋 is a non-negative random variable and 𝑎 > 0, then 𝑃 𝑋 ≥ 𝑎 ≤ W
\

• Setting 𝑎 = 1 is particularly useful for discrete random variables: 𝑃 𝑋 ≥ 1 ≤ 𝑋

• If we can show that 𝑡/V → 0 as 𝑁 → ∞, we can then use this form of Markov’s 
inequality to prove our theorem
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• We have already shown that 𝑡/V = /
I 𝑝I and now, we also have 𝑝 𝑁 = [ /

/

• It follows that, lim
/→9

𝑡/V = lim
/→9

/ /)% /)# [/

]//
= 0

• Then applying Markov’s inequality with 𝑎 = 1 tells us that, 
𝑃 𝑡/V ≥ 1 → 0 as 𝑁 → ∞ completing the proof.

• This result indicates that we can say that graphs will be “locally tree-like” 𝑤. ℎ. 𝑝.
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• Generally, the 𝐺/V model is not particularly interesting when 𝑁 → ∞with 𝑝 held 
fixed 

• We can gain a sense of why from the following result:  𝐺/V graphs have diameter 
𝐷 ≤ 2 𝑤. ℎ. 𝑝. if 𝑝 is held fixed as 𝑁 → ∞

• This tells us that we will have densely connected graphs where a maximum 
of two links separates any two nodes

• Let’s now show that this statement is correct.  A graph has diameter 𝐷 ≤ 2 if 
every pair of nodes has at least one common neighbor

• We will use an indicator variable to count the pairs of nodes that do not have 
common neighbors

Connectedness with fixed 𝑝
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• Let 𝑋!" = �1, 𝑖𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑑𝑜 𝑛𝑜𝑡 ℎ𝑎𝑣𝑒 𝑎 𝑐𝑜𝑚𝑚𝑜𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Now, our goal is to compute the sum of 𝑋!" over all node pairs and show that the 
expectation of this sum goes to zero when 𝑁 → ∞. Then, Markov’s inequality can 
be used to complete the derivation.

The sum: 𝑋 = ∑"3%/)%∑!3"0%/ 𝑋!"

Its expectation: 𝑋 = ∑"3%/)%∑!3"0%/ 𝑋!"

And we know that 𝑋!" = 𝑃 𝑋!" = 1

• What is 𝑃 𝑋!" = 1 ? First consider the probability that nodes 𝑖 and 𝑗 both link to 
some third node. This probability is 𝑝#. So the probability that this node is not a 
common neighbor for 𝑖 and 𝑗 is 1 − 𝑝# . There are 𝑁 − 2 such “third nodes” to 
consider, so 𝑃 𝑋!" = 1 = 1 − 𝑝# /)#, and 𝑋 = /

# 1 − 𝑝# /)#
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• We now need to determine lim
/→9

/
# 1 − 𝑝# /)#

We have a product of two terms, the first increasing quadratically, and the second 
decreasing exponentially (assuming 0 < 𝑝 < 1), so the limit will be zero. 

Or more precisely, we know 1 − 𝑝# /)# = exp 𝑎 𝑁 − 2 where 𝑎 = log 1 − 𝑝#
is negative. Then applying l’Hopital’s rule shows that the limit is zero.

• We have shown that 𝑋 → 0, and Markov’s inequality tells us that, 𝑃 𝑋 ≥ 1 ≤
𝑋 , so 𝑃 𝑋 ≥ 1 → 0, and we can say that the number of node pairs with no 

common neighbors is zero 𝑤. ℎ. 𝑝.

• And this tells us that large graphs with fixed 𝑝 will tend to have a single densely-
connected component. However, this changes if we allow 𝑝 → 0.
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Connectedness with 𝑝 → 0

• We need to specify the rate at which 𝑝 → 0, and we will focus on one special 
case: 𝑝 = 𝑐 7>^ /

/
with 𝑐 a positive constant which must be specified.

• Why this case? It has been found that there is a transition from a disconnected 
state to a connected state when 𝑐 is increased above one, and we will (partially) 
analyze this transition

• We will now prove the following:

Assume 𝑝 = 𝑐 7>^ /
/

with 𝑐 < 1. Then 𝐺/V graphs are not connected 𝑤. ℎ. 𝑝.

• We will actually prove a stronger result, that graphs will have isolated nodes 
𝑤. ℎ. 𝑝.
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• We again introduce an indicator variable:

𝑋! = �1 𝑖𝑓 𝑖 𝑖𝑠 𝑎𝑛 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
and we will show that  𝑃 𝑋 = 0 → 0 as 𝑁 → ∞ where 𝑋 = ∑!3%/ 𝑋! is the total 
number of isolated nodes in a graph.

• We will first examine the expected value of 𝑋 and we will see that we will need to 
1) use Chebyshev’s inequality and 2) compute 𝑋# . 

• We now are familiar with the steps required to compute 𝑋 . A node is isolated if
𝑁 − 1 Bernoulli trials are unsuccessful, so,  𝑃 𝑋! = 1 = 1 − 𝑝 /)% = 𝑋!

• Then, 𝑋 = 𝑁 𝑋! = 𝑁 1 − 𝑝 /)%. What happens as 𝑁 → ∞? 
• 1 − 𝑝 /)% = exp[𝑎 𝑁 − 1 ] where 𝑎 = log(1 − 𝑝) which for small 𝑝 we can 

approximate as, 𝑎 ≈ −𝑝 = −𝑐 log𝑁 /𝑁.
• So, 1 − 𝑝 /)% ≈ exp −𝑐 log 𝑁 /)%

/
≈ exp −𝑐 log 𝑁 = 𝑁)Z, and:

𝑋 ≈ 𝑁%)Z so the expectation → ∞ if 𝑐 < 1.
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• But how can we construct a result related to 𝑃 𝑋 = 0 ?

• Here, we need to use Chebyshev’s inequality:

Let 𝑋 be a random variable and let 𝜖 > 0 be any positive real number. Then,          

𝑃 𝑋 − 𝑥 ≥ 𝜖 ≤ 𝑉𝑎𝑟(𝑋)/𝜖#.

• 𝑉𝑎𝑟(𝑋) is the variance of 𝑋, and Chebyshev’s inequality can be viewed as a 
corollary of Markov’s inequality. 

• We now need to manipulate the inequality into a form that is useful for our 
problem. We choose 𝜖 = 𝑋 , and note that 𝑃 ( 𝑋 − 𝑋) ≥ 𝜖 ≤ 𝑃 𝑋 − 𝑋 ≥ 𝜖 .
Chebyshev’s inequality can then be restated as, 𝑃 ( 𝑋 − 𝑋) ≥ 𝑋 ≤ 𝑉𝑎𝑟(𝑋)/
𝑋 #, or more simply:

𝑃 𝑋 ≤ 0 ≤ 𝑉𝑎𝑟(𝑋)/ 𝑋 #,

and now we need to evaluate, 𝑉𝑎𝑟(𝑋)/ 𝑋 # when 𝑁 → ∞.
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• The variance is defined as, 𝑉𝑎𝑟 𝑋 = 𝑋# − 𝑋 #, and:

𝑋# = ∑"3%/ ∑!3%/ 𝑋!𝑋" . The summation can be rearranged as,

𝑋# = ∑!3%/ 𝑋!# + 2∑"3%/)%∑!3"0%/ 𝑋!𝑋" .

• Now, 𝑋!# = 𝑃 𝑋!# = 1 = 𝑃 𝑋! = 1 = 𝑋! , so,

𝑋# = 𝑋 + 2∑"3%/)%∑!3"0%/ 𝑋!𝑋"

• The last major step is to derive an expression for 𝑋!𝑋" . From the definition of the 
expectation, 𝑋!𝑋" = 𝑃 𝑋! = 1, 𝑋" = 1 , and then using the rule for conditional 
probability, 𝑋!𝑋" = 𝑃 𝑋" = 1 𝑋! = 1 𝑃 𝑋! = 1 .

• We have already stated that 𝑃 𝑋! = 1 = 1 − 𝑝 /)% and using the same reasoning 
but accounting for 𝑖 being isolated , 𝑃 𝑋" = 1 𝑋! = 1 = 1 − 𝑝 /)#

• So, 𝑋# = 𝑋 + 𝑁 𝑁 − 1 1 − 𝑝 #/)I
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Let’s collect our results:

• 𝑋 = 𝑁 1 − 𝑝 /)%

• 𝑋# = 𝑋 + 𝑁 𝑁 − 1 1 − 𝑝 #/)I

• _\( W
W . = W.

W . − 1 =
/ %)V -0$0/ /)% %)V .-0/

/. %)V .-0. − 1

And simplifying the last expression,

𝑉𝑎𝑟 𝑋
𝑋 # =

1
𝑁 1 − 𝑝 /)% +

1 − 1
𝑁

1 − 𝑝 − 1

Now letting 𝑁 → ∞: lim
/→9

_\( W
W . = lim

/→9
%

/ %)V -0$ since both %
/

and 𝑝 go to zero.

Earlier we showed that for large 𝑁, 1 − 𝑝 /)% ≈ 𝑁)Z, so 
lim
/→9

_\( W
W . ≈ lim

/→9
𝑁Z)% = 0 if 𝑐 < 1. The modified form of Chebyshev’s 

inequality gives, 𝑃 𝑋 ≤ 0 → 0, which implies isolated nodes are present 𝑤. ℎ. 𝑝. ∎
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• There is a complimentary result for 𝑐 > 1:

Assume 𝑝 = 𝑐 7>^ /
/

with 𝑐 > 1. Then 𝐺/V graphs are connected 𝑤. ℎ. 𝑝.

• We will not prove this, it requires thinking about all subsets of nodes in an 𝑁-
node graph

• These results show that a slight change in the rate at which 𝑝 goes to zero has a 
fundamentally important effect on the graph structure
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• We have argued that if 𝑝 → 0 faster than %
/

, then graphs will have no triangles 𝑤. ℎ. 𝑝.
and we expect a (local) tree-like structure

• We have stated that if 𝑝 → 0 slower than ,-. /
/

, then graphs will be connected 𝑤. ℎ. 𝑝.

• What happens “in between” these states when 𝑝 ∼ %
/

? 

• What we find is that a “giant component” emerges if 𝑝 = Z
/

, with 𝑐 chosen such that 
𝑘 > 1
• A connected component is a giant component if its size increases linearly with 𝑁. 

A connected component is a subset of a graph where there is at least one path 
between each pair of nodes in the subset, and there are no links to nodes 
outside of the subset.

• This is important. In many large real-world networks there is a large connected 
component which contains a tangible fraction of the total number of nodes in 
the network and whose connectivity is important for the functionality of the 
network.

Giant component
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• Say that 𝑣 is the probability that a randomly selected node is in the giant 
component. Then 𝑢 = 1 − 𝑣 is the probability a node is not in this component. 

• But there is another way to view these probabilities.

• A randomly selected node, 𝑖, will not belong to the giant component if for every 
other node in the graph it either: 1) does not link to that node or 2) does link to 
it, but the neighbor is not in the giant component
• The probability of not linking to another node is (1 − 𝑝) and the probability 

of linking to a node not in the giant component is 𝑝𝑢. And there are 𝑁 − 1
such nodes to consider

• So the probability 𝑖 is not in the giant component is 1 − 𝑝 + 𝑝𝑢 /)%

• Consistency requires: 𝑢 = 1 − 𝑝 + 𝑝𝑢 /)%
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• So we need to consider solutions to, 𝑢 = 1 − 𝑝 + 𝑝𝑢 /)% or rewriting the 
equation in terms of 𝑣:

𝑣 − 1 = − 1 − 𝑝𝑣 /)%

• By inspection, we can see that 𝑣 = 0 is a solution indicating that there is not a 
giant component. Are there solutions with 𝑣 > 0?

• We will need a computer to answer this, but first we take the log of both sides of 
the equation and use 𝑝 = Z

/
:

log(𝑣 − 1) = − 𝑁 − 1 log(1 − Z`
/
)

• For large 𝑁, log 1 − Z`
/

≈ −𝑐𝑣/𝑁, and Z` /)%
/

= 𝑘 𝑣, so:

𝑣 ≈ 1 − exp(− 𝑘 𝑣) (for large 𝑁)

• Can we choose 𝑘 so that there are non-zero solutions? We will “explore” this 
question by choosing a few values for 𝑘 and plotting 1 − exp − 𝑘 𝑣 vs. 𝑣 and 
examining the results
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• The figure on the left shows 1 − exp − 𝑘 𝑣 vs. 𝑣 for 𝑘 = 0.5, 0.8, 𝑎𝑛𝑑 1.2. The 
dashed curve is simply 𝑣 vs. 𝑣 and any intersection between a solid curve and the 
dashed curve is a solution to our equation.

• All three solid curves intersect the dashed curve when 𝑣 = 0. Only the 𝑘 = 1.2
curve has an intersection for non-zero 𝑘 which occurs at 𝑣 = 0.31. Non-zero 
solutions are found only when 𝑘 > 1
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• The figure on the right shows the (largest) solution with 𝑘 varying. There is 
initially  a rapid increase in 𝑘 for 𝑘 > 1, and the figure indicates that the giant 
component will contain more than 90% of the graph’s nodes when 𝑘 > 3

• Technically, we have only shown that 𝑘 > 1 is necessary for the existence of a 
giant component. With further work, it can be shown that this is also a sufficient 
condition, and that a unique giant component will exist if and only if 𝑘 > 1 and 
𝑁 is sufficiently large
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Announcements

• Project 1 has been released and is due this Friday
• I will post a few clarifications on Blackboard after today’s lecture

• The midterm is Wednesday, 10/11
• It is a 30 minute test that covers lectures 1-6 and the first video of lecture 7
• I will release last year’s midterm after today’s lecture. I have removed one part 

of one question which is on a topic we are not covering this year.

• The lecture schedule on the module info pdf indicates a lecture recording will be 
released next week. I will delay this to a subsequent week that does not have a 
problem class.

• Recordings of live lectures are generally available on Teams shortly after the lecture. I 
have also posted lectures 1, 2, and 4 on Panopto
• This class has 16 lectures. Nine are live; seven are pre-recorded.

• Solutions to problem sheets and labs are posted on Blackboard every week. Solutions 
to problem class questions are not released during term. Answers to these questions 
will be provided along with the collected slides at the beginning of April. In the 
meantime, you can ask questions in one of the three remaining problem classes.
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𝐺𝑁𝑝 random graphs

Barabasi, figure 3.7

• The figure above from Ch. 3 of Barabasi has connections to many of the 
ideas covered in lecture 5

• Despite the very simple rule for generating graphs, there is a wide variety 
of graph structures that can be observed. But is this model useful? 130
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• Let’s critically compare three graph properties: 1) degree distribution, 2) 
clustering, and 3) distances

• The 𝐺/V model degree distribution
follows the binomial distribution 
with most nodes having degrees 
close to 𝑘

• However, most large complex 
networks exhibit different 
behavior. They typically have 
large-degree hubs, and the 
average degree, 𝑘 is not 
particularly important 

• The figure on the right compares 
the degree distribution of two real 
networks with 𝑝' for 𝐺/V graphs 
setting 𝑘 = 𝑘 and matching 𝑁. 

Barabasi, figure 3.6
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• Let’s critically compare three graph properties: 1) degree distribution, 2) 
clustering, and 3) distances

• Say that node 𝑖 has degree 𝑘! = 𝑘
with 𝑘 > 1. What is the expected 
number of links amongst these 𝑘
neighbors? 𝑝 '

# since the maximum 
number of links is '

# . The expected 
clustering conditional on 𝑘 > 1 is 

defined as 𝐶! 'a% =
V 1

.
1
.
= 𝑝. It is 

independent of the node degree, 
and b& 12$

'
= %

/)%

Barabasi, figure 3.13
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and point (1) above. In Figure 3.13b-d we also show the dependency of C on 
the node’s degree ki for three real networks, finding that C(k) systematical-
ly decreases with the degree, again in violation of (3.21) and point (2). 

In summary, we find that the random network model does not capture 
the clustering of real networks. Instead real networks have a much high-
er clustering coefficient than expected for a random network of similar N 
and L. An extension of the random network model proposed by Watts and 
Strogatz [29] addresses the coexistence of high <C> and the small world 
property (BOX 3.9). It fails to explain, however, why high-degree nodes have 
a smaller clustering coefficient than low-degree nodes. Models explaining 
the shape of C(k) are discussed in Chapter 9.

RANDOM NETWORKS CLUSTERING COEFFICIENT

(a) Comparing the average clustering co-
efficient of real networks with the pre-
diction (3.21) for random networks. The 
circles and their colors correspond to 
the networks of Table 3.2. Directed net-
works were made undirected to calcu-
late <C> and <k>. The green line cor-
responds to (3.21), predicting that for 
random networks the average cluster-
ing coefficient decreases as N-1. In con-
trast, for real networks <C> appears to 
be independent of N.

(b)-(d)  The dependence of the local clustering 
coefficient, C(k), on the node’s degree 
for (b) the Internet, (c) science collabo-
ration network and (d) protein interac-
tion network. C(k) is measured by av-
eraging the local clustering coefficient 
of all nodes with the same degree k. 
The green horizontal line corresponds 
to <C>. 

Figure 3.13

Clustering in Real Networks

InternetAll Networks

Protein InteractionsScience Collaboration

(a)

(c)

(b)

(d)

• Plot (a) on the right compares %
/)%

with b
'

for 10 real networks. The real networks 
have much higher clustering than what we would expect based on the 𝐺/V model

• Plot (b) shows that for the internet (and essentially all real networks), the clustering 
depends on the node degree unlike what the 𝐺/V model predicts.
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• Let’s critically compare three graph properties: 1) degree distribution, 2) 
clustering, and 3) distances

• The diameter of the giant component in 𝐺/V graphs is estimated to be 

𝐷 ≈ ,-. /
,-. '

, i.e. the diameter varies logarithmically (slowly) with the 
number of nodes. 

• Consider the global social network. Take 𝑁 ≈ 8 x 10c and 𝑘 ≈ 500. Then, 
the 𝐺/V model predicts, 𝐷 ≈ 3.7. I.e. there are 3-4 “degrees of 
separation” between any two people. This is reasonably close to what 
social scientists expect!

• Generally, it is the average distance 𝑑 of real networks rather than the 
diameter that tends to be close to ,-. /

,-. '
rather than the diameter. The 

main point is that distances are “short” both in 𝐺/V graphs and in real 
complex networks. 
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• For the most part, the 𝐺/V model does not accurately describe large real-
world networks. 

• This is not surprising. We know that networks are not designed or 
constructed by randomly placing links based on Bernoulli trials!

• So why study this model? It is a useful reference when making 
comparisons with real networks.

• It is also a useful reference for graph models. We will consider two 
more sophisticated models, and a good understanding of the 𝐺/V
model helps us understand the strengths and weaknesses of these 
advanced models which have been developed more recently.

• Many mathematicians over the years have also found it to be 
“interesting”.
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Configuration model

• The next model we will analyze is the 
configuration model

• The aim is to adapt the 𝐺/V model so 
that simulated graphs match a specified 
degree distribution

• The model was introduced by Bender & 
Canfield (1978) and then developed, 
analyzed, and named by Bollobas (1980)

We will: 
1. Introduce the model
2. Manually build a simple graph
3. Analyze a few important properties of the model
We will not comprehensively investigate the model
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• The configuration model doesn’t specify a degree distribution, rather it specifies a 
degree sequence, d = (𝑘%, 𝑘#, … , 𝑘/), which sets the degree of each node

• Note: the total degree, 𝐾 = ∑!3%/ 𝑘! , must be even

• For convenience, we do not allow isolated nodes with 𝑘𝑖 = 0

1 2

34

1

2

3

1

A node with 2 stubs

Generating a graph:

1. Place 𝑘𝑖 “stubs” on node 𝑖 for each 𝑖

2. Assign a number to each of the 𝐾 stubs

3. Randomly choose 1 pair of stubs and connect 
them (they are then no longer stubs)

4. Repeat step 3 until all stubs have been 
connected
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Simple example

• Consider the degree sequence, (2,1,1)

• The nodes with labeled stubs are shown à

• A realization can be generated with the 
following crude algorithm:

1. Create a list of all stubs, (𝑠%, 𝑠#, 𝑠I, 𝑠d)

2. Select 2 uniformly at random, place a link 
between the pair, and remove them from list

3. Repeat step 2 until two stubs remain, and 
place a link between them

4. So, if we 1st choose 𝑠# and 𝑠I, we get à

1 2

34

1 2 3

1

1
2

3 4

1 2

34

1 2 3

1

1
2

3 4
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• This graph, 𝐺, is just one realization – the 
model defines a sample space of 
realizations for a given degree sequence.  
We can say that 𝐺 ∈ 𝐺Z d = (2,1,1) where 
𝐺Z(d) indicates the ensemble of graphs 
generated by the configuration model with 
degree sequence, d

• Any one stub is equally likely to connect to 
any other stub with probability 1/(𝐾 − 1)

• For this example, there are 3 graphs that 
can be generated with equal probability

• However, this is not generally the case. For a 
given degree sequence, it is possible for 
some graphs to be generated more 
frequently than others.

1 2

34

1 2 3

1

1
2

3 4

Notes:
• This model allows self-loops and 

multiple links between a pair of nodes

• Most real networks don’t have these 
kinds of links, but it can be shown that 
they are “rare” as the graph size 
becomes large (and with some 
constraints on the degree sequence)
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Model properties

Question 1: What is the expected number of links between distinct nodes 𝑖 and 𝑗?

• Set “𝑎”  as one of 𝑘! stubs on node 𝑖 and “𝑏” as one of 𝑘" stubs on 𝑗

• Let 𝑋\* count the number of links between 𝑎 and 𝑏 (it will be either 0 or 1)

• Then 𝑃(𝑋\* = 1) = %
e)%

as stated earlier, and 𝑋\* = %
e)%

• Finally, let 𝑙!" be the number of links between 𝑖 and 𝑗 (with 𝑖 ≠ 𝑗)

• Then, 𝑙!" = ∑\3%
'& ∑*3%

'' 𝑋\* = '&''
e)%

• We immediately see that higher-degree nodes tend to link to each other more frequently

• Of course, this will only be important if the degree sequence contains a reasonably broad 
range of degrees!
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Question 2: What is the expected number of self-loops on node 𝑖?

• Let “𝑎” and “𝑏” be distinct stubs on node 𝑖

• 𝑋\* will again count the number of links between 𝑎 and 𝑏, and: 𝑃(𝑋\* = 1) = 𝑋\* =
%

e)%

• Then, 𝑙!! = ∑\3%
'&)%∑*3\0%

'& 𝑋\* = '&('&)%)
#(e)%)

where 𝑙!! is the expected number of self-
loops on 𝑖

• The indices for the double sum have been set to ensure that 𝑎 and 𝑏 are distinct

• We see that if 𝐾 ≫ 𝑘!#, the number of expected self-loops on 𝑖 will be small
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Question 3: What is 𝑠 , the expected number of self-loops in a graph? (assuming that 𝐾 ≫ 1)

• Using linearity of expectation, this is 𝑠 = ∑!3%/ '&('&)%)
#(e)%)

≈ ∑!3%/ '&('&)%)
#e

• We can put this in a more interpretable form by recognizing that:
• The sum can be re-written as: ∑'3%

'345𝑁'
'(')%)
#e

where 𝑁' is the number of nodes with 
degree 𝑘

• e
/
= 𝑘, the average degree

• /1
/
= 𝑝', the fraction of nodes with degree 𝑘 and…

141



Imperial College
London

• ∑'3%
'345 𝑝' 𝑘 = 𝑘, ∑'3%

'345 𝑝' 𝑘# = 𝑘#

• Putting all of this together, we have: 𝑠 ≈
'.− '

#'

• A key conclusion is that if we hold 𝑘# and 𝑘 fixed to finite values and consider a sequence 
of graphs with 𝐿 → ∞, then the fraction of edges which are self-loops goes to zero, Y

Q
→ 0
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Summary

• We began this lecture pointing out a few important weakness of the 𝐺/V model

• The configuration model produces network which:
• Can have a realistic degree distribution
• May have higher clustering 𝐺/V graphs
• Exhibit the small world property

• So, the configuration model is a step forward. But important questions remain as will be 
discussed in upcoming lectures

• The discussion here is really just a brief overview. There is much more one can do to 
analyze and improve the configuration model. For an advanced and somewhat different 
treatment, see the (highly-cited) paper by Newman, Watts, and Strogatz, “Random graphs 
with arbitrary degree distributions and their applications”
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In the previous lecture we introduced the configuration model which:

• Is a random graph model that can produce graphs with realistic degree distributions

• Requires the specification of a degree sequence, d = {𝑘%, 𝑘#, … , 𝑘/}

• And has the key property that the probability that any two stubs are linked is %
e)%

where 𝐾
is the “total degree”, 𝐾 = ∑!3%/ 𝑘! and is also the total number of stubs in the graph.

• When analyzing the configuration model, it is often convenient to work with 𝑁', the 
number of nodes with degree 𝑘, or 𝑝', the fraction of nodes with degree 𝑘. 

• We then aim (when we can) to provide expressions in terms of the moments of the 
degree sequence:
• 𝑘 = %

/
∑!3%/ 𝑘!

• 𝑘# = %
/
∑!3%/ 𝑘!#

Recap
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We continue with a fourth question related to the configuration model:
Question 4: What is the probability that node 𝑖 does not have any self loops ?

• So we need to find 𝑃(𝑙!! = 0)

• Say that the stubs are numbered from 1 to 𝑘! . The probability that stub 1 does not 
connect to any of the other stubs on 𝑖 is 1 − '&)%

e)%

• The probability that neither stub 1 nor stub 2 connect to node 𝑖 is, 

1 −
𝑘! − 1
𝐾 − 1 1 −

𝑘! − 2
𝐾 − 3

• And  continuing on to stub 𝑘! − 1, we find, 𝑃(𝑙!! = 0) = ∏@3%
'&)% 1 − '&)@

e)#@0%

• It is more challenging to work with probabilities than expectations when analyzing 
the configuration model

Check your understanding: Why does the product go to 𝑘! − 1 rather than 𝑘!?

Configuration model, continued
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• Let’s look at an example, the figure shows 
the degree distribution for a university’s 
Facebook friend network from 2005

• 𝑘 = 68.17, 𝑘# = 8495.74

• So, 𝑠 ≈ 61.81

• Using the configuration model (and 
NetworkX) to generate 100 graphs with 
this degree sequence gives an average of 
61.27 self-loops per graph

• Note as well that Y
Q
≈ ]%.g%

6/7/.6
.

≈ 3e-4. The 

fraction of nodes expected to be self 
loops is small.
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• Let’s also check our result for the 
probability that a node does not have 
self-loops

• Now generating 400 graphs, compute 
the total number of nodes with degree 
𝑘 that do not have self loops and divide 
that total by 400𝑁'

• The figure compares this average with 
𝑃 𝑙!! = 0 for each unique degree in 
the degree sequence

• This indicates that the theory works 
pretty well, and we also see the 
(expected) result that hubs will have a 
higher tendency to have at least 1 self-
loop
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We will now state a few results for more familiar quantities.

• The expected clustering for a node with degree 𝑘 is, 𝐶 ≈
'.)'

.

/ '
/

• This approximation assumes that the graph is sufficiently large for the influence of self-
loops and multi-edges to be negligible

• Recall that the clustering coefficient for a 𝐺𝑁𝑝 graph is 𝑝 = '
/)%

• So we find for both models that the clustering goes to zero as 𝑁 is increased.

• However, for some reasonable degree sequences, the numerator 𝑘# − 𝑘
#

can be large, 
and the configuration model will then produce much more clustering than a 𝐺/V random 
graph (on average). 
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• The configuration model exhibits the small world property, i.e. the diameter increases 
logarithmically with the graph size

• A giant component in a sparse family of configuration model graphs is present with high 
probability if and only if the Molloy-Reed criterion is satisfied:  𝑘# − 2 𝑘 > 0

• A configuration-model graph family is sparse if the average degree remains finite as 
𝑁 → ∞

• Here we are considering a sequence of degree sequences with the length of the 
degree sequence increasing

• Most large real-world networks satisfy this criterion and also contain giant 
components
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Last question: Why (might) your friends have more friends than you?
We consider a related problem: 

Construct a degree sequence corresponding to a social network, generate a graph with this 
sequence, choose a node, and then: what is 𝜋', the probability that an arbitrary stub on the 
chosen node connects to a stub on a node with 𝑘 friends?       

• The graph has 𝑁' nodes with degree 𝑘, and the probability of a stub connecting to any one 
of these nodes is, 𝜋' =

'/1
e)%

≈ '/1
e

when  𝐾 ≫ 1

• The numerator is just the total number of stubs connected to nodes with degree 𝑘, 
and we have assumed that the selected node does not have degree 𝑘 (how would the 
above be modified if it did?)

• Then using the same simplifications used in lecture 6 when computing 𝑠 , we find:  

𝜋' ≈
𝑘𝑝'
𝑘
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We can now compute the expected degree of the friend:

𝑘h(!iM$ = ∑' 𝜋'𝑘 =
%
'
∑' 𝑘#𝑝' =

'.

'

• I didn’t specify how we choose a node; we could choose the same node each time and this 
result would hold. However, to partially address our initial question, it is best to choose 
the node uniformly at random each time a new graph is generated.

• The expected degree of this node will then be 𝑘

• And then we can consider 𝑘h(!iM$ − 𝑘 = '.)'
.

'

• The numerator on the RHS is the (biased) sample variance of the degree sequence and the 
expression will be positive provided that the degrees are not all the same.

• So we expect the friend to have a higher degree than the degree of the randomly chosen 
node. Real complex networks tend to have variances that are much larger than the average 
degree, so the “typical” friend can be considerably more popular.
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• For a real network, do we see anything like,  𝑘h(!iM$ ≈ '.

'
?

• Consider the following problem for a real network: Interpret each link as 2 stubs. 
Randomly select one stub, follow it via its partner stub to a node, f.  What is 𝑘h ?

• This is equivalent to randomly choosing a stub and considering its node:

• We have 𝑘𝑁' stubs on nodes with degree 𝑘 and there are 𝐾 stubs in total, so 
𝑃 𝑘h = 𝑘 = /1'

e
= 'V1

'
where 𝑝' is the fraction of nodes with degree 𝑘 and 𝑁' =

𝑝'𝑁

• Then, 𝑘h = '.

'
which will again be larger than 𝑘, the expected degree of a randomly 

chosen node if the degree distribution has finite variance. 

• The simple underlying idea here is that choosing links rather than nodes generates a 
bias towards high-degree nodes
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Friendship paradox

These ideas about friends of friends are loosely related to what is known as the “friendship 
paradox”
• Consider the table shown taken 

from: Feld, Scott L. “Why Your 
Friends Have More Friends Than 
You Do.” American Journal of 
Sociology, vol. 96, no. 6, 1991, pp. 
1464–1477

• This is data from a small social 
network in an American high 
school

 APHULFDQ JRXUQDO RI 6RFLRORJ\

 1(4) - 4(2.75) - 4(3) - 2(3.5)
 BHWW\ 6XH AOLFH JDQH

 3(3.3)3DP ??(3.3) DDOH

 2(2) CDURO

 1
 1(2) 7LPD

 7KH QXPEHU EHVLGH HDFK QDPH LV KHU QXPEHU RI IULHQGV. 7KH QXPEHU LQ

 SDUHQWKHVHV EHVLGH HDFK QDPH LV WKH PHDQ QXPEHU RI IULHQGV RI KHU IULHQGV.

 FIG. 1.-FULHQGVKLSV DPRQJ HLJKW JLUOV DW 0DUNHWYLOOH HLJK 6FKRRO

 1 VKRZV HDFK JLUO'V QXPEHU RI IULHQGV LQ WKH ILUVW FROXPQ DQG, LQ WKH WKLUG

 FROXPQ, WKH PHDQ QXPEHU RI IULHQGV KHU IULHQGV KDYH. 7ZLFH DV PDQ\
 (5:2) KDYH IHZHU WKDQ DYHUDJH DV KDYH PRUH WKDQ WKH DYHUDJH DPRQJ WKHLU

 IULHQGV.

 7KH FRPSOHWH QHWZRUN RI DOO RI WKH JLUOV LQ 0DUNHWYLOOH VKRZV WKH VDPH

 SDWWHUQ. FLJXUH 2 UHSURGXFHV WKH HQWLUH VRFLRJUDP RI PXWXDO FKRLFHV. 2I

 WKH 146 JLUOV ZKR KDYH DQ\ PXWXDO IULHQGV, 80 KDYH IHZHU IULHQGV WKDQ

 WKH PHDQ DPRQJ WKHLU IULHQGV ZKLOH 41 KDYH PRUH; 25 KDYH WKH VDPH DV

 WKH PHDQ DPRQJ WKHLU IULHQGV. 7KXV, QHDUO\ WZLFH DV PDQ\ KDYH IHZHU

 DV KDYH PRUH WKDQ WKH PHDQ DPRQJ WKHLU IULHQGV. 7KH VDPH SDWWHUQ

 7AB/E 1

 A 6800A5< 2F 7HE 180BE56 2F F5IE1D6 A1D 7HE 0EA1 180BE56 2F F5IE1D6

 2F F5IE1D6 F25 EACH 2F 7HE GI5/6 I1 FIG85E 1

 7RWDO 1XPEHU RI 0HDQ 1XPEHU RI

 1XPEHU RI FULHQGV RI FULHQGV RI

 FULHQGV HHU FULHQGV HHU FULHQGV

 ([W) (<-[,) (-[,O/[W)

 BHWW\ .1 4 4

 6XH .4 11 2.75

 AOLFH .4 12 3

 JDQH .2 7 3.5
 3DP .3 10 3.3

 DDOH .3 10 3.3

 CDURO .2 4 2

 7LQD .1 2 2

 7RWDO .20 60 23.92

 0HDQ 2.5* 3W 2.99*

 * FRU HLJKW JLUOV.
 W FRU 20 IULHQGV.

 1466

This content downloaded from 
             86.131.97.190 on Tue, 03 Nov 2020 01:39:39 UTC              

All use subject to https://about.jstor.org/terms

• The 1st column is the degree of each student (the total is 𝐾, the mean is 𝑘)

• The 2nd column is the total degree of all friends of an individual. Say there was a 9th

student with 8 friends. Then she would contribute 8 to each entry in this column. 

• The “Total” and “Mean” in this column are familiar quantities. To see this, we just 
need to work with the network adjacency matrix.
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Friendship paradox

• Say that 𝑓! is the total number of friends that node 𝑖’s friends has. Then, 𝑓! = ∑"3%/ 𝐴!"𝑘".

• The total number of friends of friends is then:  ∑!3%/ 𝑓! = ∑!3%/ ∑"3%/ 𝐴!"𝑘". Swapping the 
sums on the right-hand side and rearranging:

∑!3%/ 𝑓! = ∑"3%
/ 𝑘" ∑!3%/ 𝐴!" = ∑"3%/ 𝑘"# = 𝑁𝑘#

• Now we scale the result by the total number of friends: 
4>4\7 M?@*i( >h h(!iM$Y >h h(!iM$Y

4>4\7 M?@*i( >h h(!iM$Y
= /'.

e
= '.

'
which is the same as the expression for 

𝑘h(!iM$ obtained with the configuration model. We know that '
.

'
> 𝑘 for networks 

with varying degrees, but this does not really tell us what an individual experiences.

• Instead, we should consider the average number of friends that a person’s friends has. 
Say that 𝑘!

h is the average number of friends of friends for node 𝑖. Then,                      
𝑘!
h= %

'&
∑"3%/ 𝐴!"𝑘" . The average of this quantity for the network is,                             

𝑘h = %
/
∑!3%/ %

'&
∑"3%/ 𝐴!"𝑘" which can’t be simplified easily like the previous case.
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 APHULFDQ JRXUQDO RI 6RFLRORJ\

 1(4) - 4(2.75) - 4(3) - 2(3.5)
 BHWW\ 6XH AOLFH JDQH

 3(3.3)3DP ??(3.3) DDOH

 2(2) CDURO

 1
 1(2) 7LPD

 7KH QXPEHU EHVLGH HDFK QDPH LV KHU QXPEHU RI IULHQGV. 7KH QXPEHU LQ

 SDUHQWKHVHV EHVLGH HDFK QDPH LV WKH PHDQ QXPEHU RI IULHQGV RI KHU IULHQGV.

 FIG. 1.-FULHQGVKLSV DPRQJ HLJKW JLUOV DW 0DUNHWYLOOH HLJK 6FKRRO

 1 VKRZV HDFK JLUO'V QXPEHU RI IULHQGV LQ WKH ILUVW FROXPQ DQG, LQ WKH WKLUG

 FROXPQ, WKH PHDQ QXPEHU RI IULHQGV KHU IULHQGV KDYH. 7ZLFH DV PDQ\
 (5:2) KDYH IHZHU WKDQ DYHUDJH DV KDYH PRUH WKDQ WKH DYHUDJH DPRQJ WKHLU

 IULHQGV.

 7KH FRPSOHWH QHWZRUN RI DOO RI WKH JLUOV LQ 0DUNHWYLOOH VKRZV WKH VDPH

 SDWWHUQ. FLJXUH 2 UHSURGXFHV WKH HQWLUH VRFLRJUDP RI PXWXDO FKRLFHV. 2I

 WKH 146 JLUOV ZKR KDYH DQ\ PXWXDO IULHQGV, 80 KDYH IHZHU IULHQGV WKDQ

 WKH PHDQ DPRQJ WKHLU IULHQGV ZKLOH 41 KDYH PRUH; 25 KDYH WKH VDPH DV

 WKH PHDQ DPRQJ WKHLU IULHQGV. 7KXV, QHDUO\ WZLFH DV PDQ\ KDYH IHZHU

 DV KDYH PRUH WKDQ WKH PHDQ DPRQJ WKHLU IULHQGV. 7KH VDPH SDWWHUQ

 7AB/E 1

 A 6800A5< 2F 7HE 180BE56 2F F5IE1D6 A1D 7HE 0EA1 180BE56 2F F5IE1D6

 2F F5IE1D6 F25 EACH 2F 7HE GI5/6 I1 FIG85E 1

 7RWDO 1XPEHU RI 0HDQ 1XPEHU RI

 1XPEHU RI FULHQGV RI FULHQGV RI

 FULHQGV HHU FULHQGV HHU FULHQGV

 ([W) (<-[,) (-[,O/[W)

 BHWW\ .1 4 4

 6XH .4 11 2.75

 AOLFH .4 12 3

 JDQH .2 7 3.5
 3DP .3 10 3.3

 DDOH .3 10 3.3

 CDURO .2 4 2

 7LQD .1 2 2

 7RWDO .20 60 23.92

 0HDQ 2.5* 3W 2.99*

 * FRU HLJKW JLUOV.
 W FRU 20 IULHQGV.

 1466

This content downloaded from 
             86.131.97.190 on Tue, 03 Nov 2020 01:39:39 UTC              

All use subject to https://about.jstor.org/terms

• We know that '
.

'
= ]8

#8
= 3 has to be 

greater than or equal to 𝑘 = 2.5

• But 𝑘h is more difficult to analyze

• The relative magnitude of 𝑘hand 𝑘
depends on the details of the graph 
structure, i.e. do “popular” people 
tend to be friends with each other?

• It has been empirically observed that typically  𝑘h is tangibly larger than 𝑘, and this is 
known as the “friendship paradox” – your friends tend to have more friends than you. 

• Consider a simple illustrative example. A person has 50 friends but each of these friends 
has only 1 friend. Then, 𝑘 = 100/51 but 𝑘h = %0j8∗j8

j%
≫ 𝑘 and most would have far 

fewer friends than their friend
• Alternatively if the 50 friends had relatively large degrees, this would reduce the 

difference between 𝑘hand 𝑘. 
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Dynamic graphs

• The configuration model resolves many 
of the weaknesses of the 𝐺𝑁𝑝 model

• So is there really any need to consider 
other models?

• The configuration model mimics a 
network with a given degree 
distribution

• It doesn’t tell us why the network 
has a given distribution

Another key point: most complex networks are not static, they evolve in time
• We know social networks evolve in time, a growing biological network can be 

observed here: https://www.nikonsmallworld.com/galleries/2018-small-world-in-motion-
competition/zebrafish-embryo-growing-its-elaborate-sensory-nervous-system

• An explanatory model should show how networks evolve and how degree 
distributions develop

https://www.nikonsmallworld.com/galleries/2018-small-world-in-motion-competition/zebrafish-embryo-growing-its-elaborate-sensory-nervous-system
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• We need to think about the addition and 
removal of nodes and links over time

• The probability of a node (or link) being 
added or removed will depend on the 
cost and benefit of the action

• Some links on Instagram have more 
value than others, creating an account 
has more value for some than others

• How can these ideas be translated to a 
mathematical model? 

• We could assign a fitness to nodes and links which connect to a probability that 
nodes and links are added or removed 
• Similar ideas are commonly applied in evolutionary biology -- the relative 

fitness of a genetic mutation determines if it spreads in a population
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• Say our model network starts as shown à

• How do we assign fitness values? Should these values evolve 
in time?

• These are very complicated questions, a guiding principle to 
get started:

“Everything should be as simple as it can be, but not simpler”  -
-- Einstein (paraphrased) 

1. How fast should the network grow: 1 node per iteration

2. How/when should nodes/links be removed? In some 
complex networks node/link removal is rare, so once a 
node or link is added,  let’s keep it forever (see Barabasi, 
figure 6.11)

3. How should links be added? – this requires some thought

1 2

3

2
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• Let’s add 1 link per iteration

• Where should the new link be placed in our example? à

• We can just choose 1 node randomly for this case

• But what about the next iteration? 
• If we just place links randomly, the resulting model will 

have similar shortcomings to the 𝐺/V model, i.e. this 
would be “too simple” 

• So, links should be placed with some consideration of 
fitness – which potential neighbor has the most value?

Preferential attachment: links to nodes with higher 
degrees have greater value

1 2

3

2

1 2

344

1 2

344

3
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Preferential attachment

Preferential attachment: nodes with higher degrees have 
greater value

• This needs to be translated into a mathematical statement

• The simplest approach is linear preferential attachment:

The probability of a new link attaching to an existing 
node is linearly proportional to that node’s degree

or 
𝜌! 𝑡 + 1|𝐺\(𝑡) = '& 4|S4(4)

∑&8$
- * '&(4)

where 𝜌! 𝑡 + 1|𝐺\(𝑡) is the probability of a link 
connecting to node 𝑖 in graph 𝐺\(𝑡) with 𝑡 ∈ {1,2,3, … }

• Simple perspective: interpret each link as 2 stubs.  Choose 1 
stub at random and place a link between the new node and 
the node which this stub connects to.

1 2

3

2

1 2

344

1 2

344

3

t=0

t=1
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• To complete our model specification, we need to set the initial 
state of the model

• Again, we will keep things simple:

At 𝑡 = 0, our network will be 2 nodes joined by a link

• With this initial condition, the size of the network will be:

𝑁 𝑡 = 2 + 𝑡, 𝐿 𝑡 = 1 + 𝑡, 𝑡 ∈ {0,1,2, … }

And: 𝜌! 𝑡 + 1 = '& 4
#Q(4)

= '& 4
#(%04)

Note: this probability defines how the state of the graph at time 𝑡
influences the state at time 𝑡 + 1

• The probability of a new link connecting node 3 to node 1 
is 1/2 or : 𝜌% 𝑡 = 1 = %

#

1 2

344

5

1 2

1 2

3

4

t=0
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Barabasi-Albert model

• Our model belongs to the family of Barabasi-Albert graphs

• The Barabasi-Albert model:
• Allows 𝑞 links to be added each iteration (𝑞 can be 

greater than 1)
• The initial state consists of 𝑁0nodes where each node has 

at least one link and 𝑁8 ≥ 𝑞
• The model is “underspecified” – see Box 5.1 in Barabasi

• Our model specification (𝑞 = 1 𝑁0 = 2) was chosen to simplify 
the analysis which follows

1 2

3

2

1 2

344

1 2

344

3

Example with 𝑞 = 2,𝑁0 = 3

t=0

t=1
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• Let’s think carefully about the 1st few iterations of our model

• At 𝑡 = 0, we have our specified initial state which we label, 
𝐺% 𝑡 = 0

• At 𝑡 = 1, there are two possible graphs which will be generated 
with equal probability ½ , 𝐺% 𝑡 = 1 , 𝐺# 𝑡 = 1 . The subscripts 
are “assigned” arbitrarily

• What about 𝑡 = 2? There are 3 possible “descendants” of each of 
the graphs generated at 𝑡 = 1, so the size of the sample space is 6. 
• The probability of generating 𝐺d 𝑡 = 2 is:

𝑃 𝐺d 2 = (Probability of generating 𝐺# 𝑡 = 1 ) * (Probability 
of adding link between nodes 2 and 4 to 𝐺# 𝑡 = 1 )

• This is straightforward to evaluate: 𝑃 𝐺d 2 = 0.5 ∗ 0.5 =
0.25. Note that the value is not 1/6 – some graphs are more 
likely to be generated than others

1 2

344

5

1 2

1 2

3

4

1 2

344

5

1 2

1 2
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𝐺d 𝑡 = 2

𝐺# 𝑡 = 1



Imperial College
London

• Generalizing, the size of the sample space at time 𝑡 is (𝑡 + 1)!

• The expectation at time 𝑡 is computed as:

𝑓(𝑡) = ∑@3%
40% !𝑃 𝐺@ 𝑡 𝑓 𝑡 𝐺@ 𝑡

• Here, 𝑃 𝐺! 𝑡 is the probability of generating graph 𝐺! 𝑡 and 
𝑓 𝑡 𝐺! 𝑡 is an arbitrary quantity evaluated on 𝐺! 𝑡

• For example, 𝑘# 𝑡 = 2 𝐺d 𝑡 = 2 = 3

Check your understanding: what is 𝑘#(𝑡 = 2) ?

• Let’s now apply these ideas to the computation of the degree 
distribution
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Degree distribution

• What is our degree distribution at 𝑡 = 0?

• All nodes have degree 1

• At 𝑡 = 1? 

• Two nodes with degree 1,  one with degree 2

• And then it becomes more complicated. Let’s take an inductive 
approach
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Say that we know the degree distribution at time 𝑡, 𝑝' 𝑡 .  Then 
what is 𝑝' 𝑡 + 1 ?

• First, we introduce three random variables:

• 𝑁' 𝑡 : number of nodes with degree 𝑘 at time 𝑡. By definition, 
𝑝' 𝑡 = /1 4

/ 4

• 𝑙' 𝑡 + 1|𝐺@(𝑡) : An indicator variable, 𝑙' 𝑡 + 1|𝐺@(𝑡) is the 
number of links added to nodes in 𝐺@(𝑡) with degree 𝑘. Will be 
either 0 or 1 (when 𝑘 = 1 we will also have to account for the 
new node).

• We will characterize an iteration with 𝑁' 𝑡 + 1|𝐺@(𝑡) , the 
number of nodes with degree 𝑘 at time 𝑡 + 1 given graph 𝐺@(𝑡)
at time 𝑡. This is a random variable which can take on three 
values. This notation may be a little confusing, so let’s look at 
this variable more closely…
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There are three cases to consider for one iteration of our B-A model with 𝑘 > 1:

• Case A: If a node with degree 𝑘 receives a link:
𝑁' 𝑡 + 1|𝐺@(𝑡) = 𝑁' 𝑡|𝐺@(𝑡) − 1

• Case B: If a node with degree 𝑘 − 1 receives a link:
𝑁' 𝑡 + 1|𝐺@(𝑡) = 𝑁' 𝑡|𝐺@(𝑡) + 1

• Case C: Otherwise: 𝑁' 𝑡 + 1|𝐺@(𝑡) = 𝑁' 𝑡|𝐺@(𝑡)

This perspective suggests the following approach for computing the expectation, 
𝑁' 𝑡 + 1 :

𝑁' 𝑡 + 1 =

n
@3%

40% !

𝑃 𝐺@ 𝑡 𝑃 𝐴 𝑁' 𝑡|𝐺@(𝑡) − 1 + 𝑃 𝐵 𝑁' 𝑡|𝐺@(𝑡) + 1 + 𝑃(𝐶)𝑁' 𝑡|𝐺@(𝑡)

Here, 𝑃(𝐴) is the probability of case 𝐴 with equivalent definitions for the other cases, 
and 𝑃 𝐴 + 𝑃 𝐵 + 𝑃 𝐶 = 1. 
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Next, we replace 𝑃(𝐴) and 𝑃(𝐵) using our indicator variable and obtain:

𝑁' 𝑡 + 1 =

n
@3%

40% !

𝑃 𝐺@ 𝑡 𝑁' 𝑡 𝐺@ 𝑡 − 𝑃 𝑙' 𝑡 + 1 𝐺@ 𝑡 = 1 + 𝑃 𝑙')% 𝑡 + 1 𝐺@ 𝑡 = 1

• The above holds for 𝑘 > 1. For 𝑘 = 1, we modify the expression to account for a new 
node with 𝑘 = 1 being introduced each iteration and for the fact that there are no nodes 
with 𝑘 = 0:

𝑁% 𝑡 + 1 =

n
@3%

40% !

𝑃 𝐺@ 𝑡 𝑁% 𝑡 𝐺@ 𝑡 − 𝑃 𝑙% 𝑡 𝐺\ 𝑡 = 1 + 1

• We can simplify these equations substantially by recognizing that: 

𝑃 𝑙' 𝑡 + 1 𝐺@ 𝑡 = 1 =
𝑘𝑁' 𝑡 𝐺@ 𝑡

2𝐿 𝑡
• this follows from our definition of 𝜌! 𝑡 + 1|𝐺@(𝑡)

probability of adding 
link to node with degree 𝑘

probability of adding 
link to node with degree 𝑘 − 1
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• We now have the inductive results we need

Master equations:

𝒌 > 𝟏:

𝑁 𝑡 + 1 𝑝' 𝑡 + 1 = 𝑁 𝑡 𝑝' 𝑡 −
𝑝' 𝑡 𝑁(𝑡)𝑘
2𝐿 𝑡

+
𝑝')% 𝑡 𝑁(𝑡)(𝑘 − 1)

2𝐿 𝑡

𝒌 = 𝟏:

𝑁 𝑡 + 1 𝑝% 𝑡 + 1 = 𝑁 𝑡 𝑝% 𝑡 −
𝑝% 𝑡 𝑁(𝑡)
2𝐿 𝑡 + 1

• These equations, can be used to compute the evolution of the degree 
distribution

• These equations can be used for our next task -- obtaining an interpretable 
result when 𝑡 → ∞
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• Previously, we derived the master equations for the degree distribution generated 
by the Barabasi-Albert (B-A) model 

Master equations:

𝒌 > 𝟏:

𝑁 𝑡 + 1 𝑝' 𝑡 + 1 = 𝑁 𝑡 𝑝' 𝑡 −
𝑝' 𝑡 𝑁(𝑡)𝑘
2𝐿 𝑡 +

𝑝')% 𝑡 𝑁(𝑡)(𝑘 − 1)
2𝐿 𝑡

𝒌 = 𝟏:

𝑁 𝑡 + 1 𝑝% 𝑡 + 1 = 𝑁 𝑡 𝑝% 𝑡 −
𝑝% 𝑡 𝑁(𝑡)
2𝐿 𝑡 + 1

• Let’s now examine what happens when the graphs become large

B-A model: degree distribution



Imperial College
London

We start with:

𝑁 𝑡 + 1 𝑝% 𝑡 + 1 = 𝑁 𝑡 𝑝% 𝑡 −
𝑝% 𝑡 𝑁(𝑡)
2𝐿 𝑡 + 1

• When 𝑁 ≫ 1, we see that we will have 𝑝% 𝑡 + 1 ≈ 𝑝%(𝑡) (remember that 
𝑁 𝑡 = 2 + 𝑡, 𝐿 𝑡 = 1 + 𝑡), and as 𝑡 → ∞, we will have 𝑝% 𝑡 + 1 = 𝑝%(𝑡) =
𝑝%,9

• The same argument can be used for general 𝑘 giving, 𝑝' 𝑡 + 1 = 𝑝'(𝑡) =
𝑝',9 in the limit 𝑡 → ∞

• In order to find this stationary distribution, we rearrange the equation, 
3𝑝% 𝑡 + 1 − 2𝑝%(𝑡) = 𝑡[𝑝% 𝑡 − 𝑝% 𝑡 + 1 ] −

V$ 4 (#04)
#(%04)

+ 1

and evaluate the limit as 𝑡 → ∞ while imposing the condition, 
𝑡(𝑝'(𝑡 + 1) − 𝑝'(𝑡)) → 0 𝑎𝑠 𝑡 → ∞.
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• This gives the result,

𝑝%,9 = − V$,:
#
+ 1 or  simply, 𝑝%,9 = #

I

and using the same approach for general 𝑘, we find, 

𝑝',9 = −
𝑝',9𝑘
2 +

𝑝')%,9 (𝑘 − 1)
2

which is rearranged as, 𝑝',9 = ')%
'0#

𝑝')%,9

We’re almost done now, we just have to examine this recurrence
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Rearranging our recurrence slightly:

𝑝'0%,9 = '
'0I

𝑝',9

and noting that, 𝑝%,9 = #
I
, 𝑝#,9 = %

d
𝑝%,9 = %

]

𝑝I,9 = #
j
%
d
#
I
= %

%j

𝑝d,9 = I
]
#
j
%
d
#
I
= #∗%∗#

]∗j∗d
= %

I8

𝑝j,9 = #∗%∗#
o∗]∗j

= #
%8j

𝑝',9 = d
'0# '0% '

∼ 𝑘)I

The approximation on the RHS applies for large 𝑘

Let’s compare this expression to simulation results…
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• Running a simulation with 1000 iterations, 
we find the degree distribution shown

• There is some modest similarity with our 
theoretical result

• We have to remember that the theory 
corresponds to an expected value, so we 
should run several simulations and average 
the computed degree distributions
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• Averaging results from 200 simulations, we 
see much clearer agreement

• Large degree hubs appear infrequently, so 
even more simulations are needed to 
accurately estimate the expected 
frequency of high-degree nodes
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• We see good agreement at earlier times as 
well à

• A rigorous comparison with theory would 
require independently varying the number 
of iterations and the number of simulations 
used for averaging

• We see that our simple model generates a 
power-law degree distribution which is a 
big improvement when compared to the 
𝐺/V model

• This model also produces “ultra-short” 
distances: 𝐷 ∼ log(𝑁)/log(log 𝑁 )

• However,  the clustering coefficient is 
zero – the model is too simple! 

• This is easily fixed by adding more 
links per iteration
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• Our last piece of analysis for this model will focus on an individual node:

How does the degree of a node evolve in time?

• Say the node is created at time 𝑡8. Then, 𝑘! 𝑡 = 𝑡8 = 1

• We again introduce an indicator random variable:
• 𝑋! 𝑡 + 1 = 1 if a link is added to node 𝑖 at time 𝑡 and is 0 otherwise

• So, 𝑘! 𝑡 + 1 = 𝑘! 𝑡 + 𝑋!(𝑡 + 1) for 𝑡 ≥ 𝑡8

• Linearity of expectation gives: 𝑘! 𝑡 + 1 = 𝑘! 𝑡 + 𝑋!(𝑡 + 1)

• And we know that  𝑋!(𝑡 + 1) = 𝑃(𝑋! 𝑡 + 1 = 1)

• What is 𝑃(𝑋! 𝑡 + 1 = 1)?

B-A model: Node evolution



Imperial College
London

• We rewrite 𝑃 𝑋! 𝑡 + 1 = 1 as:
𝑃 𝑋! 𝑡 + 1 = 1 = ∑@3%

40% !𝑃 𝐺@ 𝑡 𝑃(𝑋! 𝑡 + 1 = 1|𝐺@(𝑡)),

and we know: 
𝑃 𝑋! 𝑡 + 1 = 1 𝐺@ 𝑡 = 𝜌! 𝑡 + 1 = '& 4|S3(4)

#0#4
,

so we have,
𝑘!(𝑡 + 1) = 𝑘!(𝑡) + ∑@3%

40% !𝑃 𝐺@ 𝑡 '& 4|S3(4)
#0#4

• The summation term is just, '& 4
#0#4

, and:

𝑘!(𝑡 + 1) = 𝑘!(𝑡) 1 +
1

2 + 2𝑡

• Now using 𝑘! 𝑡 = 𝑡8 = 1, we obtain an explicit expression for the expected degree:

𝑘!(𝑡8 + 𝑗) =�
M38

")%

1 +
1

2 + 2(𝑡8 + 𝑛)
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• With some further work (see below), we can approximate the expected degree of node 𝑖

as: 𝑘!(𝑡8 + 𝑗) ≈ 4+0%0"
4+0%

Note: to obtain the result above, we:
1. Use the log function to convert the products into a series
2. Use the 1st term in a Taylor series approximation to convert the series into a harmonic 

series
3. Use a standard logarithmic approximation of the harmonic series 
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• The figure compares results from 
simulations (averaged over 200 
realizations) with the trend from theory

• Aside from the early dynamics of the 
node introduced at 𝑡 = 0, we see good 
agreement

• These trends illustrate the “1st mover 
effect” – the earlier a node is 
introduced to a network, the more links 
it tends to have
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Comments

• The simple model introduced here generates graphs with many of the 
characteristics that we are looking for.

• By increasing the rate at which links are added, we can improve it further

• But even then, is it “too simple”?

• Yes.
• This becomes apparent when we examine the growth rate of real networks
• And also when we critically consider the model assumptions

• This is a starting point for “modern random graphs” and Network Science
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Barabasi-Albert model

• We have seen that the simple linear preferential attachment model generates a 
“realistic” degree distribution, though the resulting graph is a tree with zero clustering

• If we add 𝑞 links per iteration, the degree distribution is, 𝑝' ≈
#p p0%

'0# '0% '
• And the clustering is 𝐶 ∼ (ln𝑁)#/𝑁

Barabasi-Albert



Imperial College
London

Power law distribution

• The power law distribution is defined for 
𝑘 ∈ Z0 and the expected degree and 2nd

moment are:

𝑘 = ∑'3%9 𝑘𝑝' =
q r)%
q r

𝑘# = ∑'3%9 𝑘#𝑝' = 𝜁 𝛾 − 2 /𝜁 𝛾

• 𝑘 diverges for 𝛾 < 2 and 𝑘# diverges for 
𝛾 < 3 à

• Let’s examine the power law probability distribution more closely now

• The power law distribution is: 

𝑝' =
𝑘)r

𝜁 𝛾
where 𝜁 𝛾 is the Riemann zeta function.
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• This is nicely illustrated in figure 4.8 from 
Barabasi à
• The standard deviation is shown rather 

than the variance
• For GNp graphs,  𝑉𝑎𝑟(𝑘) = 1 − 𝑝 𝑘 , 

so  𝜎 ≤ 𝑘

• Is a large variance important? The 
configuration model provides some 
guidance:

• 𝑘Mi!^5*>( − 𝑘 = '.)'
.

'

• 𝐶 =
'.)'

.

/ '
/

• Many, but certainly not all, complex networks have been fit to power laws with 
2 < 𝛾 < 4 (see Barabasi, table 4.1)

• However, real networks are finite, so the variance will be large but of course not infinite
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• More generally, the standard deviation tells us how 
important the mean is

• Low variance means that most of the nodes will be 
similar to the node with the average degree as in 𝐺/V
graphs

• High variance tells us that the mean carries relatively 
little information and that there will be a broad range 
of scales

• In practice, complex networks “have” high variance, but 
they do not follow a power law across all degrees à

• Small-degree nodes, intermediate-degree nodes, and 
hubs all play distinct roles in networks

From Barabasi Figure 4.23

• A word of caution: reliably fitting a power-law to network data is not straightforward, 
and it is generally very difficult to argue that a given distribution follows a power law 
rather than a log-normal distribution
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Preferential attachment

• Is network data consistent with this idea of linear preferential attachment?

• Barabasi et al. “measured” preferential attachment in real networks

• The idea is to observe a network over a timespan (say, between 𝑡% and 𝑡# )

• Typically, links will be added in an irregular manner, so a precise comparison 
with the linear model is not possible

• Instead, define 𝑆𝑡 as the set of all nodes present at time 𝑡% and measure 𝐿' , the 
number of links added to nodes in 𝑆𝑡 with degree 𝑘. 

• Let 𝐿8 be the total number of links added to nodes in 𝑆𝑡 during the observation 
period, then, linear preferential attachment indicates that we should have Q1

Q+
≈

'
#Q 4$

where 𝐿 𝑡% is the total # of links at 𝑡%
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Preferential attachment

• It was observed that results were easier to 
interpret when a cumulative function was 
used, Πs = ∑'3%s 𝐿'/𝐿8

and linear preferential attachment gives: 
Πs ≈ ∑'3%s '&

#Q 4$
= s s0%

dQ 4$
∼ 𝜅#

• So in the figure, measured Πs is compared 
to linear and quadratic trends which 
correspond to random attachment and 
linear preferential attachment, respectively 

• The networks are fairly close to the 
expected trend, all show some sort of 
preferential attachment

dashed green: 𝑘2, solid black: 𝑘

Barabasi, figure 5.10
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Barabasi, figure 5.10

Preferential attachment

• Their results suggest that the attachment 
model should be generalized, e.g., 𝜌! =
𝐶 𝑘![ + 𝛽 where 𝛼 and 𝛽 are model 
parameters and C is a normalization 
constant

• With 𝛼 = 1: 𝑝' ∼ 𝑘)(I0
;
<) where 𝑞 is the 

number of links added per iteration

• With 𝛽 = 0, 𝛼 < 1:
𝑝' ∼ 𝑘)[ exp(−2𝜇(𝛼)/(< 𝑘 > 1 − 𝛼 𝑘%)[)

This is the stretched exponential distribution 
(Barabasi §4.10)

• With 𝛼 > 1, an unrealistic hub-and-spoke 
structure is generated

• This generalization provides an avenue for 
improving agreement between the model 
and observations via adjustment of 𝛼 and 𝛽
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• The dynamics of many interesting and important complex systems can be modeled as 
spreading processes on complex networks

• Picture below: epidemic spreading via global air transportation network

Spreading processes on networks

Weighted links Fnm quantify direct air traffic
(passengers per day) from node m to node n.
The GMN is constructed from the worldwide air
traffic between 4069 airports with 25,453 direct
connections. Details on the data and network con-
struction are provided in the supplementary mate-
rials (e.g., fig. S1 and table S1) (5, 13, 20, 29). The
total network traffic is approximately F ¼ 8:91"
106 passengers per day. Assuming that the total
traffic in and out of a node is proportional to its
population size, Eqs. 1 and 2 can be rewritten as

∂t jn ¼ asn jnsð jn=eÞ − b jn þ g ∑
m≠n

Pmnð jm − jnÞ

∂tsn ¼ −asn jnsð jn=eÞ þ g ∑
m≠n

Pmnðsm − snÞ

with sn = Sn/Nn, jn = In/Nn, and rn = 1 – sn – jn. A
detailed derivation is provided in the supplemen-
tary text. The mobility parameter g is the average
mobility rate, i.e.,g ¼ F=W, whereW ¼ ∑nNn is
the total population in the system. This yields nu-
merical values in the range g =0.0013–0.0178day–1.
The matrix P with 0 ≤ Pmn ≤ 1 quantifies the
fraction of the passenger flux with destinationm

emanating from node n, i.e., Pmn = Fmn/Fn,

where Fn ¼ ∑
m
Fmn. The additional sigmoid func-

tion sðxÞ ¼ xh=ð1þ xhÞwithgainparameterh >>0
accounts for the local invasion threshold e and
fluctuation effects for jn < e (30–32). Typical
parameter choices for e and h areh ¼ 4,8,∞ and
−log10 e ¼ 4,…,6. Our results are robust with re-
spect to changes in these parameters (e.g., figs. S5
and S13).

Figure 1B shows a temporal snapshot of the
dynamical system defined by Eq. 3 for a hy-
pothetical pandemic with initial outbreak loca-
tion (OL) in HongKong (HKG) (see also Fig. 2B
and fig. S2 for temporal sequences of the dy-
namical system for various other OLs). General-
ly, the metapopulation model above and related
models used in the past generate solutions that
are characterized by similar qualitative features.
First, only during the early stage of the process
does the prevalence jn(t) (i.e., the fraction of
infected individuals) correlate significantly with
geographic distance from the OL. Second, at in-

termediate and later stages, themultiscale structure
of the GMN induces a spatial decoherence of
the spreading pattern. Third, despite the global
connectivity, the spatiotemporal patterns do not
converge to the same pattern, i.e., spatiotemporal
differences are not a transient effect (figs. S3 to
S6 andmovies S1 to S3). This type of complexity
sharply contrasts the generic behavior of ordinary
reaction-diffusion systems, which typically ex-
hibit spatially coherent wavefronts.

Most Probable Paths and Effective Distance
The key idea we pursue here is that, despite the
structural complexity of the underlying network,
the redundancy of connections, and the multiplic-
ity of paths a contagion phenomenon can take, the
dynamic process is dominated by a set of most
probable trajectories that can be derived from the
connectivity matrix P. This hypothesis is analogous
to the dominance of the smallest resistor in a strong-
ly heterogeneous electrical network with parallel
conducting lines.Given the flux-fraction0≤Pmn≤1,
i.e., the fraction of travelers that leave node n and

A B

0 5 10 15 20
20

40

60

80

100

120

140

160

180

200

220C

D
g
 [103 km]

T a [d
ay

s]

Simulation (OL: HKG)

0 5 10 15 20
0

50

100

150D

Afghanistan

Argentina

Barbados

China

GermanySpain

France

UK

India

Italy

Japan

Latvia

Mexico

Norway

Slovenia

USA

D
g
 [103 km]

T a [d
ay

s]

H1N1 (2009)

0 5 10 15 20
0

20

40

60

80

100

120

140

160

180

200E

USA

UK

Germany

France
SpainItaly

China

Hong Kong
Singapore

Canada

Thailand

Korea

Switzerland

Ireland

Australia

India

D
g
 [103 km]

T a [d
ay

s]

SARS (2003)

Fig. 1. Complexity in global, network-driven contagion phenomena. (A)
The global mobility network (GMN). Gray lines represent passenger flows along
direct connections between 4069 airports worldwide. Geographic regions are
distinguished by color [classified according to network modularity maximization
(39)]. (B) Temporal snapshot of a simulated global pandemic with initial outbreak
location (OL) in Hong Kong (HKG). The simulation is based on themetapopulation
model defined by Eq. 3 with parameters R0 = 1.5, b = 0.285 day–1, g = 2.8 ×
10–3 day–1, e = 10–6. Red symbols depict locations with epidemic arrival times
in the time window 105 days≤ Ta≤ 110 days. Because of themultiscale structure
of the underlying network, the spatial distribution of disease prevalence (i.e.,
the fraction of infected individuals) lacks geometric coherence. No clear wave-
front is visible, and based on this dynamic state, the OL cannot be easily deduced.
(C) For the same simulation as in (B), the panel depicts arrival times Ta as a
function of geographic distance Dg from the OL [nodes are colored according to
geographic region as in (A)] for each of the 4069 nodes in the network. On a

global scale, Ta weakly correlates with geographic distance Dg (R2 = 0.34). A
linear fit yields an average global spreading speed of vg = 331 km/day (see also
fig. S7). Using Dg and vg to estimate arrival times for specific locations, however,
does not work well owing to the strong variability of the arrival times for a given
geographic distance. The red horizontal bar corresponds to the arrival time
window shown in (B). (D) Arrival times versus geographic distance from the
source (Mexico) for the 2009 H1N1 pandemic. Symbols represent 140 affected
countries, and symbol size quantifies total traffic per country. Arrival times are
defined as the date of the first confirmed case in a given country after the initial
outbreak on 17 March 2009. As in the simulated scenario, arrival time and
geographic distance are only weakly correlated (R2 = 0.0394). (E) In analogy to
(D), the panel depicts the arrival times versus geographic distance from the
source (China) of the 2003 SARS epidemic for 29 affected countries worldwide.
Arrival times are taken from WHO published data (2). As in (C) and (D), arrival
time correlates weakly with geographic distance.

(3)
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 Image from Brockmann & Helbing, The Hidden Geometry of Network-Driven Contagion Phenomena

Other examples:

• Memes spreading on 
social networks

• Viruses spreading via 
the internet

• Blackouts
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• How can/should we model these sorts of processes?

• The starting point is to think about diffusion
• Examples: perfume spreading in room
• a drop of ink spreading in water
• thermal energy (heat) spreading through your dinner

• Diffusion is driven by the seemingly random motion of 
particles

• Large numbers of collisions between air and perfume 
molecules “push” some perfume away from its source 

• Let’s model this particle motion using random walks

• This will lead to the diffusion equation which we will 
then modify to obtain a graph diffusion equation
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• Let 𝑗((𝑥8, 𝑡) be the number of particles that enter the box crossing its right boundary 
between 𝑡 and 𝑡 + Δ𝑡. Then, what is 𝑗((𝑥8, 𝑡) ? This will depend on the number of 
particles in the box centered at 𝑥8 + ℎ and the number of these particles that take a step 
to the left:

𝑗((𝑥8, 𝑡) = n
\38

M*(*

n
*38

\

𝑃 𝑛 𝑥8 + ℎ, 𝑡 = 𝑎, 𝑗t 𝑥8, 𝑡 = 𝑏 ∗ 𝑏

1-D diffusion

• Consider 𝑛(𝑥0, 𝑡) particles in the box shown à
We will say there are 𝑛4>4 particles distributed 
across an infinite “line” of such boxes

• How does 𝑛(𝑥0, 𝑡) change in time?

• Each particle is undergoing a random walk 
defined as follows
• During a time step from 𝑡 to 𝑡 + Δ𝑡, a 

particle will move a distance +ℎ or −ℎ with 
equal probability.

• So all particles inside the box at time 𝑡 will 
be in an adjacent box at 𝑡 + Δ𝑡

𝑥0

ℎ

𝑗((𝑥8, 𝑡)𝑗7(𝑥8, 𝑡)
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• We know that: 

𝑃 𝑛 𝑥8 + ℎ, 𝑡 = 𝑎, 𝑗( 𝑥8, 𝑡 = 𝑏 = 𝑃 𝑗( 𝑥8, 𝑡 = 𝑏|𝑛 𝑥8 + ℎ, 𝑡 = 𝑎 𝑃(𝑛 𝑥8 + ℎ, 𝑡 = 𝑎)

so, 

𝑗((𝑥8, 𝑡) = n
\38

M*(*

𝑃(𝑛 𝑥8 + ℎ, 𝑡 = 𝑎)n
*38

\

𝑃 𝑗( 𝑥8, 𝑡 = 𝑏|𝑛 𝑥8 + ℎ, 𝑡 = 𝑎 ∗ 𝑏

• The inner sum is straightforward to evaluate. We can think of a step of a random walk as 
a Bernoulli trial with 𝑝 = 0.5. The inner sum is just the expected number of successes 
from 𝑎 such trials which is 𝑝𝑎 = \

#
and:

𝑗((𝑥8, 𝑡) = n
\38

M*(*

𝑃(𝑛 𝑥8 + ℎ, 𝑡 = 𝑎)(
𝑎
2)

• This sum is even more straightforward to simplify: it is simply half of the expected 
number of particles in the box on the right: 

𝑗((𝑥8, 𝑡) =
𝑛 𝑥8 + ℎ, 𝑡

2
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• We are almost done now; we need to account for the box on the left and then consider 
what happens when Δ𝑡 → 0

• Using identical arguments as before: 𝑗7(𝑥8, 𝑡) = M B+)5,4
#

,

𝑛 𝑥8, 𝑡 + Δ𝑡 = 𝑗7 + 𝑗( and using linearity of expectation, 𝑛 𝑥8, 𝑡 + Δ𝑡 = 𝑗7 + 𝑗(

• Our primary interest is in the change in the expected number of particles:

𝑛 𝑥8, 𝑡 + Δ𝑡 − 𝑛 𝑥8, 𝑡 = 𝑗7 + 𝑗( − 𝑛 𝑥8, 𝑡 or,

𝑛 𝑥8, 𝑡 + Δ𝑡 − 𝑛 𝑥8, 𝑡 = M B+)5,4 ) M B+,4
#

+ M B+05,4 ) M B+,4
#

• Now we will let Δ𝑡 → 0 but note that Δ𝑡 and ℎ are not independent. Particles move larger 

distances over larger time steps and empirical observations indicate, 5
.

#u4
= 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
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• The final steps in the derivation of the diffusion equation require the use of Taylor series 
expansions:

𝑛 𝑥8, 𝑡8 + Δ𝑡 = 𝑛 𝑥8, 𝑡8 +
𝜕𝑛
𝜕𝑡 ¥B+,4+

Δ𝑡 + 𝑂 Δ𝑡#

𝑛 𝑥8 + ℎ, 𝑡8 = 𝑛 𝑥8, 𝑡8 + vM
vB
|B+,4+ℎ +

v.M
vB.

|B+,4+
5.

#
+ 𝑂 ℎI

• Substituting these expansions (and the analogous expansion for 𝑛 𝑥8 − ℎ, 𝑡8 ) into our 
equation for the expectation and working through some arithmetic gives:

𝜕 𝑛
𝜕𝑡 = 𝛼

𝜕# 𝑛
𝜕𝑥# + 𝑂 Δ𝑡 + 𝑂(ℎ#)

• Now if we let ℎ → 0 then, the number of particles in a box should also go to zero. 
Instead, introduce the particle density, 𝜌 𝑥, 𝑡 = M B,4

5
. Then, letting Δ𝑡 → 0 and ℎ → 0, 

gives the 1D diffusion equation:
𝜕𝜌
𝜕𝑡 = 𝛼

𝜕#𝜌
𝜕𝑥#
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• We will not delve into the solution of the diffusion equation in any detail

• One basic result: 
The solution of 𝜕𝜌/𝜕𝑡 = 𝛼 𝜕#𝜌/𝜕𝑥# with 𝜌 𝑥, 0 = 𝑒)[B. is:

𝜌 𝑥, 𝑡 =
1

1 + 4𝛼#𝑡
𝑒)

[B.
%0d[.4

• This is a “spreading Gaussian”:
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Diffusion in networks

• With networks, we no longer have spatial derivatives

• Can we use similar ideas?

• Let’s think about the net flux of particles along a link between two nodes

• Then the change in 𝑛 at a node will be the sum of these fluxes from its neighbors

• So how do we model this flux? Let’s go back to our 1-D example:
𝑛 𝑥8, 𝑡 + Δ𝑡 − 𝑛 𝑥8, 𝑡 = M B+)5,4 ) M B+,4

#
+ M B+05,4 ) M B+,4

#

𝐽7/2 𝐽(/2
• Using Taylor series expansions as before, this can be rewritten as,

𝜕 𝑛
𝜕𝑡 =

𝛼
ℎ# 𝐽7 + 𝐽( + 𝑂 Δ𝑡

• Here, 𝐽7 and 𝐽(are the net fluxes of particles into the box at 𝑥8 across its boundaries.
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• There is no natural equivalent to ℎ in a graph, so we ignore it and interpret 𝐽7 and 𝐽(
as the net flux of particles from two nodes adjacent to a node at 𝑥8. 

• Generalizing, for two arbitrary nodes, the net flux of particles from node 𝑗 to node 𝑖
will be 𝐽!" = 𝑛" − 𝑛!

• And the expected number of particles at node 𝑖 will satisfy:

𝑑 𝑛!
𝑑𝑡 = 𝛼 n

"∈w&

𝐽!" 𝑡 = 𝛼 n
"∈w&

𝑛" − 𝑛!

where the sum is over all neighbors of 𝑖 and we have taken the limit Δ𝑡 → 0. 

The sum can be rewritten using the adjacency matrix of the graph: 

$ M&
$4

= 𝛼∑"3%/ 𝐴!" 𝑛" − 𝑛! (graph diffusion equation)
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• Moving forward, I will use 𝑛! instead of 𝑛! for convenience.

• The graph diffusion equation can be simplified by noticing that: ∑"3%/ 𝐴!"𝑛! = 𝑛! ∑"3%/ 𝐴!"

and ∑"3%/ 𝐴!" is 𝑘𝑖 , the degree of node 𝑖, 

• Now define a diagonal matrix, D, where 𝐷𝑖𝑖 = 𝑘𝑖. Then our graph diffusion equation 
becomes, $M&

$4
= −𝛼∑"3%/ 𝐿!"𝑛" where L = D − A is the graph Laplacian matrix
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• We have our model for diffusion on graphs:

• How do we find solutions?

• The initial values need to be specified for each node

• Then, this is a system of linear constant-coefficient ODEs
• i.e. it’s an eigenvalue problem

• For undirected networks, the Laplacian is real-valued and symmetric
• So its eigenvalues are real (they are also non-negative)

• How do we compute eigenvalues in Python?
• np.linalg.eig
• scipy.sparse.linalg.eigs, scipy.sparse.linalg.eigsh

• You should think about the relative advantages/disadvantages of these functions

𝑑𝑛7
𝑑𝑡

= −𝛼)
89:

;

𝐿78𝑛8
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• An example:
In [3]: G  = nx.erdos_renyi_graph(15,0.2)

In [6]: A = nx.adjacency_matrix(G)

In [7]: A.todense()
Out[7]: 
matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1],
[0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]],
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• An example:

• Important questions for you:
• What is the significance of the signs of these eigenvalues?
• There are three eigenvalues with value zero – are these important? What is their 

physical interpretation?
• What should be done with the eigenvectors?

In [22]: D = A.toarray().sum(axis=1)

In [23]: L = np.diag(D)-A.toarray()

In [27]: e,v = np.linalg.eig(L)

In [28]: e
Out[28]: 
array([8.46780548e+00, 6.22084072e+00, 5.59130087e+00, 4.25530240e+00,

3.73535212e+00, 1.66002435e-15, 2.55436419e+00, 2.37762994e+00,
1.87790207e+00, 1.69700500e+00, 1.46423645e+00, 8.66087659e-01,
8.92173104e-01, 0.00000000e+00, 0.00000000e+00])
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Let’s consider another example:

• We’ll use a Barabasi-Albert graph with 𝛼=1, so: $M&
$4
= −∑"3%/ 𝐿!"𝑛"

• Initially all nodes have 𝑛" = 0 (blue) except one with degree close to the average degree for 
the graph; for that node, 𝑛! = 1(yellow). 

• The size of each node reflects 
its degree

• If we look carefully at the early 
stages of the animation, we can 
clearly see the initial spread 
from the “yellow” node to its 
neighbors

• At later times, we see all nodes 
seem to have the same value…
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• It is also helpful to look at plots of 𝑛! 𝑣𝑠 𝑡𝑖𝑚𝑒, the plots are the same with different limits 
for the vertical axis – proximity to the “source” node is important!
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• At later times, we can see clear convergence: 

By thinking carefully about the eigenvalues of 
the Laplacian matrix as well as the 
eigenvector of the zero eigenvalue(s), you 
should be able to develop an explanation of 
this behavior for large times



Lecture 11

Spectral properties of graphs
Synchronization
Random walks on graphs
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• We will be working with eigenvalues 
and eigenvectors a fair amount in this 
part of the module

• Here, we will review some useful 
ideas/results 
• We will omit the proofs which 

can mostly be found in standard 
linear algebra textbooks

• We will also state some results on the 
bounds of eigenvalues

Spectral properties of graphs

Linear diffusion on a graph
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• Eigenvalues and eigenvectors (and linear algebra more generally) are hugely important in 
science and engineering applications
• When you hear terms like stability, control,  and optimization, there is a good chance 

that linear algebra is relevant

• The properties of graph eigenvalues (graph spectra) have also been studied for several 
decades because mathematicians find them “interesting” 

• But as we have seen, eigenvalues (and eigenvectors) of graphs are also important for 
applications

• When discussing the spectral properties of graphs, we typically focus on the adjacency and 
Laplacian matrices (A and L) 

• However, there are other important matrices as well such as the “google matrix”, G



Imperial College
London

• Unless noted otherwise, we will be working with 𝑁 x 𝑁 square matrices with real-valued 
elements (ℝ/ E /)  where 𝑁 is the number of nodes in the graph of interest

• We will also say that v! ∈ ℂ/ is the 𝑖-th eigenvector of B with Bv! = 𝜆!v!, and 𝜆! is the 𝑖-th
eigenvalue of B
• Note: if 𝜆! ≠ 𝜆" then v! and v" are linearly independent

• Note for later that the spectral radius of a general square matrix B is defined as, 
𝜌 B = max{ 𝜆% , 𝜆# , … , 𝜆/ }

• For undirected networks, both A and L are symmetric, so let’s quickly review a few useful 
properties of symmetric matrices:

• All eigenvalues are real, and eigenvectors can be chosen to be real

• The eigenvectors of the matrix form a basis for ℝ/ (even if some eigenvalues are 
repeated)

• A square matrix is orthogonally diagonalizable if and only if it is symmetric
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• Orthogonal diagonalizability means that a symmetric matrix B can be diagonalized as,       
B = VΛV< where:

• V is an orthogonal 𝑁 x 𝑁 matrix  whose 𝑖-th column is v! , and v!6v" = 1 if 𝑖 = 𝑗
and v!6v" = 0 if 𝑖 ≠ 𝑗 (the eigenvectors are orthonormal, and V<V = I)

• Λ is a diagonal matrix where 𝛬!! = 𝜆!

• Orthogonal diagonalization is useful when working with differential equations, and it can 
also be used to derive the following result:

• Order the eigenvalues: 𝜆% ≥ 𝜆# ≥ ⋯ ≥ 𝜆/
• For a symmetric matrix B, the Rayleigh quotient, 𝑟(B, x) = E=xE

E=E
, is maximized when 

x = v% in which case E
=xE
E=E

= 𝜆% (to show this, you can orthogonally diagonalize B and 
show that 𝜆% is an upper bound for 𝑟)

• It may not seem like it, but this is an extremely useful result. We will use it here to 
develop bounds for 𝜆% and use it again later when analyzing communities
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• We now narrow our focus to finding bounds for graph eigenvalues

• Gershgorin’s theorem can be used to develop an upper bound for the spectral radius of a 
square matrix:

Let B ∈ ℂ/ E y and suppose that X)%BX = H + F where H is diagonal and F has zeros on 
its main diagonal. Then, the eigenvalues of B lie on the union of the discs Δ%, Δ#, … , Δ/
where Δ! = 𝑙 ∈ ℂ: |𝑙 − 𝐻!!| ≤ ∑"3%/ |𝐹!" |

• Frequently, we simply choose X to be the identity matrix

• Let’s apply this theorem to the adjacency matrix for a simple undirected graph with X = I

• Then, F = A and the 𝑖-th disc is defined by: 𝑙 ≤ ∑"3%/ 𝐴!" = 𝑘!

• The largest possible radius of a disc is 𝑘@\B and it follows that 𝜌 A ≤ 𝑘@\B
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• We can develop a lower bound for 𝜆% using our earlier result (in a slightly different form): 
E=zE
E=E

≤ 𝜆%

• If we choose x = z (where z is an N-element column vector of ones), we then find, 𝜆% ≥
e
/
= 𝑘 and since 𝜆% ≤ 𝜌 A , we know that: 𝑘 ≤ 𝜆% ≤ 𝑘@\B

• This is a pretty nice result! 

• And the upper bound can be used when setting the proportionality constant for the 
Katz centrality

• We will use it next week when studying the spread of infectious diseases on networks
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• The Laplacian matrix is defined as L = D − A where D is the diagonal degree matrix, 𝐷!! =
𝑘!

• We have seen that the Laplacian arises naturally when considering diffusive processes, we 
will later consider how it connects to graph partitioning

• A few notes on the eigenvalues of L for undirected graphs:

• Using a similar approach to what we used for A, we find, 𝑘@\B ≤ 𝜆% ≤ 2𝑘@\B

• We can show that all eigenvalues are non-negative and that L has at least one zero 
eigenvalue with eigenvector z (problem sheet exercises)

• These results taken together are helpful for understanding graph diffusion)
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• The graph diffusion equation provides a simple linear coupling between linked nodes:
$M&
$4
= 𝛼∑"3%/ 𝐴!"(𝑛" − 𝑛!) or more compactly: ${

$4
= −𝛼Ln

• Coupling of this form and in more complicated nonlinear forms can lead to synchronization.

• Real-world examples of synchronization:
• An audience clapping: https://youtu.be/Au5tGPPcPus?t=42
• Fireflies glowing: https://youtu.be/QCWkzQqO7Ro
• Neurons activating in the human brain
• Muscles flexing in the human heart

• We’ll model the different elements in a system as a network of interacting nodes. Links will 
indicate where there are interactions, and we will have to decide how to model the 
interactions.

• The goal here is to analyze a simple model related to synchronization, but keep in mind that 
this is an active area of research where more-sophisticated models are typically used.

Synchronization

https://youtu.be/Au5tGPPcPus?t=42
https://youtu.be/QCWkzQqO7Ro
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• Let’s say that there is an “oscillator” on each node of a connected undirected graph with 
the oscillation on node 𝑖 described by, 𝑥! = 𝑎 𝑐𝑜𝑠 𝜃! 𝑡 .

• So each oscillator is assumed to have the same amplitude of oscillation (𝑎), and we will 
focus on the phase, 𝜃! 𝑡 , which has initial condition 𝜃! 𝑡 = 0 = 𝜃8,!

• We’ll assume that the phase of each oscillator is influenced by two effects: 1) a natural 
frequency, 𝜔, and 2) coupling with other linked oscillators with general form, 𝑓(𝜃" − 𝜃!)

• These assumptions lead to the following phase equation: 
$|&
$4
= 𝜔 + 𝛼∑"3%/ 𝐴!" 𝑓 𝜃" − 𝜃! ; 𝑓 0 = 0

• Note that there are other reasonable assumptions we could have made, e.g. each 
oscillator could have a distinct natural frequency, 𝜔!. 

• Here, 𝛼 sets the relative importance of the coupling

• What happens when 𝛼 = 0? Then, 𝜃! = 𝜔𝑡 + 𝜃8,! and each oscillator oscillates with the 
same frequency, but depending on the initial condition, the oscillators may be out of phase
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• What should the coupling function be? In principle, this should be guided by the 
physical system being investigated

• A popular choice is to use sinusoidal coupling, 𝑓 𝜃" − 𝜃! = sin(𝜃" − 𝜃!)

• We will take a simpler approach. Let ℎ!" = 𝜃" − 𝜃!, and assume that ℎ!" ≪ 1 then 
𝑓 ℎ!" ≈ 𝑓 0 + ℎ!"

$h
$5&'

|5&'38 and we have required 𝑓 0 = 0. So, assuming that 
$h
$5&'

|5&'38 ≠ 0, our model becomes:

𝑑𝜃!
𝑑𝑡 = 𝜔 + 𝛼n

"3%

/
𝑑𝑓
𝑑ℎ!"

¥
5&'38

𝐴!" 𝜃" − 𝜃!

• Finally, we assume that $h
$5&'

|5&'38 is the same constant for each (𝑖, 𝑗) and its effect can 

be “absorbed” into 𝛼 giving a model very similar to graph diffusion:
𝑑𝜃!
𝑑𝑡 = 𝜔 + 𝛼n

"3%

/

𝐴!"(𝜃" − 𝜃!)
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• So, our (very simple) model for a system of coupled oscillators in matrix-
vector form is, $}

$4
= 𝜔z − 𝛼Lθ with θ, z ∈ ℝ/

• The question we want to consider is if/when the system will be fully 
synchronized, i.e. |𝜃! − 𝜃"| = 0 for all distinct pairs of oscillators (assuming 
that the initial phases are not all the same)

• There are a few different ways to approach this. We will simply find the 
general solution and then consider 𝜃! − 𝜃" when 𝑡 → ∞

• Step 1: Orthogonally diagonalize the Laplacian: L = VΛV<
• Step 2: Left-multiply both sides of the model equation with V<: 

$(~=})
$4

= 𝜔V<z − 𝛼ΛV<θ where we have used V<V = I

• Step 3: define w = V<θ: $�
$4
= 𝜔V<z − 𝛼Λw
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• Step 4: simplify V<z. Assume that the first column of V contains the 
eigenvector �

/
which is orthogonal to all other columns in V. We then also 

have Λ%% = 0. So the inner product of the first row of V< and z will be 𝑁
and the inner product of all other rows with z will be zero: V<z = 𝑁e%
where e% = 1, 0, 0, … , 0 <. The model equation is now: 

𝑑w
𝑑𝑡 = 𝜔 𝑁e% − 𝛼Λw

• Step 5: solve the system of equations above: 

𝑤% = 𝜔𝑡 𝑁 +
z<θ8
𝑁

𝑤! = exp −𝛼Λ!!𝑡 v!<θ8, 𝑖 > 1
Here, 𝑤! is the 𝑖-th element in w, θ8 is the vector of initial conditions 
for the phase, and v! is the 𝑖-th column in V.

Check your understanding: why does the solution for 𝑤% not have an 
exponential term?
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• Final steps: find the solution for 𝜃! and examine 𝜃! − 𝜃". We know w = V<θ. Using 
the orthogonality of V, we find, θ = Vw, so: 

θ = v%𝑤% + v#𝑤# +⋯+ v/𝑤/

• All eigenvalues for the Laplacian are non-negative, and for a connected graph, only 
one eigenvalue is zero (we will discuss this in more detail later)

• So, as 𝑡 → ∞, 𝑤! → 0 for 𝑖 > 1 assuming that the graph is connected and 𝛼 > 0.

• In this long-time limit, we see that 𝑤% → ∞, but what we are interested in is, 𝜃! −
𝜃". We know that v% =

�
/

so 𝜃! → 𝑤%𝑡 + 𝑤8,% for each 𝑖 and 𝜃! − 𝜃" → 0 for all 
node pairs.

• The system synchronizes at long times even if the initial phases are all different. 
This is a simple illustration of how the “smoothing” effect of diffusion can produced 
synchronization on a network. Current research works with more complicated 
versions of this model. For example we could have: nonlinear coupling, a 
distribution of frequencies, a distribution of amplitudes, external noise…
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• Previously, we considered random walks on a line and derived the 1-D diffusion equation

• An intermediate step in this derivation required consideration of the net flux of particles 
across the boundary of a box, and when we move to graphs, we chose the flux per unit 
time between nodes on a graph to be: 𝐽!" 𝑡 = 𝛼 𝑛" 𝑡 − 𝑛! 𝑡 -- this represents the 
tendency for transport from nodes with high numbers of particles to neighbors with low 
numbers

• But what if we directly modeled random walks of particles moving from one node to 
another? Would the resulting dynamics be similar to what we have seen with “graph 
diffusion” as I defined it?

Random walks on graphs
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• Say a particle’s position in a graph at time 𝑡 is 𝑥(𝑡) with 𝑥 ∈ {1,2, … , 𝑁}. One step of a 
random walk from 𝑡 to 𝑡 + Δ𝑡 on a graph is then defined as follows: A particle will select a 
link on node 𝑥(𝑡) uniformly at random and follow it to a neighbor of 𝑥(𝑡)

• We will restrict ourselves to undirected connected graphs for now, but will consider directed 
graphs a little later

• The probability that a particle moves from node 𝑖 to 𝑗 is the transition probability, 𝑇!" =
A&'
'&

• It is convenient to analyze random walks on graphs (RWGs) in terms of the probability that a 
particle is at node 𝑖 at time t: 𝑃 𝑥 𝑡 = 𝑖

• The probability that a particle is at node 𝑖 at time t and is at node 𝑗 at 𝑡 + Δ𝑡 is: 

𝑃 𝑥 𝑡 + Δ𝑡 = 𝑗, 𝑥 𝑡 = 𝑖 = 𝑃 𝑥 𝑡 + Δ𝑡 = 𝑗|𝑥 𝑡 = 𝑖 𝑃 𝑥 𝑡 = 𝑖 or

𝑃 𝑥 𝑡 + Δ𝑡 = 𝑗, 𝑥 𝑡 = 𝑖 = 𝑇!"𝑃(𝑥 𝑡 = 𝑖)
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• Then noting that 𝑃 𝑥 𝑡 + Δ𝑡 = 𝑗 = ∑!3%/ 𝑃 𝑥 𝑡 + Δ𝑡 = 𝑗, 𝑥 𝑡 = 𝑖 , we can write 
down the master equation for RWGs:

𝑃 𝑥 𝑡 + Δ𝑡 = 𝑗 = n
!3%

/ 𝑃 𝑥 𝑡 = 𝑖 𝐴!"
𝑘!

• Let’s now write this as a difference equation in matrix-vector form:
• Let 𝑡7 = 𝑙Δ𝑡, 𝑙 = 0,1,2, …
• And say that p(7) is an 𝑁-element row vector whose 𝑖-th element is:

𝑃 𝑥 𝑡 = 𝑙Δ𝑡 = 𝑖 .

• Then, the master equation becomes,

p(70%) = p(7)D)%A = p(7)T

where D is the usual diagonal degree matrix and T = D)%A is the transition matrix

• Our analysis of this equation will examine (1) the stationary state for this system and (2) 
the “relaxation” to this state 



Imperial College
London

• A stationary state, p9,  exists if there is a non-trivial solution where p(70%) = p(7) = p9
or equivalently, p9 = p9T

• This is quite similar to the equation we had for the PageRank centrality, and we can again 
establish that 𝜆 = 1 will be an eigenvalue:

• Since  ∑"3%/ 𝑇!" = ∑"3%/ A&'
'&
= 1, we have Tz = z where z is the usual column vector 

of ones

• Combined with Perron-Frobenius (version 2), this also tells us that 𝜌 T = 1

• We know that p9 is the left eigenvector for T corresponding to this eigenvalue, and we 
can figure out what it will be by writing out the equation for its first element:

𝑝9,% =
V:,.A.$

'.
+ V:,/A/$

'/
+⋯+ V:,-A-$

'-
and then noticing that the equation will be 

satisfied if we choose, 𝑝9,! = 𝑘!. The same thing will happen for the other nodes, and then 
after normalizing, the solution for the stationary state is, 𝑝9,! = 𝑘!/𝐾
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• This stationary state is very different from what we had for graph diffusion! There, at 
long times, each node tends to have the same density. With RWGs, the stationary state 
suggests a particle is more likely to end up on a node with high degree.

• The next part of our analysis will consider the evolution of p in time, and we will 
determine if the solution moves to this stationary state.
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• Let’s now consider the evolution of p(7) and check if/how the probability vector 
approaches this stationary state

• We need to solve, p(70%) = p(7)D)%A = p(7)T or,

p(7) = p(8) T7 where p(8) is the specified initial condition

• Now, T is not symmetric, however we can use a similarity transformation to produce an 
equation with a symmetric operator that is relatively straightforward to solve

• First, notice that D%/#T(D%/#))% = (D%/#))% A (D%/#))% and the matrix on the RHS is 
symmetric (using index notation, the RHS is 

A&'
'&''

)

• The goal is to introduce a transformation of p which leads to a system governed by this 
symmetric matrix
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• The desired transformation is, w(7) = p(7)(D%/# ))%

• This gives, w(70%) = w(7) ¹T with ¹T = (D%/#))% A (D%/#))%

• We then orthogonally diagonalize ¹T:  ¹T = VΛV<, to obtain,w(70%)= w(7) VΛV<

• Then one more transformation, y(7) = w(7)V, gives us the decoupled system of equations, 
y(70%) = y(7)Λ, and since Λ is diagonal: y(7) = y(8)Λ7 . We now need to think about the (real) 
eigenvalues of ¹T

• A few notes:
• If there are eigenvalues with magnitude larger than 1, then |y 7 | will grow 

exponentially 

• ∑"3%/ A&'
'&''

𝑘" = 𝑘! so 𝑘%, 𝑘#, … , 𝑘/
6

is an eigenvector of ¹T with eigenvalue, 1

• Then for a connected graph, we can apply P-F version 2, we know the spectral radius is 
1,  𝜌 ¹T = 1, and that the eigenvalue 𝜆=1 is simple and strictly larger than all other 
eigenvalues
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• So we know that −1 ≤ 𝜆!≤ 1 ∀𝑖 and there will not be exponential growth

• We will assume that the eigenvalues are strictly larger than -1. Aside from particular classes 
of multipartite graphs, this assumption is correct. 

• Let’s say that 𝜆% = 1 with orthonormal eigenvector v% =
%
e

𝑘%, 𝑘#, … , 𝑘/
6

. 

• Then for sufficiently large 𝑙: y(7) ≈ 𝑦%
8 , 0, 0, … , 0

• And going “backwards” from y to p: we have w(7) = 𝑦%
8 v%6 and 

p(7) = w(7)D
$
. = �$

+ s
e

where 𝜅 = [𝑘%, 𝑘#, … , 𝑘/] and 𝑙 is large

• By inspection, we can see that we would like 𝑦%
8 = %

e
and if we use our transformations 

to relate 𝑦%
8 to p(8) we find that this is indeed the case if ∑!3%/ 𝑝!

(8) = 1 which is necessary 
for the problem to be well-posed.

• And we see that the probability vector will evolve towards the stationary distribution
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• Consider the initial condition where a walker is placed on node 𝑥 so, 𝑝B
(8) = 1

• Initially this probability will “spread” from node 𝑥 to its neighbors and eventually to the 
entire (connected) graph

• Ultimately exponential decay will “win” and the probability will relax towards its stationary 
state

Graph diffusion RWG
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• Comparing RWGs to graph diffusion we see a basic similarity – exponential relaxation 
towards an equilibrium/stationary distribution – and a substantive difference, the RWG 
stationary state has a degree-dependence. 

• So which model is better? It depends on what you are modeling! Graph diffusion is a 
natural choice if synchronization (or consensus of opinion) is possible while RWGs (with 
minor modification) naturally model a search engine moving through the web and 
occasionally “teleporting” to another part of the web (see problem sheet 6)



Lecture 12

Epidemics on networks I



Imperial College
London

• Picture below: confirmed Covid cases by country, 29/2/20

• Accurate predictions of the spread of Covid within and between countries could have saved 
countless lives. Unfortunately, dubious models and reasoning were widely used in the early 
stages of the pandemic.

• Pre-reading: Barabasi 10.1-10.2

Background

https://commons.wikimedia.org/wiki/File:COVID-19-outbreak-timeline.gif#file
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• “Compartment models” are widely used as a 1st step for 
understanding/simulating/predicting spread of 
infectious diseases 

• The progress of a disease is characterized by distinct 
states, for example S à I à R indicates that a 
Susceptible person can become Infected (and 
contagious) and will then Recover with immunity

• There is a “zoo” of such models with various states 
connecting to each other in various ways (SI, SIR, SIS, 
SEIR, MSEIR, …)

• We will focus on the simplest of these: the SI model.

Susceptible

Infectious

Recovered
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• Rather than think about the detailed mechanisms 
of infection, we characterize a disease with a 
probability of infection and an expected rate of 
recovery

• With the SI model, there is no recovery: an 
infected person remains infected

• We start by considering these models and disease 
spread in a community 
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• There are simpler approaches which ignore social networks and simply model the fraction 
of people in a a community that are infected (and how that fraction evolves in time)

• However, these models assume that every susceptible individual is equally likely to contract 
the disease from an infectious person

• Like most complex networks, large social networks typically have multiscale degree 
distributions, so some people will come into contact with many others and could 
potentially be “superspreaders” which we know are important:
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Network SI model

So how do we proceed?

• We place individuals at the vertices of an 𝑁-node graph (with adjacency matrix, A) and 
place undirected links between people who are in “regular” contact with each other

• We could place weights on the links indicating the ”significance” of these contacts, but 
we will treat each link as the same here

• For simplicity we will assume there are 2 states, susceptible and infected

• The model parameter 𝛽 determines how easily a disease is transmitted:

• 𝛽Δ𝑡: Probability that a susceptible person is infected via a link to an infectious person 
over a timespan of duration, Δ𝑡
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• A very simple example – consider the 5 node network 
shown with node 1 initially infectious and all other nodes 
susceptible

• A node that become infectious always stays infectious

• Moving forward 1 time step, Δ𝑡, we carry out a Bernoulli 
trial for each link to node 1 with probability 𝛽Δ𝑡
• Let’s say 𝛽Δ𝑡 = 0.25 and we generate three random 

numbers for links 1-2,1-3,1-5: 

• So there will be transmission along link 1-5 à

• Now, we generate random numbers for 1-2,1-3,5-2:

and there will be transmission along link 1-3

np.random.rand(3)
Out[45]: array([0.39142964, 0.28799901, 0.20457327])

1 2

344

5

1 2

344

5

4

𝑡 = 0

1 2

344

5

1 2

1 2

3

5

𝑡=Δ𝑡

np.random.rand(3)
Out[46]: array([0.81424296, 0.04301428, 0.45276639])
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• Now, we generate random numbers for 1-2,1-3,5-2:

and there will be transmission along link 1-3

• We can continue this process until all nodes are infected to complete one 
simulation/realization

np.random.rand(3)
Out[46]: array([0.81424296, 0.04301428, 0.45276639])

1 2

344

5

1 2

344

5

4

𝑡 = 0

1 2

344

5

1 2

1 2

3

5

t = Δ𝑡

1 2

344

5

1 2

344

5

5

t = 2Δ𝑡
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• But one particular realization, particularly for larger networks, is not that interesting. Can 
we predict what will happen on average?

• Let’s say we have a graph with 𝑁 nodes; at a given time, node 𝑖 is either susceptible       
(𝑥𝑖 = 0) or infectious (𝑥! = 1)

• Here, 𝑥𝑖(𝑡) is a random variable which indicates the state of node 𝑖 at time, 𝑡

• As we have seen before with indicator variables: 𝑥! 𝑡 = 𝑃 𝑥! 𝑡 = 1 where 
𝑃 𝑥! 𝑡 = 1 is the probability that 𝑥! 𝑡 = 1

• Our goal is to relate the state of a node at time 𝑡 + Δ𝑡 to the state of the network at time 𝑡

• We know that a node will be infected at 𝑡 + Δ𝑡 if either:

• The node was already infected or 

• It acquired the disease from a neighbor during between times 𝑡 and 𝑡 + Δ𝑡
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• So we have:

(Probability that node 𝑖 is infected at time 𝑡 + Δ𝑡 ) =
(Probability  that node 𝑖 is infected at time 𝑡 or that node 𝑖 is infected by a neighbor 
between times 𝑡 and 𝑡 + Δ𝑡 )

which we write as,

𝑃 𝑥! 𝑡 + Δ𝑡 = 1 = 𝑃 𝑥! 𝑡 = 1 + 𝑃(𝑥! → 1)

where 𝑃 𝑥! → 1 is the probability that node 𝑖 is infected by a neighbor between 
times 𝑡 and 𝑡 + Δ𝑡

• Transmission from neighbor 𝑗 to node 𝑖 depends on the joint probability: 
𝑃 𝑥! 𝑡 = 0, 𝑥" 𝑡 = 1 and over the timespan Δ𝑡, the probability that node 𝑖
becomes infected by 𝑗 is:  𝛽Δt 𝐴𝑖𝑗𝑃 𝑥! 𝑡 = 0, 𝑥" 𝑡 = 1

• What is the probability of transmission from any one neighbor of 𝑖?
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• Summing the influence of each neighbor gives: 

𝑃(𝑥! → 1) = 𝛽Δ𝑡 ∑"3%/ 𝐴!" 𝑃 𝑥! 𝑡 = 0, 𝑥" 𝑡 = 1 + 𝑂(Δ𝑡#)

• The 𝑂(Δ𝑡#) accounts for cases where transmission via two or more neighbors occurs 
during the same time step. We can neglect such cases if  Δ𝑡 is sufficiently small

• The expression above leads to the master equation for the network SI model: 

𝑃 𝑥! 𝑡 + Δ𝑡 = 1 = 𝑃 𝑥! 𝑡 = 1 + 𝛽Δ𝑡 ∑"3%/ 𝐴!" 𝑃 𝑥! 𝑡 = 0, 𝑥" 𝑡 = 1 + 𝑂 Δ𝑡#

• It is convenient to restate this in terms of expectations:

𝑥!(𝑡 + Δ𝑡 = 𝑥!(𝑡) + 𝛽Δ𝑡 ∑"3%/ 𝐴!" 1 − 𝑥! 𝑡 𝑥"(𝑡) + 𝑂(Δ𝑡#)

• Next, divide both sides by Δ𝑡 and let Δ𝑡 → 0:

$ B&
$4

= 𝛽∑"3%/ 𝐴!" 1 − 𝑥! 𝑥" (network SI model)
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• There is one problem, here – there are more unknowns than equations!

• The problem is that the expectation of a product is not generally the product of an 
expectation. Some sort of approximation of the RHS is needed to make progress

• Naïve approach: assume that the states of nodes are all statistically independent of each 
other: 1 − 𝑥! 𝑥" ≈ 1 − 𝑥! 𝑥" (naïve approximation)

and our equation becomes,

$ B&
$4

= 𝛽 1 − 𝑥! ∑"3%/ 𝐴!" 𝑥" (naïve network SI model)

• We will discuss the “naïve approximation” and more accurate approaches later, but for 
now, I’ll just state that this approximation works reasonably well for large complete graphs 
and graphs with a tree-like structure (i.e. few loops)

• How can we analyze the naïve network SI model? A good first step when analyzing 
differential equations is to look for equilibrium states (i.e. fixed points) where the solution 
is time-independent: $ B&

$4
= 0 for all 𝑖. 
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• We have an equilibrium state if, 𝛽 1 − 𝑥! ∑"3%/ 𝐴!" 𝑥" = 0 ∀ 𝑖 ∈ 1,2, … , 𝑁

• We can see that there is an equilibrium infection-free state: 𝑥! = 0 for each node

• Now, there is also an equilibrium “everyone is infectious” state: 𝑥! = 1 for each node

• It is important to understand if an equilibrium state is stable. Here, we will analyze the 
response of the infection-free state to small perturbations

• Let 𝑥! = 0 + 𝜖𝑦! + 𝑂(𝜖#) with 𝜖 ≪ 1, 𝑦! ∼ 𝑂(1)

• This represents the addition of a small amount of infection to the infection-free state. 
The parameter 𝜖 indicates how small the perturbation is but its precise value will not 
be needed.

• The naïve network SI model is then, 𝜖 $�&
$4
= 𝛽 1 − 𝜖𝑦! ∑"3%/ 𝜖𝐴!" 𝑦" + 𝑂(𝜖#)
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• Dividing by 𝜖 and letting 𝜖 → 0 gives the linearized naïve network SI model: 
$�&
$4
= 𝛽∑"3%/ 𝐴!" 𝑦"

• We now have a linear eigenvalue problem, and we need initial conditions for each node, 
𝑦!(𝑡 = 0) = 𝑦8,!

• Then assume that 𝑦! = ¼𝑦! 𝑒�4 and let  ¼y = ¼𝑦%, ¼𝑦#, … , ¼𝑦/ 6

• This gives, A¼y = �
�
¼y and for a given graph, we can solve for the eigenvalues and 

eigenvectors using Numpy as discussed for linear diffusion

• However, we can use our results on bounds of eigenvalues of the adjacency matrix 
here. From lecture 11, we know that 𝑘 ≤ max(𝜆) ≤ 𝑘@\B

• This tells us that there will initially be exponential spread of the disease, and that the 
graph structure will determine the rate of spread. The infection-free equilibrium state 
is unstable. Keep in mind though that the linear assumes 𝑥! ≪ 1. The full nonlinear 
model will be needed when this condition is violated.



Imperial College
London

Explanatory note on derivation of network-SI model:
• Earlier in this lecture, the master equation for the network-SI model is presented as:

𝑃 𝑥! 𝑡 + Δ𝑡 = 1 = 𝑃 𝑥! 𝑡 = 1 + 𝛽Δ𝑡 ∑"3%/ 𝐴!" 𝑃 𝑥! 𝑡 = 0, 𝑥" 𝑡 = 1 +
𝑂 Δ𝑡#

• Why do we need this 𝑂 Δ𝑡# term? Consider the following illustrative example. Say that 
node 𝑖 has two neighbors which are nodes 𝑎 and 𝑏. 

• Let 𝑇\ represent the event of node 𝑖 being infected by node 𝑎 during a time step

• Then, our master equation for node 𝑖 is, 

𝑃 𝑥! 𝑡 + Δ𝑡 = 1 = 𝑃 𝑥! 𝑡 = 1 + 𝑃(𝑇\ ∪ 𝑇*)

• Now, 𝑃 𝑇\ ∪ 𝑇* = 𝑃 𝑇\ + 𝑃(𝑇*) − 𝑃 𝑇\ ∩ 𝑇*

• The first two terms on the RHS correspond to the summation term in the master equation

• The 𝑂 Δ𝑡# factor accounts for “multiple transmission events”, like 𝑃 𝑇\ ∩ 𝑇*
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• So what is 𝑃 𝑇\ ∩ 𝑇* ? The two events are independent so, 𝑃 𝑇\ ∩ 𝑇* = 𝑃 𝑇\ 𝑃(𝑇*)
and, 𝑃 𝑇\ 𝑃 𝑇* = 𝛽Δ𝑡 𝑃 𝑥! = 0, 𝑥\ = 1 𝛽Δ𝑡 𝑃 𝑥! = 0, 𝑥* = 1

• So, we see that the term is 𝑂 Δ𝑡# and when we take the limit Δ𝑡 → 0, this term 
vanishes.

• More generally, a node may have more than 2 neighbors and then we will have higher-
order terms like 𝑂 Δ𝑡I , 𝑂 Δ𝑡d , 𝑒𝑡𝑐 …, but these will all vanish as well when Δ𝑡 → 0.



Lecture 13

Epidemics on networks II: degree-based approximation and pair 
approximation
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Let’s continue thinking about 
epidemics on networks

1. Can we obtain a clearer 
understanding of the connection 
between the network structure 
and epidemic spread?

2. How do we improve upon the 
“naïve approximation”?

Epidemics on networks (continued)
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• The figure shows simulation results 
for the naïve network SI model (with 
𝛽 = 0.1) on a B-A and a GNp graph

• Both graphs have 2000 nodes and 
roughly the same average degree

• Initially, a node with degree equal to 
the average degree is infected

• We can see that the disease spreads 
more easily in the B-A graph. Why?

• We can guess that this may be due to 
the presence of hubs
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• We saw previously that the early spread of an epidemic is connected to the most-
positive eigenvalue of the network adjacency matrix, and this partially supports our 
guess. 

• A more direct connection to network structure can be made by using the degree-
based approximation for a random graph:

• Assume all nodes with degree 𝑘 have the same probability of being infected:
𝑃 𝑥! = 1 = 𝑃 𝑥" = 1 if 𝑘! = 𝑘". Let 𝜙' be the probability that nodes with 
degree 𝑘 are infected. We then have, 𝑃 𝑥! = 1|𝑘! = 𝑘 = 𝜙'

• Assume that probability of a link on a node with degree À𝑘 being connected to a 
node with degree 𝑘R is a function of the degrees only, 𝜃 À𝑘, 𝑘R . Also assume that 
this probability and 𝜙' are independent for any 𝑘

• This approach is not something we can justify rigorously in advance, but it does 
simplify the problem to considering distinct degrees in the degree distribution 

Degree-based approximation



Imperial College
London

• How does the probability that a node with degree 𝑘 is infectious evolve in time? We 
just need to adapt our previous work with 𝑥!

• As before, we will have 𝑥! 𝑡 + Δ𝑡 = 1 if (A) 𝑥! 𝑡 = 1 or (B) it acquires the disease 
from a neighbor between times 𝑡 and 𝑡 + Δ𝑡

• How do we compute 𝑃 𝐁 ? The probability of transmission to 𝑖 from an infectious 
neighbor is still:

𝑃(𝑥! → 1) = 𝛽Δ𝑡 ∑"3%/ 𝐴!" 𝑃 𝑥! 𝑡 = 0, 𝑥" 𝑡 = 1 + 𝑂(Δ𝑡#)

and we re-write this as a sum over the neighbors of node 𝑖:

𝑃(𝑥! → 1) = 𝛽Δ𝑡 ∑"∈/& 𝑃 𝑥! 𝑡 = 0, 𝑥" 𝑡 = 1 + 𝑂(Δ𝑡#) .

Note: all probabilities here are conditional on 𝑘! = 𝑘
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• Next restate the joint probability as a conditional probability, 𝑃Â
Ã

𝑥! 𝑡 =
0, 𝑥" 𝑡 = 1 = 𝑃 𝑥" 𝑡 = 1 𝑥! 𝑡 = 0 𝑃 𝑥! 𝑡 = 0 and the probability of 
transmission becomes:

𝑃(𝑥! → 1) = 𝛽Δ𝑡𝑃(𝑥! 𝑡 = 0) n
"∈/&

𝑃 𝑥" 𝑡 = 1 𝑥! 𝑡 = 0 + 𝑂(Δ𝑡#)

• By definition, 𝑃 𝑥! 𝑡 = 1|𝑘! = 𝑘 = 𝜙' , and all of the probabilities above are 
conditional on 𝑘! = 𝑘, so we can replace 𝑃(𝑥! 𝑡 = 0) with 1 − 𝜙' . 

• We have to be more careful with the conditional probability. Since we know that 
one neighbor of node 𝑗 is susceptible, it will be infectious if nodes with degree 
𝑘" − 1 are infectious. We have assumed that the network has been generated by 
a random graph model, so we also have to consider the distribution of values 𝑘"
can take. With these considerations, we write:

𝑃 𝑥" 𝑡 = 1 𝑥! 𝑡 = 0 = n
',3%

'345

𝜙',)%𝜃(𝑘, 𝑘R)

• We have used 𝜙',)%instead of 𝜙', since we know that 𝑖 is susceptible.
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• Our final expression for the probability of transmission is: 
𝑃(𝑥! → 1) = 𝛽Δ𝑡(1 − 𝜙' 𝑡 ) ∑"∈/&∑',3%

'345𝜙',)%(𝑡)𝜃(𝑘, 𝑘R) + 𝑂(Δ𝑡#)

= 𝛽Δ𝑡(1 − 𝜙' 𝑡 )𝑘 ∑',3%
'345𝜙',)%(𝑡)𝜃(𝑘, 𝑘R) +𝑂(Δ𝑡#)

• And the “degree-based” master equation is, 

𝜙' 𝑡 + Δ𝑡 = 𝜙' 𝑡 + 𝛽Δ𝑡(1 − 𝜙'(𝑡))𝑘 ∑',3%
'345𝜙',)%(𝑡)𝜃(𝑘, 𝑘R) +𝑂(Δ𝑡#)

• Finally, dividing by Δ𝑡 and letting Δ𝑡 → 0 gives, 

𝑑𝜙'
𝑑𝑡 = 𝑘𝛽(1 − 𝜙') n

',3%

'345
,

𝜃 𝑘, 𝑘R 𝜙',)%
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• To make further progress, we need to specify 𝜃 𝑘, 𝑘R , the probability that nodes with 
degrees 𝑘 and 𝑘Rare linked.

• Assume that the network was generated by the configuration model. For the 

configuration model, we know that 𝜃 𝑘, 𝑘R =
',V1,
'
,	so we have 

𝑑𝜙'
𝑑𝑡 = 𝑘𝛽(1 − 𝜙') n

',3%

'345
,

𝑘R𝑝',
𝑘

𝜙',)%

• Now, let’s consider the initial spread of infection when 𝜙' ≪ 1. 

• We let 𝜙' = 𝜖 À𝜙' + 𝑂(𝜖#) with 𝜖 ≪ 1. Substituting this expression into our equation 
above:

𝜖
𝑑 À𝜙'
𝑑𝑡 = 𝑘𝛽 1 − 𝜖 À𝜙' n

',3%

'345
,

𝜖
𝑘R𝑝',
𝑘

À𝜙',)% + 𝑂(𝜖#)
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• Dividing by 𝜖 and letting 𝜖 → 0 gives the linearized system:

$��1
$4

= 𝑘𝛽∑',38
'345
, )% ',0%V1,#$

'
À𝜙', (*)

The indices in the sum have been rearranged for convenience with the assumption 
that À𝜙8 = 0.

These equations can be solved analytically. Let 𝜓 = ∑',38
'345
, )% ',0%V1,#$

'
À𝜙', (**)

and the equation above becomes, $
��1
$4

= 𝑘𝛽𝜓

Differentiating (**) with respect to time and using (*), we find,  
$�
$4
= 𝛽𝜓 ∑',38

'345
, )% ',0%V1,#$

'
𝑘R

and ∑',38
'345
, )% ',0%V1,#$

'
𝑘R = ∑',3%

'345
, ',V1,

'
(𝑘R−1) = 𝑘#/𝑘 − 1
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• So, our linearized equations now read as:

𝑑𝜓
𝑑𝑡 = 𝛽𝜓(𝑘#/𝑘 − 1)

𝑑 À𝜙'
𝑑𝑡

= 𝑘𝛽𝜓

and we can write down the solution:

𝜓 = 𝜓8𝑒4/�

À𝜙' =
'��+
�

(𝑒
*
> − 1) + À𝜙'(𝑡 = 0)

%
�
= 𝛽 '.

'
− 1 → 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝜏 = 𝑓𝑎𝑠𝑡𝑒𝑟 𝑠𝑝𝑟𝑒𝑎𝑑

𝜓8 = 𝜓 𝑡 = 0 = ∑',38
'345
, )% ',0%V1,#$

'
À𝜙'(𝑡 = 0)

• The initial rate at which the 
disease spreads is dictated by 𝜏
so we now have a much clearer 
connection between the 
network structure and the 
dynamics on the network

• But keep in mind that we made 
a number of simplifying 
assumptions to allow us to 
obtain this “elegant” result!
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• Let’s look back at our motivating 
example – our assumptions for 
𝜃 𝑘, 𝑘R apply to the 𝐺𝑁𝑝 model if we 
replace 𝑘 with 𝑘 . They do not 
directly apply to the B-A model, but 
let’s use the results anyway.

• I have used the derived expressions 
for 𝜏 to make the trend lines à

• And we see pretty good agreement!

• In mathematical terms, the disease 
spreads more rapidly in the B-A graph 
because its degree distribution has 
much higher variance
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• Our network SI model is, $ B&
$4

= 𝛽∑"3%/ 𝐴!" (1 − 𝑥!)𝑥"

• And up to now, we have used the “naïve approximation”: 1 − 𝑥! 𝑥" ≈ 1 − 𝑥! 𝑥"

• However, this is only reasonable in certain special (artificial) cases – complete graphs and 
tree-like graphs with few loops

• Many real-world networks will have high enough clustering for this approximation to be 
poor – think about how many of your social network neighbors are themselves neighbors

• Can we do better? A common approach is to use a “second-moment closure”
• The idea is to derive an equation for 1 − 𝑥! 𝑥" for linked node pairs where 𝐴!" = 1
• This equation will have terms with third moments, e.g. (1 − 𝑥!)𝑥"𝑥7
• But, approximating these terms (in terms of the 1st and 2nd moments) produces much-

improved results compared to the naïve approximation on graphs with high clustering

Pair approximation
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• How do we derive an equation for 1 − 𝑥! 𝑥" ? Using the same approach we did to obtain 
our equation for 𝑥!

• We know that 
$ %)B& B'

$4
= $ B'

$4
− $ B&B'

$4
, and it is easier to develop an equation for 𝑥!𝑥"

which means we need to consider, 𝑃(𝑥! 𝑡 + Δt = 1, 𝑥" 𝑡 + Δt = 1)

• We can use essentially the same reasoning as before. We just need to account for two 
nodes being infectious at 𝑡 + Δ𝑡 rather than one:

𝑃(𝑥! 𝑡 + 𝛥𝑡 = 1, 𝑥" 𝑡 + 𝛥𝑡 = 1) =
𝑃(𝑥! 𝑡 = 1, 𝑥" 𝑡 = 1) + 𝑃 𝑥! 𝑡 = 1,𝑥" → 1 + 𝑃 𝑥! → 1, 𝑥" 𝑡 = 1 + 𝑃 𝑥! → 1, 𝑥" → 1

• 𝑥! → 1 means that node 𝑖 is susceptible at time 𝑡 and infectious at 𝑡 + Δt, and check that 
you understand what each of the four terms on the RHS represents.

• The first term on the RHS will be absorbed into the time derivative when Δt → 0 and the 
last term will disappear as it is 𝑂(Δ𝑡#)

• We need to find expressions for the 2nd and 3rd terms
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Term 2: 

𝑃 𝑥! 𝑡 = 1,𝑥" → 1 = 𝛽Δ𝑡n
73%

/

𝐴"7𝑃(𝑥! 𝑡 = 1, 𝑥" 𝑡 = 0, 𝑥7 𝑡 = 1)

Term 3: 

𝑃 𝑥! → 1, 𝑥" 𝑡 = 1 = 𝛽Δ𝑡n
73%

/

𝐴!7𝑃(𝑥! 𝑡 = 0, 𝑥" 𝑡 = 1, 𝑥7 𝑡 = 1)

The reasoning used to obtain these expressions is the same as for the network-SI model: 
𝑥" → 1 requires 𝑗 to be susceptible at 𝑡 and it acquires the disease from an infectious 
neighbor.

• Now rewriting these expressions as expectations and letting Δt → 0

$ B&B'
$4

= 𝛽∑73%/ 𝐴"7 𝑥!𝑠"𝑥7 + 𝐴!7 𝑠!𝑥"𝑥7 where 𝑠! = 1 − 𝑥!

and we can write down an equation for 𝑠!𝑥" …
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Our new equation:

$ Y&B'
$4

= 𝛽∑73%/ 𝐴"7 𝑠!𝑠"𝑥7 − 𝐴!7 𝑠!𝑥"𝑥7

• We now have to find approximations for the two 3rd moments. 

• Term 1: 𝐴"7 𝑠!𝑠"𝑥7
• We are only interested in cases where  nodes 𝑖 and 𝑗 are linked, and here we will 

also have nodes 𝑙 and 𝑗 linked. Assume that the only path from 𝑖 to 𝑙 is via node 
𝑗. Then if node 𝑗 is susceptible, node 𝑖 will not influence 𝑙. So we assume: 
𝑃 𝑥7 = 1 𝑠! = 1, 𝑠" = 1 ≈ 𝑃 𝑥7 = 1 𝑠" = 1 and approximate term 1 as 
follows:

𝐴"7𝑃 𝑠! = 1, 𝑠" = 1, 𝑥7 = 1 ≈ 𝐴"7𝑃 𝑥7 = 1 𝑠" = 1 𝑃 𝑠! = 1, 𝑠" = 1 =
𝐴"7𝑃 𝑥7 = 1, 𝑠" = 1 𝑃 𝑠! = 1, 𝑠" = 1

𝑃 𝑠" = 1
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• The same reasoning can be applied to the second term:

𝐴!7𝑃 𝑠! = 1, 𝑥" = 1, 𝑥7 = 1 ≈ A&'� B"3%,Y&3% � Y&3%,B'3%
� Y&3%

Converting probabilities into expectations, we have the equations that we want:

$ B&
$4

= 𝛽∑"3%/ 𝐴!" 𝑠!𝑥"

$ Y&B'
$4

= 𝛽∑73%/ [𝐴"7 𝑥7𝑠" 𝑠!𝑠" / 𝑠" − 𝐴!7 𝑠!𝑥7 𝑠!𝑥" / 𝑠! ]

• We initially had 𝑁 equations and 𝑁 + 𝐿 unknowns

• We now have 𝑁 + 𝐿 equations and 𝑁 + 𝐿 unknowns – is this really an improvement?

• The key is that simple approximations for 1 − 𝑥! (1 − 𝑥")𝑥' and 1 − 𝑥! 𝑥"𝑥'
have been introduced which are much more effective than the naïve approximation 
for 1 − 𝑥! 𝑥"
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• With these approximations, we have closed our model equations

• Closure problems are not unique to epidemics or network science, they typically arise when 
developing statistical models for complex nonlinear systems (e.g. atmospheric dynamics)

• The equations can be rearranged and written in a simpler form, but we will stop the 
theoretical development here. The last step is to critically consider the approximations we 
used.

• How can we justify: 𝑃 𝑥' = 1|𝑥! = 0, 𝑥" = 0 ≈ 𝑃 𝑥' = 1|𝑥" = 0 ?

• As with the degree-based approximation, there isn’t a rigorous argument we can 
apply. We use it because it has been found to work well
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Figure 16.11: Comparison of theory and sim-
ulation for the SI model on two different net-
works. (a) The fraction of infected individuals
as a function of time on the giant component
of a network with low transitivity (i.e., low
clustering coefficient), calculated by numeri-
cal solution of the differential equations for the
first- and second-order moment closure meth-
ods, and by direct simulation. (b) The same
comparison for a network with high transitiv-
ity. The networks have one million nodes each
and the transmission rate is � ⇤ 1 in all cases.
Simulation results are averaged over 500 runs.

The reason for this disagreement is an interesting one. Equation (16.54) may
appear to be a straightforward generalization of the equivalent equation for the
fully mixed SI model, Eq. (16.4), but there are some subtleties involved. The
right-hand side of the equation contains two average quantities, si and xj , and
in multiplying these quantities we are implicitly assuming that the product
of the averages is equal to the average of their product. In the fully mixed
model this is true (for large n) because of the mixing itself, but in the present
case it is, in general, not, because the probabilities are not independent. The
quantity si measures a node’s probability of being susceptible and xj measures
the probability of its neighbor being infected. It should come as no surprise
that in general these quantities will be correlated between neighboring nodes.
Correlations of this type can be incorporated into our calculations, at least
approximately, by using a so-called pair approximation or moment closure
method, as described in the following section.

649

• The figure on the right compares 
“simulation” with “theory” for 2 graphs with 
different amounts of clustering

• “Simulation” refers to calculations using 
Bernoulli trials as sketched for the 5-node 
network in the previous lecture

• “First-order” theory refers to the network SI 
model with the naïve approximation

• “Second-order” uses the 2nd-moment closure 

• “Transitivity” refers to the amount of 
clustering, and while the naïve 
approximation is ok for the tree-like low-
transitivity network, the 2nd-moment closure 
works very well even when the graph 
contains many triangles

Figure taken from: Newman, Networks



Lecture 14

Communities in networks
Modularity and modularity maximization
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• The behavior of a 
population of social animals 
can be characterized by a 
network

• But are there important 
“sub-networks”?

• From our own experience, 
we know communities can 
form with interactions that 
are distinct from the full 
group

• How can we “scientifically” 
identify these communities?

Communities in networks
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• The figure shows a social network for a group of 62 bottlenose dolphins observed over 
a number of years near New Zealand

• Links have been placed between dolphins observed spending more time near each 
other than would be expected from random pairings

• How do we analyze this graph?

Lusseau, D. Evidence for social role in a dolphin social network. Evol Ecol 21, 357–366 (2007).

• We can look at the usual quantities 
like clustering and the degree 
distribution

• But can we identify communities
based on the graph structure?
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• Looking at the graph, we can guess that there could be 2 communities

• But how do we “draw” the partition? How do we compare 2 different partitions?

• Graph partitioning is an old problem in computer science.

Lusseau, D. Evidence for social role in a dolphin social network. Evol Ecol 21, 357–366 (2007).

• However, bespoke methods for network 
science have been developed, and we 
will focus on one of those here

• Keep in mind that there are many 
different methods and there is no 
universal best choice
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• We need to define a quantity that will quantify the “quality” of a partition of a graph 
into 2 non-overlapping groups of nodes

• Qualitatively, nodes within each group should be densely connected relative to the 
connections between the groups

• One of the most widely-used such quantities is the modularity

• The basic idea is to compare the number of links within a group to the number 
expected if the nodes had been connected randomly (while preserving their degrees)

• If the difference is large, we assume that the partition captures a relative 
preference for contacts within that group

• And from our discussion of the configuration model, we know that the expected 
number of links between 2 nodes in a “randomly-wired” graph with a given 
degree distribution is, 𝑙!" ≈ '&''

#Q

Modularity
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• The modularity of a set of nodes, 𝑆𝑎 , is defined as: 𝑀\ =
%
#Q
∑!∈�4∑"∈�4 𝐴!" −

'&''
#Q

• Note that ∑!∈�4∑"∈�4 𝐴!" is twice the number of links connecting nodes in the set to 
other nodes in the same set.

• Also note that ∑!∈�4∑"∈�4
'&''
#Q

= %
#Q
∑!∈�4 𝑘! ∑"∈�4 𝑘" =

e4 .

#Q
where 𝐾\ is the total 

number of stubs attached to nodes in 𝑆𝑎

• For a given partition of a graph into 2 (disjoint) sets of nodes, 𝑆% and 𝑆#, the modularity of 
the partitioned graph is just the sum of the modularities of each set: 𝑀 = 𝑀% +𝑀#

• And this generalizes as you would expect to any number of disjoint sets. For 𝑞 disjoint sets: 
𝑀 = 𝑀% +𝑀# +𝑀I +𝑀d +⋯+𝑀p
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• A simple example from Barabasi (figure 9.16) is shown below

• Check your understanding: what is the modularity of the set of 4 purple nodes in the 
community on the right in example (a) below?
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• A simple example from Barabasi (figure 9.16) is shown below

• Check your understanding: what is the modularity of the set of 4 purple nodes in the 
community on the right in example (a) below?

• The total number of links connecting purple nodes to other purple nodes is 5, so 
∑!∈�4∑"∈�4 𝐴!" =2 ∗ 5 = 10. The total number of stubs attached to purple nodes is, 𝐾\ =

11, and 𝑀\ =
%
#Q
(10 − %%.

#Q
) with 𝐿 = 13. 

Notes:

• If all nodes are in the same 
community, 𝑀 = 0

• It can be shown that the 
maximum is 𝑀 = 1

• The definition can be extended 
to partitions with an arbitrary 
number of parts – an example is 
shown in (d)
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• Thinking back to our dolphin example, our goal, is to assign each node to either S1 or S2 so 
that the graph modularity is maximized

• There is a problem though: there are 2/)% such partitions and it is infeasible to compute 
the modularity for all of them for large graphs

• In fact, there is no good way to find the maximum for large graphs. Instead, we aim to find 
a split that gives a result close to the maximum (modularity maximization is NP-hard)

• There are multiple approaches for this, we will look at a spectral method

• First, we introduce an indicator variable 𝑠! = ± 1 which tells us if node 𝑖 is in 𝑆1or 𝑆2
• Then, %

#
𝑠! 𝑠" + 1 =1 if nodes 𝑖 and 𝑗 have been assigned to the same group and is 0

otherwise

• The modularity for a given partition can be written as,
𝑀 = %

dQ
∑!3%/ ∑"3%/ 𝐴!" −

'&''
#Q

(𝑠! 𝑠" + 1) 

Modularity maximization
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• Introducing the modularity matrix B, 𝐵!" = 𝐴!" −
'&''
#Q

, we have,

𝑀 = %
dQ
∑!3%/ ∑"3%/ 𝐵!" 𝑠! 𝑠" = %

dQ
s<Bs

• We then have a discrete constrained optimization problem: 
Find s such that s<Bs is maximized with the constraint that each element of s is ±1

• Finding a precise solution to this problem in a reasonable amount of time is extremely 
difficult in general, so instead, approximate methods have been developed which aim to 
“get close” to the maximum in a reasonable amount of time

• An effective approach is to relax the constraint to ¼s # = 𝑁 where the elements of ¼s are 
allowed to be real numbers. As we will see, this gives a much simpler optimization problem 
but then we will have to “adjust” the solution to find s with 𝑠! = ± 1
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• We enforce the new constraint using the Lagrange multiplier, 𝛾, so the optimization 
problem becomes: 

Find ¼s, 𝛾 such that 𝑄 = ¼s<B¼s − 𝛾 ¼s<¼s − 𝑁 is maximized 

• Notice that if we set v�
vr
= 0, we have ¼s<¼s = 𝑁 and the constraint is satisfied

• It is easier (for me) to work with this expression in index notation, 

𝑄 =n
!3%

/

n
"3%

/

�̃�!𝐵!"�̃�" − 𝛾n
"3%

/

¼sN# − 𝑁

And we require v�
vỸ"

= 0 which, after some arithmetic, leads to, ∑"3%/ 𝐵7"�̃�" = 𝛾�̃�7

• This is of course an eigenvalue problem with eigenvalue 𝛾 and eigenvector ¼s. So ¼s should be 
an eigenvector of B with length 𝑁, but which eigenvector should it be?

• B is symmetric so the eigenvalues will be real but may be positive or negative. Note that 
there will also be at least one zero eigenvalue which corresponds to the case where all 
nodes are assigned to the same community
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• Order the eigenvalues of B such that , 𝜆% ≥ 𝜆# ≥ 𝜆I ≥ ⋯ ≥ 𝜆/ with Bv! = 𝜆!v! and set ¼s =
v!, with |v!|# = 𝑁. The approximate modularity is then,

¹𝑀 = %
dQ
v!6 Bv! =

%
dQ
𝜆!v!6v! =

�&/
dQ

,

• We can see that we should choose 𝛾 = 𝜆% and ¼s = v% which will give ¹𝑀 = �$/
dQ
.
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• There is one last task, to “adjust” the solution vector so that its elements are all 1 or −1

• Let s be this adjusted vector. The inner product of s with the eigenvector, ¼s, is ¼s<s = 𝑁 cos 𝜃
where we have scaled s so that s # = 𝑁 and 𝜃 is the angle between the two vectors

• The goal then is to construct s so that |𝜃| is minimized or equivalently so that ¼s<s is 
maximized

• This will occur if each element of s is chosen to have the same sign as the corresponding 
element of ¼s (if an element of ¼s is zero, it does not matter which choice is made)

• The geometric interpretation of this adjustment is that ¼s points to the surface of a 𝑁 − 1
sphere and s must point to a corner of a 𝑁-cube. We choose the corner that minimizes the 
angle between the two vectors.

Example: For 𝑁 = 2, the possible solutions are the 4 
dashed vectors, while the optimization problem will 
give an ¼s pointing to a point on the circle which has 
radius 2

¼s
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In summary, the spectral modularity maximization method requires the following steps 

1. Construct modularity matrix B

2. Compute leading eigenvalue of B and corresponding eigenvector, ¼s

3. Construct s based on the signs of the elements in ¼s

It is straightforward to implement this in Python with numpy, scipy, and networkx.
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• Let’s apply this method to the dolphin social network
• The NetworkX visualization is shown as well as the original

Dolphin communities

Lusseau, D. Evidence for social role in a dolphin social network. Evol Ecol 21, 357–366 (2007).
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• Applying the spectral method, we obtain the communities shown
• This seems reasonable enough, however we can form a stronger conclusion

• During the period that these dolphins 
were observed, one dolphin left the  
pod for a while and then returned

• While this dolphin was away, the pod 
split into 2 separate groups

• Those 2 groups correspond almost 
exactly to the communities identified 
by the spectral method! There are two 
dolphins misclassified as “orange”. 



Lecture 15

More on modularity
Laplacian graph partitioning
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• Our initial view of community detection 
was based on modularity maximization

• However, there are weaknesses to this 
approach which we will now examine

More on modularity

J.S
tat.M

ech.
(2008)

P
10008

Fast unfolding of communities in large networks

Figure 2. Graphical representation of the network of communities extracted from
a Belgian mobile phone network. About 2 million customers are represented on
this network. The size of a node is proportional to the number of individuals in the
corresponding community and its colour on a red–green scale represents the main
language spoken in the community (red for French and green for Dutch). Only the
communities composed of more than 100 customers have been plotted. Notice
the intermediate community of mixed colours between the two main language
clusters. A zoom at higher resolution reveals that it is made of several sub-
communities with less apparent language separation.

groups of people, where language ceases to be a discriminating factor, might possibly
play a crucial role for the integration of the country and for the emergence of consensus
between the communities [36]. One may indeed wonder what would happen if the
community at the interface between the two language clusters in figure 2 was to be
removed.

doi:10.1088/1742-5468/2008/10/P10008 8

Barabasi figure 9.1: communities in a Belgium mobile
phone operator’s call network
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Let’s take a critical view of modularity:

• First, for very large networks, there are typically a large number of partitions 
with similar modularity scores

• It is used to compare different partitions for a single network but cannot (and 
should not) be used to compare different networks

• Nodes are not allowed to belong to multiple communities (see §9.5 in Barabasi)

• It also suffers from a “resolution limit” which we will now discuss in more detail
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• Consider cases where the number of distinct sets of nodes in a partition may be 
greater than 2

• The modularity of one set, 𝑆𝑎, is still, 𝑀\ =
%
#Q
∑!∈�4∑"∈�4 𝐴!" −

'&''
#Q

• But consider what happens when 
'&''
#Q

≪ 1 for each node-pair in the set. 

• There will then be a general “preference” to combine small sets 

• As a result, modularity maximization can combine two sets which are clearly 
distinct communities
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1 2

3

4 5

6

2

• Consider these 6 nodes in a larger graph

• Say the 1st 3 nodes are in set 1 and the rest 
are in set 2

• Then 𝑀% =
%
e
(6 − o.

e
) = 𝑀# where 𝐾 is the 

total degree for the graph (including other 
nodes and links not shown)

• What happens if we combine these 2 sets?

• Then, the modularity for the 6-node 7-link set will be, 

𝑀%,# =
1
𝐾 (14 −

14#

𝐾 ) = 𝑀% +𝑀# +
1
𝐾 (2 − 2 ∗

7 ∗ 7
𝐾 )

and if 𝐾 > 49, the modularity of the combined set will be larger than the sum of the 
modularities of the 2 sets and a modularity maximization method will prefer the 
combined set. 
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• This simple example is straightforward to generalize. 
Say that:

• 𝐿\ is the number of links connecting nodes within set 𝑎
• Í𝐿\,* is the number of links that connect nodes in set 𝑎 with nodes in set 𝑏
• 𝐾\ is the number of stubs connected to nodes in set 𝑎 (so, 𝐾\ ≥ 2𝐿\)
• 𝑀\,* is the modularity of the set of nodes formed by combining sets 𝑎 and 𝑏

Then, 𝑀\ =
%
e
(2𝐿\ −

e4.

e
) and 𝑀\,* = 𝑀\ +𝑀* +

#
e
(Í𝐿\,* −

e4e?
e
)

• If 𝐾 is larger, there will be a tendency Í𝐿\,* −
e4e?
e

> 0 and for modularity 
maximization to combine sets 𝑎 and 𝑏. This can be a problem when working with very 
large networks

• Applied to students in the department, modularity maximization may place you and 
your friends in a community, but when applied to students in the college, it may 
combine you and your friends with other communities

• A partial solution is to re-apply the method to the smallest communities found
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• We have just taken a brief look at community detection

• Modularity and the spectral method were introduced about 15 years ago and have 
proven to be hugely influential

• There have been a large number of other methods that been developed since then

• The Louvain method maximizes modularity more efficiently than the spectral 
method (but is much more complicated) – see Barabasi §9.12.1

• There are methods based on information theory (Barabasi §9.12.2) and statistical 
inference that are also popular

• And there are methods that allow nodes to belong to multiple communities 
(Barabasi §9.5)

• This is one topic where there is quite a lot of useful information in Barabasi that we 
will not cover – read through chapter 9 if you are interested and would like to learn 
more!
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• In the last part of this module we will look at problems at the intersection of network 
science and data science (and computer science)

• We will focus on clustering, trying to find ways to automatically group data into different 
clusters. As we will see, there are natural similarities with community detection.

Network Science and data science

From Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905. 

Two motivating examples:
1. Image segmentation, 

automatically identifying 
“objects” in images

2. More general data clustering: 
given a set of 𝑚-dimensional
vectors, assign each vector to one 
of 𝑞 clusters
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• There are two questions we have to consider:

1. How do we represent an image or a collection of vectors as a graph?

2. Given a graph representation, how do we construct clusters?

• We will consider the 2nd question first as it naturally follows from our discussion of 
community detection

• The methods we focus on here take advantage of useful properties of the graph Laplacian 
whose eigenvalues and eigenvectors can be connected to the structure of the graph. 
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• First consider a graph with multiple connected components. The number of zero 
eigenvalues of L is equal to the number of connected components in the graph

• To see how this works, recall that the adjacency matrix of a graph with multiple 
components can be put in block diagonal form:

•

Barabasi, figure 2.15(a)

• The corresponding Laplacian will also be in block diagonal form

• Then, for the example above, consider the eigenvectors where 1) the first three elements 
are 1, and all other elements are zero, and 2) the first three elements are zero, and all other 
are 1. These are linearly independent eigenvectors with eigenvalues=0
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• Are there any other linearly independent eigenvectors? Note that z is equal to the sum of 
these two vectors and is not linearly independent. 

• We can show that there are no other linearly independent eigenvectors corresponding to  
𝜆 = 0 by showing that all elements of a zero eigenvector corresponding to nodes in a 
component must be the same – you will be given an exercise which examines this question 
in greater detail. 

• It is natural to consider distinct connected components of graphs as distinct clusters. What 
about the identification of clusters within a connected component? The Laplacian is also 
helpful for this question and we now consider Laplacian graph partitioning



Imperial College
London

• The idea behind Laplacian partitioning is to break a connected graph into two groups of 
nodes where the number of links crossing from one group to the other (the cut size, 𝑐) is 
minimized

• As we did when considering spectral community detection, we assign each node to one of 
two groups (𝑎 and 𝑏) with 𝑠! = 1 if node 𝑖 is in group 𝑎 and 𝑠! = −1 if node 𝑖 is in group 𝑏

• Then, %
#
1 − 𝑠!𝑠" = 1 if nodes 𝑖 and 𝑗 are in different groups and is zero if they are in the 

same group.

• It follows that the cut size for a partition is, 

𝑐 =
1
4n
!3%

/

n
"3%

/
𝐴!"(1 − 𝑠!𝑠")

which we now want to minimize.

Laplacian graph partitioning
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• The  “trick” with Laplacian partitioning is to notice that: 

n
!3%

/

n
"3%

/
𝐴!" =𝐾 =n

!3%

/

n
"3%

/
𝑠!𝑠"𝑘" 𝛿!"

• Then, 𝑐 = %
d
s<Ls. With modularity maximization, we had 𝑀 = %

dQ
s<Bs and the task was to 

find s such that 𝑀 is maximized with the constraint that each element of s is ±1. 

• Here, the task is to find s such that 𝑐 is minimized with each element of s set to ±1

• As with spectral modularity maximization, we relax this constraint to ¼s # = 𝑁 and then we 
will later convert ¼s to a vector of positive and negative ones

• How do we find the minimum of �̃� = ¼s<L¼s?  Well, we know that if ¼s = z then, �̃� = 0, 
however this is just the trivial result that all nodes are in the same group. 

• Instead consider the eigenvector, vy)%, corresponding to the smallest positive eigenvalue 
of L, 𝜆/)%. Setting ¼s = vy)% (with the length scaled to 𝑁) we find, �̃� = %

d
𝑁𝜆/)% and with a 

bit more work we can show that this is the desired non-zero minimum.
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• To show that ¼s = v/)% is the “correct” choice, we will first expand ¼s as a weighted sum of 
the eigenvectors of L:

¼s = 𝑎%v% + 𝑎#v# +⋯+ 𝑎/vy = Va

where V is the orthogonal eigenvector matrix for L and a = 𝑎% 𝑎# …𝑎/ 6

• Then, after orthogonally diagonalizing L, we find, ¼s<L¼s = a<V<VΛV<Va = a<Λa (*)

• Say that the eigenvalues are ordered as 𝜆% ≥ 𝜆# ≥ ⋯ ≥ 𝜆/)% > 0 and rewrite (*) as, 

�̃� = 𝜆%𝑎%# + 𝜆%𝑎## +⋯+ 𝜆/)%𝑎/)%#

• The minimum positive �̃� occurs when 𝑎! = 0 for 𝑖 < 𝑁 − 1. We still have to decide what to 
do with 𝑎/. We set it to zero, otherwise the minimization problem will again lead to the 
trivial result of all nodes being placed in the same group. 
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• The final step could be the same as what we had with the spectral method – we set s by 
setting all positive elements of ¼s to one and all negative elements to negative one

• This method tends to produce nice results when 𝜆/)% ≪ 𝜆/)# but it has some obvious 
shortcomings. E.g. if a node has degree=1, then placing the node in its own group will give 
the minimum non-zero cut-size

• Additional rules are usually imposed to ensure that one of the groups is not “too small”
• For example, place all nodes with ¼s! ≤ 𝑚𝑒𝑑𝑖𝑎𝑛(¼s) in a group. 

• v/)% and 𝜆/)% are known as the Fiedler vector and the algebraic connectivity, respectively. 
A key result from Fiedler is that if we select a real number, 𝑦, and place all nodes 
corresponding to the elements of v/)% < 𝑦 in  group 𝑎, and all other nodes in 𝑏, then each 
group will be connected.

• Next week, we will look at “modern” clustering methods which can be viewed as 
extensions of Laplacian graph clustering



Lecture 16

Converting data to graphs
Normalized cut size and spectral clustering
Network science and climate science
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• In this lecture we will continue our discussion of clustering

• Recall that there are two questions to consider:

1. How do we represent an image or a collection of vectors as a graph?

2. Given a graph representation of the data, how do we construct clusters?

• We partially answered the 2nd question when we looked at Laplacian graph partitioning. 
We will briefly discuss two methods which adopt ideas from Laplacian partitioning but are 
more sophisticated

• But first, let’s address the first question above. Let’s assume that a dataset can be arranged 
as a set of 𝑁 𝑚-element vectors: 𝐷 = {a%, a#, … , a/}, a! ∈ ℝ@. How do we “convert” this 
into a graph?

Converting data into graphs
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• Then the simplest “graphical” representation of the data is a weighted complete graph 
where the weight of a link between 2 distinct nodes (data points), 𝑊!",  is a function of the 
distance between the 𝒊th and 𝒋th vectors in 𝐷. The function should convert smaller distances 
into larger weights, and usually, 𝑊!! = 0.

• Let 𝑑!" be the distance between a! and a". Which distance measure should we use?

• The obvious choice is the Euclidean distance: 𝑑!" = a! − a"
6 a! − a"

• But we may be more interested in the degree of alignment of two vectors in which 
case the cosine distance may be preferred: 𝑑!" = cos)% a!a"/ a! a" where the 
distance is chosen to be between 0 and 𝜋

• A black-and-white image can be represented as a set of 1-D vectors where each vector 
corresponds to the intensity of a pixel. 

• An image can also be represented as a single 1-D vector where each element corresponds 
to a pixel intensity. Then we can construct a network where each node corresponds to an 
image. Let’s look at a very simple example…
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• Consider the 3 images shown below:

• Each image corresponds to a 295 x 500 x 3 matrix of 
pixel brightnesses scaled to be between 0 and 1

• We only use the 1st of the 3 “third dimensions” 
which correspond to red, green, and blue

• And convert each matrix into a 147500 element 
column vector

• Let’s use these vectors to form a 3-node weighted 
graph
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• Let the vectors {a%, a#, aI} correspond to the three images and let 𝑑!" be the Euclidian 
distance between distinct vectors a! and a". 

• We then use a Gaussian kernel to convert the distances to weights, 
𝑊!" = 𝑒𝑥𝑝 −𝑑!"# /(2𝜎#) , where 𝜎 is a parameter which I will set to 100 and:

0.53

0.39
0.51

We can see that the 2 
beagles have the highest 
edge weight, but there is 
also a comparably high 
weight for the two 
“horizontal” dogs. 
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• Let’s now return to the first of our two motivating examples:

• The image on the left corresponds to an 80 x 100 matrix of pixel brightnesses. First, we 
construct a complete weighted graph with 𝑁 = 8000 nodes (each node corresponds to a 
pixel). Let 𝐼! be the brightness of 𝑖 and let x! correspond to the pixel’s spatial position. Then 
the weight for the link connecting distinct nodes 𝑖 and 𝑗 is given by:

𝑊!" = exp − �&)�'
.

�$
∗ 𝐹!" with 𝐹!" = exp

)$&'
.

�.
if 𝑑!" < 𝑑8 and 𝐹!" = 0 otherwise.               

We also set 𝑊!! = 0

• Here, 𝑑!" = |x! − x"| is the Euclidian distance between the two vectors, and 𝜎%, 𝜎#, and 𝑑8
are parameters that must be specified. With these weights, two nodes are strongly linked if 
they have similar pixel brightness and are close together in the original image.

From Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905. 

1. Image segmentation, 
automatically identifying 
“objects” in images

Image segmentation



Imperial College
London

• We have specified how to convert the image into a weighted network. How do we 
construct a partition consisting of two groups of nodes? We will minimize the normalized 
cut size. 

• Laplacian graph partitioning aimed to minimize the cut size, 𝑐, the number of links crossing 
from a node in one group to a node in the other. However, if a node has just one link, this 
can lead to the partition where that node is in a group by itself which is not useful. The 
normalized cut size addresses this problem. The normalized cut size is defined as:
𝜉 = 𝑐 %

e4
+ %

e?
. Here, 𝐾\ is the total degree for nodes in group 𝑎, and 𝐾* is the total 

degree for nodes in the other group in the partition. Now, if one group has a small number 
of small-degree nodes, it will be “penalized.”

• Since we are working with weighted graphs, we have to modify the definitions above. The 
sum of the weights on links attached to a node will be taken to be its degree and, Ó𝐾\ =
∑!∈�4∑"3%

/ 𝑊!" where the outer sum is over all nodes assigned to group 𝑎

• The cut size will also be redefined to account for the weights.
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• As before, we define the partition with a vector, s, where 𝑠! = 1 if node 𝑖 is assigned 
to group 𝑎 and 𝑠! = −1 if node 𝑖 is in group 𝑏

• The weighted cut size for the partition is, 

�̂� =
1
4n
!3%

/

n
"3%

/
𝑊!"(1 − 𝑠!𝑠")

and the weighted normalized cut size is, 

Õ𝜉 =
1
Ó𝐾\
+
1
Ó𝐾*

∗
1
4n
!3%

/

n
"3%

/
𝑊!"(1 − 𝑠!𝑠")

which we now want to minimize. We again relax the problem to finding ¼s ∈ ℝ/ with 
¼s # = 𝑁 such that Ö𝜉 is minimized where, 

Ö𝜉 =
1
Ó𝐾\
+
1
Ó𝐾*

∗
1
4n
!3%

/

n
"3%

/
𝑊!"(1 − �̃�! �̃�")
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• Laplacian partitioning required the computation of an eigenvector of the Laplacian. 
The solution to the normalized cut problem is more complicated:

• First, compute v/)% , the eigenvector corresponding to the second smallest 

eigenvalue of the weighted normalized Laplacian: ÍL = ÓD)
$
𝟐 ÓD −W ÓD)

$
𝟐 where 

ÓD is a diagonal matrix with Ó𝐷!! = ∑"3%/ 𝑊!"

• Then, compute y = ÓD)
$
.v/)% which will be used to construct s

• Choose 𝑖∗, a “threshold element” in y, and construct s so that 𝑠! = 1 if 𝑦! > 𝑦!∗
and 𝑠! = −1 otherwise. Choose 𝑖∗ so that the weighted normalized cut size, Õ𝜉, is 
minimized.

• Each node in the graph corresponds to a pixel in the original image, and we can then 
use the computed partition to construct two images. For example, for each pixel 
where 𝑠! = −1, set the pixel intensity in the image matrix to zero (black); leave all 
other elements in the matrix as they were. 
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• The images in the middle and on the right were constructed using this approach (the 
authors used 𝜎% = 0.1, 𝜎# = 4, and 𝑑8 = 5 to construct the weighted graph)

• I have described the algorithm, but I have not explained why it is correct. You will be given 
a few exercises which will fill in some of the details. 

From Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905. 
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• Our 2nd motivating example is related to the image above. Given a set of 𝑁 2-
dimensional vectors, assign each vector to one of two clusters

• The image in the middle was constructed using K-means clustering. For this class, all 
you need to know about this method is that given a set of 𝑁 𝑚-dimensional vectors 
and a positive integer, 𝐾, it assigns each vector to exactly one of 𝐾 clusters.
• It is a simple but very well-known method. It is easy to find more information 

online if you are interested (e.g. https://en.wikipedia.org/wiki/K-means_clustering)

• However, we can see that the middle image is not that useful. The image on the right is 
better and was generated using spectral clustering which combines K-means clustering 
with ideas taken from Laplacian partitioning

Spectral clustering

https://en.wikipedia.org/wiki/K-means_clustering
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• We will take a very brief look here at spectral clustering. I just want to give a sense of how 
it is connected to Laplacian partitioning, but a detailed analysis will not be presented

• Our dataset will be represented as a set of vectors, x%, x#, … , xy , x! ∈ ℝ@. The first step is 
to construct a weighted graph from the 𝑁 vectors,. The general approach is similar to what 
we have already discussed and is based on the Euclidean distance between two vectors, 
𝑑!" = |x! − x"| . The weight matrix for the graph is defined as:

𝑊!" = exp −
$&'
.

#�.
if 𝑖 ≠ 𝑗 and 𝑊!! = 0

• After constructing, W, construct  ÓD (the diagonal matrix with Ó𝐷!! = ∑"3%/ 𝑊!") and ÓA =
ÓD)

$
𝟐WÓD)

$
𝟐.

• Compute the orthogonal eigenvectors of ÓA corresponding to the 𝐾 largest eigenvalues of ÓA
and collect them in a 𝑁 x 𝐾 matrix, X.

• Construct a new dataset of 𝑁 𝐾-dimensional vectors, r%, r#, … , r/ , where r! is the 𝑖45 row
of X, and apply 𝐾-means clustering to this dataset (after normalizing each vector to have 

unit length).
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• Spectral clustering is a little different from the methods we have previously discussed:

• It doesn’t work directly with a Laplacian (or Laplacian-like) matrix, however the 
eigenvectors and eigenvalues of ÓA can be related to those of ÍL (problem sheet 
exercise)

• It requires a set of eigenvectors rather than a single one and doesn’t disregard 
eigenvectors where all non-zero elements are the same

• Consider a weighted graph with multiple connected components. Then it can be 
shown that vectors r! and r" will be identical if nodes 𝑖 and 𝑗 are in the same 
component and will be orthogonal otherwise (we previously discussed a similar 
property for eigenvectors of the Laplacian matrix) 

• We won’t go into why this then leads to good results when 𝐾-means clustering is 
applied. This is an example of a potential topic for further study which follows 
naturally from this class.

• There are also other important methods in machine learning which use ideas from Network 
Science (e.g. graph neural networks)
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• We will conclude this lecture and the class with a brief discussion of a 2017 study which 
used tools from network science to analyze climate dynamics:

• The main points we will touch upon are:
• What is El Nino?
• What is the dataset used for the analysis?
• How is a network constructed from the dataset?
• How is the network analyzed and what does the analysis tell us?

Network science and climate science
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• What is El Nino?

• El Nino refers to periods with abnormally high water temperatures in the central and 
eastern tropical Pacific ocean. This affects temperature and rainfall globally.

• El Nino events typically last for a few years and then “go away” for a few years

https://commons.wikimedia.org/wiki/File:El_Ni%C3%B1o_1982-83.png



Imperial College
London

• What is the dataset used for the analysis?

• The dataset corresponds to daily near-surface temperature from 1948-2016

• It is constructed via a mix of measurements and simulations

• Daily temperatures are available for 10512 regions on the Earth’s surface. 

• 57 of these regions are within the El Nino Basin
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• How is a network constructed from the dataset?

• Each of the 10512 regions corresponds to a node and we construct a network for a 
365-day period

• A weighted directed link is created for each distinct node pair

• Let 𝑇! 𝑡\ be the temperature at node 𝑖 on day 𝑡\. Define the annual time average as:
𝑇! =

%
I]j

∑\3%I]j 𝑇! 𝑡\

• The link between 𝑖 and 𝑗 is constructed using the cross-correlation between 𝑇! and 𝑇": 

𝐶!" 𝜏 =
$
/B7 ∑48$

/B7 [6& 44 6' 44)� ])6&6'
�&�'

• 𝜎! is the standard deviation of 𝑇! 𝑡\ , and 𝜎" is the standard deviation of 
𝑇" 𝑡\ − 𝜏

• The time delay, 𝜏, is varied between 0 and 200 and let 𝜏∗ be the value of 𝜏 for 
which |𝐶!" 𝜏 | is maximized. Let this maximum be 𝐶∗. 
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• The sign of 𝜏∗ tells us the direction of the link:

• If 𝜏∗ ≥ 0, 𝑊!" =
b∗)@i\M(b&')

Y4$(b&')
(and 𝑊"! = 0)

• If 𝜏∗ < 0, 𝑊"! =
b∗)@i\M(b&')

Y4$(b&')
(and 𝑊!" = 0)

• We also set 𝑊!! = 0 and this weight matrix defines the network to be analyzed (the paper 
also considers one other network which we will ignore)
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• How is the network analyzed and what does the analysis tell us?

• A simple quantity to analyze is the weighted in-degree for regions outside of the El 
Nino basin: ∑"∈�/O𝑊!" where the sum is over nodes within the basin. This provides a 
simple view of which regions are most strongly affected by El Nino. 

The top figure shows these in-degrees and 
there is a tangible (imperfect) correlation with 
regions with abnormal temperatures during N. 
American winter
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• Community detection  (or clustering) methods can be applied to identify groups of regions 
which show unusually similar dynamics

• The 2017 study uses community detection differently. It constructs a weighted network 
where each node corresponds to a year in which El Nino occurred, and the link weight 
indicates how similar the two years were. Then modularity maximization (via the Louvain 
method) was used to construct three communities which represent three “types” of El Nino 
events (i.e. events where different areas are strongly influenced)

• Among the study’s main conclusions are the identification of these different types of El 
Ninos and the observation that El Nino periods are characterized by stronger temperature 
anomalies in more localized regions


