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1
Probability Review

We will begin by developing a framework to reason about the pos-
sible outcomes of real-world experiments. Our framework will be
an abstraction of the process of collecting data from a system that is
subject to chance variation. The classical examples are flipping a coin,
or rolling a die. Practically relevant examples are clinical trials, exper-
iments on biological systems, physical measurements with limited
precision, or observations of complex systems such as the financial
markets or social networks. The important common factor is that in
any realistic setting, the input and surroundings may vary in ways
we cannot perceive, let alone control. We therefore allow explicitly for
apparently identical inputs to produce different outputs.

It will be important to distinguish betweeen what can happen and
what we can observe. To make this distinction, we define the sample
space, which is the set of possible outcomes of our experiment.
Each observable event will correspond to a subset of the sample
space. The collection of all such events will satisfy some natural
closure properties, which correspond to the logical consequences of
our observations. Probabilities, when we define them, will only be
assigned to these observable events.
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Figure 1.1: A two-pan balance for use
with the example 1.3

Definition 1.1. An experiment is any fixed procedure with a variable
outcome.

Definition 1.2. The sample space is the set of possible outcomes of an
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experiment. We denote the sample space by Ω.

Example 1.3. We’ll use the set-up of a well-known logic puzzle to illustrate
what we mean by an experiment, an outcome and an event. Suppose we
have 12 balls of identical appearance. 11 of the balls have identical mass, and
one of them has a different mass. Suppose we are given a balance, as shown
in Figure 1.1. The aim of the original puzzle is to determine which ball
is different, and whether it is heavier or lighter than the others, using the
balance as few times as possible. If you have not seen it before, it is a very
nice problem to think about.

In this example, we focus just on which ball is different, so let’s suppose
we know that the different ball is lighter than the others. There are 12
different possibilities, which we might regard as states of the world. These
are the outcomes of our experiment. The sample space is the set of all
outcomes,

Ω = {1, 2, . . . , 12}.

Suppose we use the balance to compare the total mass of balls 1, 2, 3, 4 with
that of balls 5, 6, 7, 8. What information is available to us about ω ∈ Ω,
the ball that is different, from this single use of the balance? What are the
events that we might observe?

We could make three different observations. In the obvious notation, these
are

{1, 2, 3, 4} < {5, 6, 7, 8}, {1, 2, 3, 4} = {5, 6, 7, 8}, {1, 2, 3, 4} > {5, 6, 7, 8},

These observations correpond, respectively, to the following findings about
ω.

ω ∈ A = {1, 2, 3, 4}, ω ∈ B = {9, 10, 11, 12}, ω ∈ C = {5, 6, 7, 8}.

After this weighing, we can state definitively whether or not ω ∈ A, for
certain subsets E ⊆ Ω. These are the events, the subsets about which
we can draw conclusions. Logically, the collection of all events must obey
certain closure properties, namely, those for an algebra of sets :

1. We always know that ω /∈ ∅, or equivalently we know ω ∈ Ω.

2. If we know whether or not ω ∈ E, then we know whether or not ω ∈
Ec = Ω\E.

3. If we know whether or not ω ∈ E and whether or not ω ∈ F, then we
must know whether or not ω ∈ E ∪ F.

For the experiment described, the collection of events is

F0 = {∅, A, B, C, A ∪ B, A ∪ C, B ∪ C, Ω}.
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Of course, if we were allowed to use the balance a few more times, we would
be able to determine once and for all which of the balls is different, and
moreover, we could design a procedure that achieved this aim no matter
which ω ∈ Ω occurred. Then, the collection of observable events would be
the power set of Ω - the set of all subsets of Ω.

For discrete problems, in general, i.e. those with a finite or countably infinite
state space, in theory there is nothing to stop us taking the sigma algebra
of events to be the power set of the sample space. This just corresponds to
having sufficient resolution to distinguish which outcome has occurred.
Nonetheless, the conceptual distinction between the outcome of an experi-
ment ω ∈ Ω - what can happen, and an event E ⊆ Ω, with E ∈ F - what
we can observe or measure, is an important one when answering practical
questions in statistics.

Definition 1.4. Let F be a collection of subsets of Ω. F is said to be an
algebra if

i) ∅ ∈ F .

ii) If A ∈ F then Ac ∈ F .

iii) If A and B ∈ F then A ∪ B ∈ F .

By induction, iii) implies that F is closed under finite unions, i.e.

if A1, A2, . . . , An ∈ F , then
n⋃

i=1

Ai ∈ F .

Definition 1.5. If F is an algebra that is closed under countable unions, i.e.,

if A1, A2, · · · ∈ F , then
∞⋃

i=1

Ai ∈ F .

then F is said to be a sigma algebra. An element of a sigma algebra F is
said to be an event.

Exercise 1.6. Show that a sigma algebra is also closed under countable
intersections.

Examples of sigma algebras

Example 1.7. For any set Ω, the simplest sigma algebra on Ω is the trivial
sigma algebra:

F0 =
{

∅, Ω
}

.
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This sigma algebra is not really useful in practice. It corresponds to
an experimental setting where we cannot learn anything about the
outcome. The only distinction we can draw is whether something
happened or nothing happened.

Example 1.8. For any set Ω, and any subset E ⊆ Ω,

FE =
{

∅, E, Ec, Ω
}

is a sigma algebra on Ω.

This sigma algebra describes an experimental setting in which we can
distinguish whether or not the event E has occurred.

Example 1.9. For any set Ω, e.g. Ω = {1, 2, 3}, the power set of Ω:

F =
{

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
}

,

the set of all subsets of Ω, is a sigma algebra. When working with a finite or
countably infinite state space, this sigma algebra is a natural choice, called
the discrete sigma algebra on Ω.

Exercise 1.10. (An algebra that is not a sigma algebra) Suppose Ω = N =

{1, 2, 3, . . . } and let F = {A ⊆ Ω : A finite or Ac finite}.

i) Identify a subset of Ω that lies in F , and a subset that is not in F .

ii) Show that F is an algebra.

iii) Show that F is not a sigma algebra.

The Borel sigma algebra on R

Remark 1.11. For uncountable state spaces, such as R, we choose to work
with a smaller sigma algebra of events than the power set. Practically, this
makes sense: whenever we measure a continuous value x ∈ R, what we
really do is observe that the value lies in some interval (x, x + h), where
the width h is determined by the precision of the measurement device.
This motivates the definition of our usual sigma algebra on R or other
uncountable state spaces, such as [0, 1].

Considering the imprecision of measurement, we at least want the open
intervals in R, to be events, i.e. all sets of the form (a, b). In fact, we will
work with the smallest sigma algebra that contains all such sets. To be
precise about the sense in which our choice is smallest, we need the following
result.
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Proposition 1.12. Suppose Fi, i ∈ I is a non-empty collection of sigma
algebras on a set Ω. Then ∩i∈IFi is a sigma algebra.

Proof. There are three properties to check.

(1) Certainly ∅, Ω ∈ Fi for each i ∈ I, so these sets are contained in the
intersection.

(2) If E ∈ ∩i∈IFi then for each i ∈ I, E ∈ Fi, so Ec ∈ Fi. Hence
Ec ∈ ∩i∈IFi.

(3) If E1, E2, . . . ∩i∈I Fi, then for each i ∈ I, each set Ej ∈ Fi, so ∪∞
j=1Ej ∈

∩i∈IFi.

Hence ∩i∈IFi is a sigma algebra.

Definition 1.13. Let Fi, i ∈ I be the collection of all sigma algebras that
contain all open intervals of R . This collection is clearly non-empty, because
the power set of R is such a sigma algebra. The Borel sigma algebra B is
defined to be ∩i∈IFi.

Remark 1.14. (1) By construction, B contains all open intervals along
with their complements, countable unions, and countable intersections.

(2) By construction, if F is any sigma algebra containing all intervals of
the form above, then B ⊆ F . In this sense, B is the smallest sigma
algebra containing all intervals.

(3) Sets in B are said to be Borel sets.

(4) We will not attempt to define probabilities for subsets of R that are not
in B.

(5) It is extremely difficult to construct explicitly a set that is not in B.

Example 1.15. (Some Borel sets) Using the properties of sigma algebras as
needed, for a, b ∈ R and n ∈ N, all sets of the following form are Borel sets.

• (a, ∞) =
⋃∞

n=1(a, n),

• [a, b] = ((−∞, a) ∪ (b, ∞))c,

• a = [a, a],

• N =
⋃∞

n=1{n}.

Kolmogorov axioms

Definition 1.16. (Kolmogorov Axioms) Given a set Ω and a sigma algebra
F on Ω, a probability function or probability measure is a function
Pr : F → [0, 1] such that
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1. Pr(A) ≥ 0, for all A ∈ F .

2. Pr(Ω) = 1.
3. Countable additivity: If A1, A2, . . . ∈ F are pairwise disjoint, then

Pr

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

Pr(Ai).

Definition 1.17. The triple (Ω,F , Pr(·)), consisting of a sample space Ω,
a sigma algebra F of subsets of Ω and a probability function Pr(·) on F is
called a probability space.

All of the standard properties of probability functions follow from
these axioms. Suppose, for example, that A ∈ F , B ∈ F and
{C1, C2, . . .} form a partition of Ω. Recall that this means, Ci ∩ Cj = ∅
for i 6= j and ∪∞

i=1Ci = Ω, with each Ci ∈ F . Then

1. Pr(∅) = 0.

2. Pr(A) ≤ 1.

3. Pr(Ac) = 1− Pr(A).

4. Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B).

5. If A ⊆ B then Pr(A) ≤ Pr(B).

6. Pr(A) =
∞

∑
i=1

Pr(A ∩ Ci).

Countable Additivity and the Continuity Property

Proposition 1.18. (Continuity property) Suppose (Ω,F , Pr) is a probability
space. Let A1, A2, . . . ∈ F be an increasing sequence of events, i.e. A1 ⊆
A2 ⊆ . . ., so that

A =
∞⋃

n=1

An ∈ F ,

because F is a sigma algebra. Then

Pr(A) = lim
n→∞

Pr(An),

i.e,
Pr
(

lim
n→∞

An

)
= lim

n→∞
Pr(An).

Similarly, if B1, B2, . . . ∈ F is a decreasing sequence of events, i.e. B1 ⊇
B2 ⊇ . . ., then

Pr(B) = Pr

(
∞⋂

n=1

Bn

)
= lim

n→∞
Pr(Bn).
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Proof. Write A as a disjoint union of events:

A = A1 ∪ (A2\A1) ∪ (A3\A2) . . . .

As we have a disjoint union, we can use the axiom of countable additivity to
see that

Pr(A) = Pr(A1) +
∞

∑
i=1

Pr(Ai+1\Ai)

= Pr(A1) + lim
n→∞

n−1

∑
i=1

Pr(Ai+1)− Pr(Ai)

= lim
n→∞

Pr(An),

because of cancellations in the sum. The result for decreasing sequences
follows on taking complements.

The result above is in fact equivalent to the assumption of countable
additivity, in the following sense.

Proposition 1.19. Suppose F is a sigma algebra, and suppose that Pr :
F → [0, 1] is a finitely additive set function with the property that for any
increasing sequence of events, A1 ⊆ A2 ⊆ . . .

Pr

(
∞⋃

i=1

Ai

)
= lim

n→∞
Pr(An).

Then Pr is also countably additive.

Proof. Suppose A1, A2, . . . is a sequence of pairwise disjoint sets. Then for
each n ≥ 1,

Pr

(
∞⋃

i=1

Ai

)
= Pr

(
n⋃

i=1

Ai ∪
∞⋃

i=n+1

Ai

)
By finite additivity, we see that

Pr

(
∞⋃

i=1

Ai

)
=

n

∑
i=1

Pr (Ai) + Pr

(
∞⋃

i=n+1

Ai

)
.

Now, define Bn =
⋃∞

i=n+1 Ai, then we have a decreasing sequence of events
B1 ⊇ B2 ⊇ . . .,

and, since the sets Ai are disjoint, we have

∞⋂
n=1

Bn = ∅,

because any element of this intersection would be contained in infinitely
many of the Ai. Taking the limit n→ ∞, and using the result for decreasing
sequences, we see that
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Pr

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

Pr (Ai)+ lim
n→∞

Pr (Bn) =
∞

∑
i=1

Pr (Ai)+Pr(∅) =
∞

∑
i=1

Pr (Ai) .

Lebesgue measure

We have a natural sense of what it means to define uniform prob-
ability on an interval such as [0, 1]. The corresponding probability
function assigns to any interval (a, b) ⊆ [0, 1] the probability b− a,
proportional to its length. This is the probability measure that corre-
sponds to the idea of sampling at a number at random from [0, 1].

It takes quite a lot of effort to construct this probability function,
which is known as Lebesgue measure . It is defined on a sigma
algebra, the Lebesgue sigma algebra, which contains the Borel
sigma algebra B as a subset. It is difficult to construct a set that is
not contained within the Lebesgue sigma algebra, and no ‘naturally
occurring’ sets ever fail to be Lebesgue measurable.

In a sense, Lebesgue measure is the only probability function we
need, because any other probability functions of interest can be
obtained from Lebesgue measure by a transformation. See Section 4.6
of Proschan and Shaw for details.

The Vitali set (non-examinable)

As an illustration, we will give an example of the construction of a
set that is not Lebesgue measurable (and so is not in B either). This
construction requires the axiom of choice. Let S1 be the unit circle,
parameterized by angle as [0, 2π), and suppose we use Lebesgue
measure to define a uniform probability measure on S1, i.e. the
probability of an interval Pr ((a, b)) is given by (b− a)/2π. Note that
this measure is rotation-invariant, in the sense that (a + x, b + x),
thought of as a subset of S1, is a rotation of (a, b) through the angle x.

Define an equivalence relation on S1 by x ∼ y if and only if x − y
is a rational multiple of π. Let A be a transversal for this equiva-
lence relation, i.e. a set containing exactly one representative of each
equivalence class. (This is the step that requires the axiom of choice.)

Suppose now that x1, x2, . . . is an enumeration of the rational angles
in [0, 2π). Then the sets Ai = {a + xi : a ∈ A} can be seen to be
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pairwise disjoint and such that

S1 =
∞⋃

i=1

Ai.

Note that Ai is just a rotation of the set A through the rational angle
xi. So, if we could define Pr(A) using Lebesgue measure, as above for
intervals, then Pr(A) = Pr(Ai). But then by countable additivity of
Pr,

1 = Pr(S1) = Pr

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

Pr(Ai) =
∞

∑
i=1

Pr(A).

There is no value that can be assigned to Pr(A) to make this equality
hold, and so we have reached a contradiction. It cannot be the case
that A is a set in the Lebesgue sigma algebra.

The interpretation is that, despite our strong intuition, the idea
of ‘uniform probability’ embodied by Lebesgue measure does not
extend to arbitrary subsets of the real line.

Elementary probability results (Review)

Definition 1.20. If A and B ∈ F with Pr(B) > 0, the conditional
probability of A given B is

Pr(A|B) = Pr(A ∩ B)
Pr(B)

.

Definition 1.21. Two events are independent if

Pr(A ∩ B) = Pr(A)Pr(B).

If Pr(B) > 0, A and B independent means

Pr(A|B) = Pr(A).

Definition 1.22. A collection of events A1, . . . , An ∈ F is mutually
independent if for any subcollection Ai1 , . . . , Aik , we have

Pr

 k⋂
j=1

Aij

 =
k

∏
j=1

Pr(Aij).

Pairwise independence is not enough, nor is a factorization for the
entire collection.

Example 1.23. Pairwise independence without mutual independence.
Consider an experiment in which a coin is flipped twice, and the outcome
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recorded. Define the following events:

A = {HH, HT},
B = {HH, TH},
C = {HT, TH}.

Clearly, we have

Pr(A) = Pr(B) = Pr(C) =
1
2

,

and

Pr(A ∩ B) = Pr({HH}) =1
4
= Pr(A)Pr(B)

Pr(A ∩ C) = Pr({HT}) =1
4
= Pr(A)Pr(C)

Pr(B ∩ C) = Pr({TH}) =1
4
= Pr(B)Pr(C),

but these events are not independent, because

Pr(A ∩ B ∩ C) = Pr(∅) = 0 6= Pr(A)Pr(B)Pr(C).

Example 1.24. Factorization for the entire collection, without pairwise
independence.

HHT

HTT THH TTT

HTH

TTH

THT

HHH

Figure 1.2: The three events shown are
not pairwise independent, and so not
independent.

Consider an experiment in which a coin is flipped three times, and the
outcome recorded. Define the following events, which exhaust the sample
space, depicted in the Figure 1.2:

A = {HHH, HHT, THT, TTH},
B = {HHH, HTH, THT, TTH},
C = {HHH, HTT, THH, TTT}.

Clearly, we have

Pr(A) = Pr(B) = Pr(C) =
1
2

,
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and

Pr(A ∩ B ∩ C) = Pr({HHH}) = 1
8
= Pr(A)Pr(B)Pr(C),

but these events are not independent, because

Pr(A ∩ B) = Pr({HHH, THT, TTH}) = 3
8
6= Pr(A)Pr(B).





2
Random Variables

Introduction

Suppose we have a probability space (Ω,F , Pr). A random variable
on this space is a function X : Ω → R. For practical purposes, it
is a way of associating an outcome with a real number. So far, we
have used the sample space as an abstraction of the idea of possible
outcomes of an experiment. Another good mental picture to keep
in mind, particularly for statistics, is to think of Ω as a population
of individuals, with many different attributes. A random variable is
a measurement of a particular attribute, for each individual in the
population.

We have seen that a natural collection of events on R is the Borel
sigma algebra B, the smallest sigma algebra that contains all open
intervals. This is because measurements are always of finite precision,
and so the measurement of a real value is actually an observation
that the value lies within some interval.

The probability function Pr has domain F , so if we want to make
probability statements about X, e.g. Pr(X ∈ B) for some B ∈ B, then
we need to ensure that the pre-image X−1(B) = {ω ∈ Ω : X(ω) ∈ B},
is an event in F . This motivates our formal definition.

Definition 2.1. A random variable on the probability space (Ω,F , Pr) is
a function,

X : Ω→ R,

such that for every Borel set B ∈ B, X−1(B) ∈ F . This condition can be
summarized by saying that a random variable is an F - measurable function.

We can also define random vectors , X : Ω → Rn, and complex random
variables, X : Ω→ C, in an analogous way.
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Example 2.2. Suppose we flip a coin twice, so that Ω = {HH, HT, TH, TT}.
Let the function X : Ω→ R count the number of heads observed, i.e.

X(HH) = 2

X(HT) = X(TH) = 1

X(TT) = 0.

For discrete problems, we typically take F to be the power set of Ω, the set of
all subsets of Ω. In this case, X is certainly a random variable, because for
any B ∈ B, X−1(B) ⊆ Ω, and F contains all subsets of Ω.

However, suppose instead we took as our sigma algebra

F1 = {∅, {HH, TT}, {HT, TH}, Ω}.

This would correspond to an experiment where we can only distinguish
whether the two flips were the same or different. For example, suppose that
instead of flipping coins with labelled faces, we flip unlabelled magnetic
discs, with H and T corresponding to North and South poles. We can
easily determine whether the discs have landed with the same pole facing
up, by seeing whether the discs mutually attract or repel. We could not
determine the specific polarities without more work. With respect to F1,
X is not a random variable. To see this explicitly, note that {2} ∈ B, but
X−1({2}) = {HH} /∈ F1.

A random variable X induces a probability function PrX : B → [0, 1],
as follows.

Definition 2.3. For any Borel set B ∈ B, let

PrX(B) = Pr(X−1(B)) = Pr ({ω ∈ Ω : X(ω) ∈ B}) .

PrX is called the distribution of X. Abusing notation slightly, we usually
write PrX(B) as Pr(X ∈ B).

Example 2.4. Let (Ω,F , Pr) be a probability space, then define X : Ω→ R

to be the constant function X(ω) = c for some c ∈ R. To show that X is
a random variable, we have to show that X−1(B) ∈ F , for any Borel set
B ∈ B. There are clearly two cases to consider, according to whether or not
c ∈ B:

X−1(B) =

Ω c ∈ B

∅ c 6∈ B.

As ∅ ∈ F and Ω ∈ F , we see that X is measurable. The distribution of X
is given by
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Pr(X ∈ B) =

1 c ∈ B

0 c 6∈ B.

Example 2.5. Let (Ω,F , Pr) be a probability space, then for any event
A ∈ F , the indicator random variable 1A : Ω→ R is defined

1A(ω) =

1 ω ∈ A

0 ω 6∈ A.

To show that 1A is a random variable, we have to show that 1−1
A (B) ∈ F ,

for any Borel set B ∈ B. There are several cases to consider:

1−1
A (B) =


∅ 0 6∈ B, 1 6∈ B

Ac 0 ∈ B, 1 6∈ B

A 0 6∈ B, 1 ∈ B

Ω 0 ∈ B, 1 ∈ B.

In each case 1−1
A (B) ∈ F , so 1A defines a random variable. If Pr(A) = p,

then the distribution of X is

Pr(1A ∈ B) =


0 0 6∈ B, 1 6∈ B

1− p 0 ∈ B, 1 6∈ B

p 0 6∈ B, 1 ∈ B

1 0 ∈ B, 1 ∈ B.

Proposition 2.6. We need some guarantees that we can readily make new
random variables from existing ones. We have the following technical result,
which we shall always assume.

1. If X is a random variable, then so are X + a, aX, X2, where a ∈ R.

2. If X and Y are random variables, then so are X + Y and XY.

3. If X1, X2, . . . is a sequence of random variables such that for all ω ∈ Ω,
X(ω) = limn→∞Xn(ω) exists, then X is a random variable.

Proof. Not examinable. See propositions 4.7 and 4.9 in Proschan and Shaw.

Definition 2.7. We say X and Y are identically distributed if Pr(X ∈
B) = Pr(Y ∈ B) for all B ∈ B.

Example 2.8. Suppose a fair coin is flipped independently five times, so that
Ω is the collection of sequences of length 5 from the alphabet {H, T}, and let
F be the discrete sigma algebra on Ω.
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Let X be number of heads and Y be number of tails. By symmetry, X and Y
are identically distributed, even though X(ω) 6= Y(ω) for all ω ∈ Ω.

In general, checking conditions for all Borel sets is cumbersome. We
define a more useful condition for measurability.

Proposition 2.9. If (Ω,F , Pr) is a probability space, then X : Ω→ R is a
random variable if and only if for all x ∈ R,

{ω ∈ Ω : X(ω) ≤ x} ∈ F .

Proof. For X to be measurable, it is clearly necessary that {ω ∈ Ω :
X(ω) ≤ x} ∈ F , because (−∞, x] is a Borel set.

To check that the condition is also sufficient, we suppose that X is
a function such that X−1 (−∞, x] ∈ F for all x ∈ R. The collection
A = {B ∈ B : X−1(B) ∈ F} can easily be seen to be a sigma algebra
(exercise). Hence, it is enough to show that (a, b) ∈ A for all a, b ∈ R.
Then we must have A = B, because B is the smallest sigma algebra
to contain all open intervals.

To see this, note that for a < b, we have

(a, b) = (−∞, b) ∩ (a, ∞)

so it is enough to show that (−∞, b), (a, ∞) ∈ A.

To do this, note that (a, ∞) = (−∞, a]c ∈ A. Then, write

(−∞, b) =
∞⋃

n=1

(
−∞, b− 1

n

]
∈ A.

Hence (a, b) ∈ A, hence A = B.

Definition 2.10. The cumulative distribution function (CDF) of a
random variable X is a function FX : R→ [0, 1] defined by

FX(x) = Pr(X ≤ x).

Proposition 2.11. X and Y are identically distributed if and only if
FX(x) = FY(x) for all x ∈ R.

Proof. Not examinable. See proposition 4.22 in Proschan and Shaw.

Definition 2.12. We write xn ↓ x if (xn) is a sequence (weakly) monotoni-
cally decreasing to the limit x, and xn ↑ x if (xn) is (weakly) monotonically
increasing to x.

Proposition 2.13. If X is a random variable with CDF FX , then
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1. FX(x) is non-decreasing.

2. lim
x→−∞

FX(x) = 0; lim
x→+∞

FX(x) = 1.

3. lim
x↓x0

FX(x) = FX(x0). This says that F is continuous from the right.

Proof.

1. If x ≤ y then (−∞, x] ⊆ (−∞, y] so Pr(X ≤ x) ≤ Pr(X ≤ y).

2. For any sequence (xn)n≥1 such that xn ↑ ∞, define the increasing
sequence of events An = {ω ∈ Ω : X(ω) ∈ (−∞, xn]}. By the
continuity property,

lim
n→∞

Pr(X ≤ xn) = lim
n→∞

Pr(An) = Pr

(
∞⋃

n=1

An

)
= Pr(X ∈ R) = 1.

A similar argument with a decreasing sequence shows that
lim

x→−∞
FX(x) = 0.

3. Let (xn)n≥1 be a sequence such that xn ↓ x as n → ∞. Define
Bn = {ω ∈ Ω : X(ω) ≤ xn}. Then Bn is a decreasing sequence of
events so by the continuity property,

Pr(Bn) ↓ Pr(B),

where

B =
∞⋂

n=1

Bn = {ω ∈ Ω : −∞ < X(ω) ≤ x}.

Types of Random Variable

Perhaps the simplest, but most trivial, type of random is the constant
random variable. For a ∈ R, define the point mass CDF

δa(x) =

0 x < a

1 x ≥ a.

Then δa is the CDF of a random variable X such that Pr(X = a) = 1.

Definition 2.14. Let X be a random variable with CDF FX .

(1) If there exist sequences of real values (an)n≥1 and (bn)n≥1 where bi > 0
and ∑∞

i=1 bi = 1, and FX is such that

FX(x) =
∞

∑
i=1

biδai (x),

then X is a discrete random variable.. The probability mass func-
tion (PMF) of a discrete random variable X is fX(x) = Pr(X = x).
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Figure 2.1: The top panel shows the
CDF of a Bin(4, 0.6) variable in the
range [0, 4]. Note the jump discontinu-
ities at each integer. The bottom panel
shows the CDF of an Exp(1) variable in
the range [−3, 3]. Note that the function
is continuous.
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(2) If FX is a continuous function, then X is a continuous random vari-
able.

(3) If X is a continuous random variable such that there exists a function
fX : R→ R satisfying

FX(x) =
∫ x

−∞
fX(t)dt

for all x ∈ R, then X is an absolutely continuous random variable.
Such a function fX is said to be a probability density function for
X.

In general, FX may be neither continuous nor discrete. Practical
examples are easy to find in statistics, e.g. let X be the volume of
beer consumed over 24 hours by a UK adult. For some proportion
of the population, the volume is precisely zero. But conditional on
having consumed a positive amount, the variable is continuous. So
that Pr(X = x) = 0 for all x > 0.

Figure 2.2: The CDF of the random
variable X, which shows a simple
model for the volume of beer consumed
over 24 hours by a randomly selected
UK adult. Note that the CDF is in
principle defined for all x ∈ R, although
only non-negative values of the variable
make sense. Note the discontinuity
at 0: a positive proportion of subjects
consume no beer.

Remark 2.15. In a probability theory course, more precise statements can
be made about the character of distributions. In particular, the Lebesgue
decomposition theorem states that any cumulative distribution function
F can be written uniquely as

F(x) = αFc(x) + βFd(x) + γFs(x),
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for α, β, γ ≥ 0 and α + β + γ = 1, in which Fd is a discrete distribution
function, Fc is an absolutely continuous distribution function, and Fs is the
CDF of a singular continuous distribution.

A singular continuous distribution has a continuous CDF, but there
is no corresponding probability density function. An example of such a
singular distribution is the Cantor distribution, discussed below. Singular
distributions will not feature in this course, beyond this non-examinable
example. If you continue to think of a continuous random variable as having
a probability density function, you will encounter no problems in this
course.

Example 2.16. If F is the CDF in Figure 2.2, we can write

F(x) = αδ0(x) + (1− α)Fc(x),

where δ0(x) is a point mass at zero, α is the proportion of individuals who
have consumed no beer, and Fc is the absolutely continuous CDF of the
amount consumed by those who have consumed a non-zero amount.

Proposition 2.17. For any random variable, Pr(X < x) = lim
xn↑x

Pr(X ≤ xn),

for any strictly increasing sequence xn ↑ x.

Proof. Define the increasing sequence of events

An = {ω ∈ Ω : −∞ < X(ω) ≤ xn}.

Then for any y < x, since xn ↑ x there exists n ∈ N such that y ≤ xn, so
y ∈ An. Hence,

∞⋃
n=1

An = {ω ∈ Ω : −∞ < X(ω) < x},

so the result follows.

Proposition 2.18. If X is a continuous random variable, i.e. if FX is a
continuous function, then for all x ∈ R, Pr(X = x) = 0.

Proof. Applying the previous result, using, say, xn = x− 1
n ,

Pr(X = x) = Pr(X ≤ x)− Pr(X < x) = Pr(X ≤ x)− lim
n→∞

Pr
(

X ≤ x− 1
n

)
= FX(x)− lim

n→∞
FX(x− 1

n
) = 0,

by the continuity of FX .

Remark 2.19. The probability density function of an absolutely continuous
random variable X is any function g that satisfies

FX(x) =
∫ x

−∞
g(t)dt, for all x.
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If the function fX defined by

d
dx

FX(x) = fX(x)

is continuous, then by the fundamental theorem of calculus, fX is one
function that satisfies the definition of a PDF. But we could alter fX(x) at
any single point without changing FX(x). So PDFs are not unique.

The Cantor distribution (non-examinable)

We now construct an example of a singular continuous distribution,
the Cantor distribution. It will have a continuous CDF, but there will
be no corresponding PDF.

We begin with an iterative construction, which is illustrated in Figure

2.5. Start with [0, 1], and remove the open middle third
(

1
3 , 2

3

)
. Then

remove the open middle third of the two intervals that remain. We
can imagine repeating this process indefinitely. But note that however
far we go, some elements of [0, 1] would never be removed. These
form the Cantor set.

More precisely, define C0 = [0, 1] and for n ≥ 1, set

Cn =
Cn−1

3
∪
(

2
3
+

Cn−1

3

)
.

After step n, we have removed 1+ 2+ . . .+ 2n−1 = 2n− 1 disjoint open
intervals. This then gives a decreasing sequence of sets C0 ⊇ C1 ⊇ . . .,
as shown in Figure 2.5. We see that Cn is just the union of 2n disjoint
closed intervals, each of length 3−n.

The Cantor set is defined to be C =
⋂∞

n=1 Cn. Note that C ∈ B, as a
countable intersection of Borel sets. It therefore makes sense to ask
for the probability that random variables are in C.

So suppose U ∼ Unif[0, 1]. What is Pr(U ∈ C)? To determine this,
apply the continuity property to the decreasing sequence (Cn).

Pr(C) = Pr( lim
n→∞

Cn) = lim
n→∞

Pr(Cn) = lim
n→∞

2n

3n = 0.

This says that C is a null set: given any ε > 0, there are intervals
I1, I2, . . . of [0, 1] whose total length is at most ε, and for which C ⊆⋃

n In. Nonetheless, C still contains uncountably many real numbers!

One explicit way of working with the Cantor set is to represent each
x ∈ [0, 1] as a ternary expansion. This is the same principle as a
decimal or binary expansion, but using base 3. Explicitly, write
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x =
∞

∑
n=1

an

3n , an ∈ {0, 1, 2}.

Numbers with a1 = 1 lie in the middle third of the interval - all of
these are removed in the first stage. All numbers with a2 = 1 are
removed in the next stage, and in general all numbers with ak = 1 are
removed in stage k. So the Cantor set is the collection of all real num-
bers whose ternary expansions contain only 0 and 2. From this repre-
sentation, we can now use essentially the same diagonal argument as
used by Cantor for all of R to see that C contains uncountably many
elements.

We now define the Cantor distribution by specifying a distribution
function F on [0, 1]. We first specify F for x ∈ C by

F(x) =
∞

∑
n=1

an

2n+1 .

Then we see easily that

F(0) = 0, F(1) = 1,

and moreover, F(x) ≤ F(y) whenever x ≤ y. To extend F to all of
[0, 1], take x ∈ C [0, 1] and define

F(x) = sup{F(y) : y ∈ C, y < x}.

Finally, we extend the domain of F to all of R by F(x) = 0 for x < 0
and F(x) = 1 for x > 1. This CDF is shown in the lower panel of
Figure 2.5. It can be shown to be a continuous function.

Note that by construction F is constant on each of the intervals that
are removed. But these intervals cover almost all of [0, 1], in the
following sense. At stage n of the construction of C, we removed
2n−1 intervals, each of length 1

3n . This says that the total removed

length by stage n is 1
3 ∑n

k=1
( 2

3
)k−1

= 1 −
( 2

3
)n

, consistent with
the computation for Cn above. So the total fraction of [0, 1] that is
removed is

1
3

∞

∑
k=1

(
2
3

)k−1
=

1
3

1
1− 2

3
= 1.

So we see that the derivative F′(x) must be zero on almost all of [0, 1].
If there were a corresponding probability density function f ,

we would have f (x) = 0 for x /∈ C, so that
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∫ ∞

−∞
f (x) dx = 0,

in contradiction to the fact that F(x) = 1 for x ≥ 1.

Transformations of random variables

Suppose we have a discrete random variable X whose distribution is
given by

x −1 0 1
Pr(X = x) 1

4
1
2

1
4

In this simple example, we can easily determine the distribution of
the transformed random variable Y = X2 directly from the probabil-
ity mass function.

Clearly the only values that Y assumes with positive probability are 0
and 1. We determine these probabilities by direct calculation

Pr(Y = 0) = Pr(X2 = 0) = Pr(X = 0) =
1
2

,

For Y = 1, note that there are two corresponding possibilities for X.

Pr(Y = 1) = Pr(X2 = 1) = Pr(X ∈ {−1, 1}) = 1
4
+

1
4
=

1
2

.

For all but the very simplest problems, it is more straightforward
to determine the distribution of a function of a random variable by
determining its CDF. An example illustrates this point.

Example 2.20. Suppose X ∼ Unif[0, 2π], so that X has probability mass
function

fX(x) =

 1
2π , x ∈ [0, 2π]

0 otherwise,

and cumulative distribution function

FX(x) =


0, x < 0

x
2π , x ∈ [0, 2π]

1 x > 2π.

Consider the random variable Y = sin X. Clearly Y takes values in [−1, 1],
but the transformation is not one-to-one, as can be seen in Figure 2.4. Then
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Figure 2.3: Consider an iterative process
acting on the interval [0, 1]. At each
stage, delete the middle third of each
interval that remains. However many
times this procedure is repeated, there
are some points that will never be
deleted. These form the Cantor set.
The CDF of the Cantor distribution
is shown below. While the CDF is a
continuous function, it is nowhere
differentiable, and so does not have a
probability density function.
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Pr(Y ≤ y) = Pr(sin X ≤ y) = Pr(X ≤ sin−1(y)) + Pr(X ≥ π − sin−1(y))

=
1

2π
sin−1(y) + 1− 1

2π

(
π − sin−1(y)

)
=

1
2
+

1
π

sin−1(y).

The distribution of Y is now determined. We can specify its density function
by differentiating FY:

fY(y) =
d

d y
FY(y) =

1
π
√

1− y2
− 1 ≤ y ≤ 1.

2π

−1

1

x1 x2

y1

x

y Figure 2.4: If Y = sin X, {Y ≤ y1} =
{X ∈ [0, x1]} ∪ {X ∈ [x2, 2π]}.

One-to-one transformations

Proposition 2.21. Suppose X is an absolutely continuous random variable
with probability density function fX , and g : R→ R is a strictly monotonic,
differentiable function. Then Y = g(X) has probability density function

fY(y) = fX(g−1(y))
∣∣∣∣d g−1(y)

dy

∣∣∣∣ y ∈ R.

Proof. Suppose first that g is monotonic increasing. Note that g(X) ≤ y if
and only if X ≤ g−1(y). Then

Pr(Y ≤ y) = Pr(g(X) ≤ y) = Pr(X ≤ g−1(y)) = FX(g−1(y)).

Then we get fY from differentiating FY:

fY(y) =
d

dy
FX(g−1(y)) = fX(g−1(y))

d g−1(y)
dy

,

by the chain rule.
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The argument for decreasing g is similar. Note that g(X) ≤ y if and only if
X ≥ g−1(y). Then

Pr(Y ≤ y) = Pr(g(X) ≤ y) = Pr(X ≥ g−1(y)) = 1− FX(g−1(y)),

so that on differentiating,

fY(y) =
d

dy

(
1− FX(g−1(y))

)
= − fX(g−1(y))

d g−1(y)
dy

=

∣∣∣∣ fX(g−1(y))
d g−1(y)

dy

∣∣∣∣ ,

noting that, as a decreasing function, g−1 has negative derivative.

Remark 2.22. One way to understand this transformation formula is to
consider a simple linear transformation Y = aX + b.

We can consider the probability density function fX(x) as giving the rate of
increase in the probability that X lies in a small interval around x with the
width h of the interval:

fX(x)h = Pr(X ∈ (x, x + h)) + o(h),

where the term o(h)→ is best thought of as an error much smaller than h as
h→ 0.

If we make the transformation Y = aX + b, for a > 0, then the probability
density for Y satisfies

fY(y)h = Pr(Y ∈ (y, y + h)) + o(h) = Pr(aX + b ∈ (y, y + h)) + o(h)

= Pr
(

X ∈
(

y− b
a

,
y + h− b

a

))
+ o(h).

Writing this in terms of fX gives

fY(y)h = fX

(
y− b

a

)
h
a
+ o(h)

since the interval is of length h
a . Equating terms of the same order in h then

gives the density for Y:

fY(y) = fX

(
y− b

a

)
1
a

Proposition 2.23. Suppose (Ω,F , Pr) is a probability space, X is a random
variable and g : R → R is B-measurable, i.e. g−1(B) ∈ B for all B ∈ B.
Then Y = g(X) is also a random variable.

Proof. We need to show that Y−1(B) ∈ F for all B ∈ B. Now,

Y−1(B) = {ω ∈ Ω : g(X(ω)) ∈ B} = {ω ∈ Ω : X(ω) ∈ g−1(B)}.

But, since g is B-measurable, g−1(B) ∈ B, so that, since X is F -measurable,

Y−1(B) = X−1(g−1(B)) ∈ F .
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Scale and Location families

Suppose Z is a random variable with probability density function fZ.
We can manufacture an entire family of random variables using Z,
e.g.

Figure 2.5: Three members of a normal
location family (top) and a gamma scale
family (bottom)

Location family Define X = µ + Z, which has PDF

f (x|µ) = fZ(x− µ).

This corresponds to a shift of location by µ.
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Example 2.24. Let Z ∼ N(0, 1). Then

fZ(z) =
1√
2π

exp
(
− z2

2

)
, z ∈ R.

Then the random variable X = µ + Z ∼ N(µ, 1). Its density is

fX(x|µ) = 1√
2π

exp
(
− (x− µ)2

2

)
, x ∈ R.

Note that in this example, the location parameter µ is the mean. This is not
typical.

Scale family For σ > 0, define Y = σZ, which has PDF

f (y|σ) = 1
σ

fZ

( y
σ

)
.

This can be thought of as a simple change of units.

Example 2.25. Let Z ∼ Γ(α, 1), where we take the shape parameter α to be
fixed. Then

fZ(z) =
zα−1

Γ(α)
exp(−z), z > 0.

Then the random variable Y = σZ ∼ Γ(α, σ). (Be careful, though, as there
are two commonly used ways of parameterizing the gamma distribution.) Its
density is

fY(y|σ) =
yα−1

σαΓ(α)
exp(− y

σ
), y > 0.

Location-Scale family Define W = µ + σZ, which has PDF

f (w|µ, σ) =
1
σ

fZ

(
w− µ

σ

)
.

Example 2.26. Again consider a standard normal variable Z ∼ N(0, 1).
Then the random variable W = µ + σZ ∼ N(µ, σ2). Its density is

fW(w|µ, σ) =
1√

2πσ2
exp

(
− (w− µ)2

2σ2

)
, w ∈ R.

Again, the scale parameter σ here is the standard deviation. As can be seen
from the gamma-distributed example, this is not typical.

Remark 2.27. In statistics, we often find ourselves in the position of esti-
mating unknown parameters from data. The parameters are often location
or scale parameters of a family. Plausible experimental assumptions often
determine a family of random variables that can be used to model the data,
and hypotheses of scientific interest can be phrased in terms of parameters to
be estimated.
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Example 2.28. Suppose we seek to estimate the rate of decay of a radioactive
substance, by measuring the times between decay events observed by a
Geiger counter. From physical considerations, the inter-arrival times in
seconds can be assumed to be exponentially distributed with mean β.

fT(t|β) =
1
β

exp
(
− t

β

)
, t > 0.

We can see that T is a scale transformation of the standard exponential
random variable Z ∼ Exp(1), which has probability density function

fZ(z) = exp(−z), z > 0.

Typically, the statistical problem is to estimate β and quantify the un-
certainty in the estimate that arises from using only a finite number of
observations.

Proposition 2.29. Probability Integral Transform Let U ∼ Unif[0, 1]
and let X = F−1(U), where F is a strictly increasing CDF. Then X is a
random variable with CDF F.

Proof. First, note that since F is strictly increasing, F−1 exists. Then

Pr(X ≤ x) = Pr(F−1(U) ≤ x) = Pr(U ≤ F(x))

= FU (F(x)) .

Now, since F is a CDF, we must have 0 ≤ F(x) ≤ 1 for all x ∈ R.
Moreover, for 0 ≤ u ≤ 1, FU(u) = u. Hence

Pr(X ≤ x) = F(x),

as required.

Remark 2.30. The probability integral transform is a practically useful
result. For, suppose we wish to generate a random sample X1, X2, . . . , Xn

from some distribution whose CDF is F. So long as we can explicitly de-
termine F−1, and easily draw samples U1, U2, . . . , Un, our sample is just
F−1(U1), . . . , F−1(Un).

Example 2.31. Suppose we seek a sample X from the Exp(β) distribution
from 2.28. Then

FX(x) = 1− exp
(
− x

β

)
, x > 0.

It is straightforward to compute F−1
X (u) = −β log(1− u). Using F−1

X to
transform U gives a sample from the exponential distribution sought.
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Expectation (Review)

For a discrete random variable X, the definition of the expectation
should be familiar:

E(X) = ∑
x

x Pr(X = x),

where the sum is taken over the countable range of values assumed
by X. A similar definition should be familiar for absolutely continu-
ous random variables

E(X) =
∫ ∞

−∞
x fX(x) dx.

As we have seen, in general random variables are neither absolutely
continuous nor discrete, and it is clearly desirable to have a unified
definition of expectation for all random variables. To do this prop-
erly, we would need to develop the theory of integration, but this is
beyond our scope. Below is a non-examinable summary, following
Grimmett and Stirzaker (5.6). Note one important point: the criterion
for E(X) to be finite.

Abstract Expectation (non-examinable)
On a probability space (Ω,F , Pr), we first define expectation for
simple random variables, i.e. functions X : Ω → R that take on only
finitely many values. Let X = {x1, . . . , xn} be the support of X, and
suppose X−1(xi) = Ai, so that A1, . . . , An forms a partition of Ω.

Then X can be written in terms of indicator random variables

X =
n

∑
i=1

xi1Ai ,

and we can define expectation as

E(X) =
n

∑
i=1

xi Pr(Ai).

Any non-negative random variable X : Ω→ [0, ∞) can be written as

X(ω) = lim
n→∞

Xn(ω)

for an increasing sequence (Xn)n≥1 of simple random variables. We
then define

E(X) = lim
n→∞

E(Xn).

It can be shown that this definition is independent of the increasing
sequence (Xn) chosen. Note that E(X) may be +∞.
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Now, any random variable X : Ω→ R can be written as X = X+−X−,
a difference of two non-negative random variables, namely

X+(ω) = max{0, X(ω)},

the positive part of X and

X−(ω) = −min{0, X(ω)},

the negative part of X.

As X+ and X− are non-negative random variables, E(X+) and E(X−)
are well-defined, although possibly infinite. If at least one of these
two expectations is finite, then E(X) is unambiguously defined by

E(X) = E(X+)− E(X−),

which may be finite, +∞ or −∞. We see that E(X) is finite provided

E|X| = E(X+) + E(X−) < ∞.

You may see this described in books as the condition for X to be
integrable.

Properties of Expectation

Recal the following properties of expectation for any random vari-
ables X and Y.

1. E(aX + bY) = aE(X) + bE(Y) for all a, b ∈ R.

2. If Pr(X ≥ 0) = 1 then E(X) ≥ 0.

3. If A is an event, then E(1A) = Pr(A).





3
Multivariate Random Variables

Definition 3.1. The joint cumulative distribution function of two random
variables is given by

FXY(x, y) = Pr(X ≤ x, Y ≤ y).

This definition exends in the obvious way to the joint cumulative
distribution function of n random variables X1, . . . , Xn.

We will often be interested in the case where X and Y have probabil-
ity densities so that

FXY(x, y) =
∫ y

−∞

∫ x

−∞
fXY(s, t) ds dt.

The function fXY is said to be a joint probability density function for
the pair (X, Y). Such a pair of random variables is said to be jointly
absolutely continuous.

Note that, as in the univariate case, probability density functions
are not unique. We could easily change the value of f at any single
point without changing the value of the integral that is the defining
property of fXY.

We can recover the marginal density function of one of the variables,
say X, by integrating the joint pdf over y

fX(x) =
∫ ∞

−∞
fXY(x, y) dy.

Independence

Definition 3.2. A finite collection of random variables X1, X2, . . . Xn is
defined to be independent if

Pr (X1 ∈ B1, . . . , Xn ∈ Bn) =
n

∏
i=1

Pr(Xi ∈ Bi)
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for all Borel sets B1, B2, . . . Bn.

An arbitrary collection (Xi)i∈I of random variables is independent if every
finite subcollection is independent.

Proposition 3.3. (non-examinable) Univariate functions of independent
random variables are independent. Let X1, X2, . . . Xn be independent and
f1, f2, . . . fn be Borel functions, then f1(X1), f2(X2), . . . , fn(Xn) are inde-
pendent.

Proof. Suppose B1, B2, . . . Bn are arbitrary Borel sets. Then

n⋂
i=1

{ fi(Xi) ∈ Bi} =
n⋂

i=1

{Xi ∈ f−1
i (Bi)}.

Since each fi is a Borel function, each f−1
i (Bi) ∈ B, so that by indepen-

dence,

Pr

(
{

n⋂
i=1

f (Xi) ∈ Bi}
)

= Pr

(
{

n⋂
i=1

Xi ∈ f−1(Bi)}
)

=
n

∏
i=1

Pr
(

Xi ∈ f−1(Bi)
)
=

n

∏
i=1

Pr ( f (Xi) ∈ (Bi)) .

This shows that f1(X1), f2(X2), . . . fn(Xn) are independent whenever
X1, X2, . . . Xn are independent.

Covariance and Correlation

Definition 3.4. For random varibles X and Y, both with finite expectations
E(X) = µX and E(Y) = µY, the covariance of X and Y is defined to be

Cov(X, Y) = E ((X− µX) (Y− µY)) .

The correlation between X and Y is

Cor(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)
.

Remark 3.5. 1. (Exercise) It is often simpler to work with the equivalent
expression

Cov(X, Y) = E(XY)− E(X)E(Y).

2. Independent random variables have covariance zero, but the converse is
not true in general. (See problem sheet.)

3. Cov(X, Y) has the same units as XY, so in general it does not make
sense to say the covariance is large or small. The correlation however is
dimensionless, indeed −1 ≤ Cor(X, Y) ≤ 1.

Proposition 3.6. Covariance defines an inner product on an appropriately
defined space.

Proof. To show this, there are three properties to verify. These are left as a
straightforward exercise.
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1. Bilinearity For random variables X,Y,Z and constants a, b ∈ R,

Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z).

2. Symmetry For any random variables X, Y, Cov(X, Y) = Cov(Y, X)

3. Positive semi-definiteness For any random variable X,

Cov(X, X) = Var(X) ≥ 0.

Note that the third point is not yet enough to say that Cov is an inner
product: we require positive definiteness, which does not hold in general. To
surmount this problem, we define an equivalence relation X ∼ Y if and only
if Pr(X = Y + c) = 1 for some c ∈ R, and work with the quotient space in
which variables that differ by a constant with probability 1 are identified.

Changes of variables

The data that are collected about a system do not always represent
the best set of coordinates in which to analyze the system. So it will
often be convenient to work with different variables from those that
are first collected.

Proposition 3.7. (Change of variables for probability densities). Suppose
D ⊆ R2 is a domain and T : D → R2 is an invertible mapping onto
R ⊆ R2. Define the Jacobian determinant of the map T by

J(u, v) = det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
,

and suppose that all partial derivatives exist and are continuous.

Then if (U, V) = T(X, Y) is a function of the pair of random variables
(X, Y) with joint probability density function fXY, a joint pdf for (U, V) is
given by

fUV(u, v) = fXY(x(u, v), y(u, v))|J(u, v)|.

Example 3.8. The random variables (X, Y) have joint pdf

f (x) = 18x(1− x)y2, 0 < x, y < 1

Suppose we are interested in the distribution of the product variable
XY. We can determine this via the joint transformation

U = X, V = XY,

so that the mapping T(x, y) = (x, xy). T is invertible with inverse
T−1(u, v) = (u, v/u). We compute the Jacobian determinant

J(u, v) = det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
= det

(
1 0
− v

u2
1
u

)
=

1
u
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So that the transformed density is given by

fUV(u, v) = fXY(x(u, v), y(u, v))|J(u, v)|

= 18u(1− u)
( v

u

)2 1
u

0 < u,
v
u
< 1.

= 18(1− u)
v2

u2 0 < v < u < 1

We can now determine the marginal density of V as

fV(v) =
∫ ∞

−∞
fUV(u, v) du =

∫ 1

v
18(1− u)

v2

u2 du = v2
[
− 1

u
− log u

]1

v

= v2 (−1 + 1/v + log v) = v (1− v + v log v) 0 < v < 1.

Remark 3.9. A necessary and sufficient condition for two random variables
X and Y to be independent is that there exist functions g, h : R → R such
that the joint mass or density function factorizes as

fXY(x, y) = g(x)h(y) for all x, y ∈ R.

Hence, we easily see that the variables X and Y of the previous example are
independent. Note however, that U and V are not independent, even though
it appears that fUV can be written as the product of terms involving u
alone and v alone. This is because the support of (U, V), the range of values
with non-zero probability density, is described by a non-trivial relationship
between u and v. Equivalently, there are no properly defined functions g, h
with domain R such that fUV(u, v) = g(u)h(v) for all u, v ∈ R.

Conditioning

Recall our definition of conditional probability for events,

Pr(B|A) =
Pr(B ∩ A)

Pr(A)
if Pr(A) > 0.

Suppose we take B = {X ≤ x}, where X is a random variable. Then
we have the conditional CDF of X given A,

FX|A(x) =
Pr({X ≤ x} ∩ A)

Pr(A)
.

As with any CDF, FX|A(x) completely determines the distribution
of X|A. For a discrete random variable, we have a conditional mass
function fX|A(x) = Pr(X = x|A), and in the absolutely continuous
case,

fX|A(x) =
d

dx
FX|A(x),

with
Pr(X ∈ C|A) =

∫
x∈C

fX|A(x) dx
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for any C ∈ B.

In statistics, we often work with the case where the joint distribution
of the random variables (X, Y) is given, and we are interested in
the conditional distribution of Y given that X = x. For cases where
Pr(X = x) > 0, such as when X is a discrete random variable, this
is straightforward. However, in cases where Pr(X = x) = 0, such as
when X is a continuous random variable, we need to be more careful.

The right approach is to condition on events of positive probability of
the form {X ∈ (x, x + h)} for h > 0, and then take a limit as h→ 0.

If fXY is a joint probability density function for (X, Y), then

Pr (Y ≤ y|X ∈ (x, x + h)) =

∫ x+h
x

∫ y
−∞ fXY(u, v) dvdu∫ x+h
x fX(u) du

.

Then we evaluate the h → 0 limit by l’Hopital’s rule, since both
numerator and denominator tend to zero:

FY|X(y|x) = lim
h→0

Pr (Y ≤ y|X ∈ (x, x + h)) =

∫ y
−∞ fXY(x, v) dv

fX(x)
.

To spell out the differentiation of numerator and denominator, sup-
pose G is a differentiable function such that G′(u) = g(u). Then

d
dh

∫ x+h

x
g(u) du =

d
dh

(G(x + h)− G(x)) = g(x + h),

and provided g is continuous, g(x + h)→ g(x) as h→ 0.

We then define the conditional probability density function as

fY|X(y|x) =
d

dy
FY|X(y|x) =

fXY(x, y)
fX(x)

.

Remark 3.10. Just as we think of the probability density function as
satisfying

fX(x)dx = Pr(X ∈ (x, x + dx)),

so the right interpretation of the conditional probability density is

fY|X(y|x)dy = Pr(Y ∈ (y, y + dy)|X ∈ (x, x + dx)).

Practically, this is important since continuous measurements are always of
finite precision. Mathematically, it is important so that we avoid condition-
ing on events of probability zero. See the problem sheet for an instance of
the Borel-Kolmogorov paradox , which illustrates the difficulties when
attempting to condition on events of probability zero.
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Figure 3.1: Two body measurements for
a sample of 252 men. Measurements are
circumference of the subjects’ thigh and
knee, in cm. Note the elliptical geome-
try of the plot, which is characteristic of
the bivariate normal distribution. The
principal axes are shown on the plot.

Bivariate normal distribution

For reasons that will become clear when we consider the central
limit theorem, the normal distribution is commonly encountered in
statistics. Data will often take the form of d different measurements
on n different experimental sujects. Across subjects, measurements
will often be correlated. To allow arbitrary correlations between such
measurements, we introduce the multivariate normal distribution,
begnning with the simpler case d = 2.

The standard bivariate normal distribution . We will begin by
considering the standardized bivariate normal distribution, whose
probability density function is

f (x, y|ρ) = 1
2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

)
(x, y) ∈ R2,

for −1 < ρ < 1. Here, standardization means that we choose
the origin and units of measurement so that, marginally, we have
E(X) = E(Y) = 0 and Var(X) = Var(Y) = 1. Since normal variables
form a location-scale family, there is no loss of generality here. Note
though that when working with data, the mean and variance are
parameters that we may need to estimate.

It is often useful in working with the bivariate normal to complete
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the square in the quadratic term inside the exponent.

x2 − 2ρxy + y2 = (x− ρy)2 + (1− ρ2)y2.

This makes it straightforward to evaluate integrals involving the
bivariate joint density. E.g. suppose we wish to evaluate the marginal
density of Y. This is

fY(y) =
∫ ∞

−∞
fXY(x, y) dx =

∫ ∞

−∞

1
2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x− ρy)2 − 1

2
y2
)

dx

=
1√
2π

exp(−1
2

y2)
∫ ∞

−∞

1√
2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x− ρy)2

)
dx

=
1√
2π

exp(−1
2

y2),

where the final equality follows because the integrand is the prob-
ability density function of a N(ρy, 1− ρ2) variable. We see that Y,
and therefore also, by symmetry, X, have standard normal marginal
distributions, X, Y ∼ N(0, 1).

The rewriting above corresponds to writing the joint density as

fXY(x, y) = fX|Y(x|y) fY(y).

We can read off the conditional density fX|Y from the joint density,
just by noting the functional dependence of the joint density on x.
We see that fX|Y and fXY have the same dependence on x, and differ
only by terms that depend on y. In the conditional density for x, we
regard y as fixed, and so the terms depending on y are simply part of
the normalizing constant. Since we know that this conditional density
integrates to 1, the constant of proportionality can be determined.

Hence we see that

fX|Y(x|y) ∝ exp
(
− 1

2(1− ρ2)
(x− ρy)2 − 1

2
y2
)

.

This density has the same functional dependence on x as has a
N(ρy, 1− ρ2) variable. Hence X|Y = y ∼ N(ρy, 1− ρ2).

Note therefore that X and Y are not independent in general. We now
calculate their covariance. Firstly,
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E(XY) =
∫ ∞

−∞

∫ ∞

−∞
xy fX|Y(x|y) fY(y) dx dy

=
∫ ∞

−∞
y fY(y)

∫ ∞

−∞
x fX|Y(x|y) dx dy

=
∫ ∞

−∞
y fY(y)E(X|Y) dy

=
∫ ∞

−∞
y fY(y) ρy dy = ρE(Y2) = ρ.

Remark 3.11. Really, this is just the law of iterated expectation:

E(XY) = EY (E(XY|Y = y)) = EY (ρY Y) = ρEY

(
Y2
)
= ρ.

Since now E(X) = E(Y) = 0, this gives

Cov(X, Y) = E(XY)− E(X)E(Y) = ρ.

Remark 3.12. Note that the conditional distribution of X given Y = y is
Normal with a mean ρy, which is a function of y, but a constant variance
1− ρ2.

Remark 3.13. The bivariate normal distribution defined represents variables
that have been standardized - measured such that they have mean 0 and
variance 1. The most general form of the bivariate normal density allows the
X and Y variables to have arbitrary mean and arbitrary (positive) variance:

fX(x|µ, Σ) =
1

2πσXσY
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(x− µX)

2

σ2
X

− 2ρ(x− µX)(y− µY)

σXσy
+

(y− µY)
2

σ2
Y

])
,

where µ = (µX , µY) is the mean vector and

Σ =

(
σ2

X ρσXσY

ρσXσY σ2
Y

)

is the variance-covariance matrix of the random vector x = (x, y).

Indeed, it is more natural to write the density in terms of the vector x =

(x, y) as

fX(x|µ, Σ) =
1

2πσXσY
√

1− ρ2
exp

(
−1

2
(x− µ)tΣ−1(x− µ)

)
.

From this representation, we can see quite clearly that the probability density
depends on x through a positive definite quadratic form in x. This means
that contours of equal probability density take the form of ellipses, as can
be seen in Figure 3.2. So then the bivariate normal density is of the form
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exp(−d(x, µ)2) for a generalized distance function d. In statistical work,
this distance function is called Mahalanobis distance.

When working with data, the properties of this distance function have an
intuitive explanation in terms of the relationship between the variables.
Suppose we consider an indidivual with a thigh circumference of ∼ 70cm.
How unsusal is such an individual? This is quantified by the individual’s
distance from the mean point (59, 39). But the right notion of distance
is clearly not just given by Euclidean distance in Figure 3.1: the given
thigh measurement is much more likely for individuals with above-average
knee measurements, because the two variables are positively correlated.
Instead, the right notion of distance takes into account the fact that the
measured variables are correlated. Mahalanobis distance is equivalent to
using Euclidean distance on the transformed variables shown as principal
axes in 3.1, because these variables are uncorrelated. Figure 3.2 shows
contour lines connecting points of equal probability density for the data
shown in 3.1.

Figure 3.2: Contours of bivariate normal
probability density for the data in
Figure 3.1.

Multivariate normal distribution

The idea of the bivariate normal distribution readily extends to a
d-dimensional vector. The general multivariate normal density is
specified in terms of its mean vector µ and positive definite variance-
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covariance matrix Σ as

fX(x|µ, Σ) =
1

(2π)
d
2 (det Σ)

1
2

exp
(
−1

2
(x− µ)tΣ−1(x− µ)

)
x ∈ Rd.

Definition 3.14. For a random vector X = (X1, . . . , Xd), the variance-
covariance matrix is the d× d matrix with (i, j)-th entry Cov(Xi, Xj).

Remark 3.15.

• By construction, a variance-covariance matrix is always symmetric,
because Cov(Xi, Xj) = Cov(Xj, Xi).

• The ith diagonal entry is Cov(Xi, Xi) = Var(Xi).

• For any constant vector a ∈ Rd,

Var(atX) = Var(
d

∑
i=1

aiXi) =
d

∑
i=1

a2
i Var(Xi)+ 2 ∑

i<j
aiajCov(Xi, Xj) = atΣa.

Since variances are always non-negative, it follows that atΣa ≥ 0 for all
vectors a ∈ Rd. This says that Σ is positive semi-definite.

If, in fact, Var(atX) = 0 for some a 6= 0, then there is a linear combi-
nation of the entries of X that is constant with probability 1. This is a
somewhat degenerate case, corresponding to a singular distribution: there
is no d-dimensional probability density. Equivalently, it says that the
variance-covariance matrix Σ is not invertible. In the bivariate case, it
corresponds to a correlation ρ ∈ {±1}, which we specifically excluded.
We will consider only the case where Σ is positive definite.

Proposition 3.16. If X ∼ MVNd(µ, Σ) and A is an invertible d × d
matrix, then the random variable Y = AX ∼ MVNd(Aµ, AΣAt).

Proof. By the theorem on invertible multivariate transformations in the
general d× d case, if Y = AX then X = A−1Y so that

∂xi
∂yj

=
(

A−1
)

ij
,

and so the Jacobian determinant is just det A−1.
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fY (y) = fX(A−1y)|det A−1|

=
1

(2π)
d
2 (det Σ)

1
2

exp
(
−1

2
(A−1y− µ)tΣ−1(A−1y− µ)

)
|det A−1|

=
1

(2π)
d
2 (det Σ)

1
2

exp
(
−1

2
(y− Aµ)t

(
A−1

)t
Σ−1 A−1(y− Aµ)

)
|det A−1|

=
1

(2π)
d
2 (det Σ)

1
2

exp
(
−1

2
(y− Aµ)t (AΣAt)−1

(y− Aµ)

)
|det A−1|,

using the standard results that for matrices P and Q, (PQ)−1 = Q−1P−1

and
(

P−1)t
=
(

Pt)−1 .

Noting now the standard properties of the determinant:

det PQ = det P det Q, det P = det Pt,

we see that det A−1 = 1/ det A and |det A| =
(
det AAt) 1

2 , so that

fY (y) = fX(A−1y)|det A−1|

=
1

(2π)
d
2 (det AAt)

1
2 (det Σ)

1
2

exp
(
−1

2
(y− Aµ)t (AΣAt)−1

(y− Aµ)

)
=

1

(2π)
d
2 (det AΣAt)

1
2

exp
(
−1

2
(y− Aµ)t (AΣAt)−1

(y− Aµ)

)
,

which shows that Y ∼ MVNd(Aµ, AΣAt).

Proposition 3.17. We can always find a linear transformation Q of the
multivariate normal vector X = (X1, . . . , Xn)

t such that the entries of
Z = QX are uncorrelated, and indeed independent, random variables.

Proof As Σ is a symmetric, positive definite matrix, there exists an orthogo-
nal matrix Q, i.e. with QQt = QtQ = Id, such that

QΣQt =


λ1

. . .
λd

 ,

where λ1, . . . λd are the eigenvalues of A, which are real and positive.

Then define z = Qt(x− µ), so that Qz = x− µ and note that

(QtΣQ)−1 = Q−1Σ−1 (Qt)−1
= QtΣ−1Q =


1

λ1
. . .

1
λd

 .
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Then we have that

(x− µ)tΣ−1(x− µ) = ztQtΣ−1Qz =
d

∑
i=1

z2
i

λi
,

so, noting that the absolute value of the Jacobian determinant of the transfor-
mation is 1, since Q is orthogonal,

fZ(z) = fX(µ + Qz)

=
1

(2π)
d
2 (det Σ)

1
2

exp

(
−1

2

d

∑
i=1

z2
i

λi

)

=
d

∏
i=1

1√
2πλi

exp

(
−

z2
i

2λi

)
,

where in the last equality we have used the fact that det Σ = ∏i=1d λi.

We seen then that Z1, . . . Zd are independent normal random variables,
because the joint density factorizes over all of Rd. The variables are shown in
Figure 3.1 as the orthogonal principal directions in the ellipse. For the three
variables in 3.3, there are are three orthogonal principal directions.

Figure 3.3: Three body measurements
for 252 men. Measurements are circum-
ference of the subjects’ thigh, ankle and
knee. The red, purple and blue lines
show the three orthogonal principal
axes of the sample variance-covariance
matrix.

Order statistics

Data can often be assumed to be independent, identical draws from
some continuous distribution. Suppose we have such a random
sample X1, . . . Xn, drawn from the distribution with cumulative
distribution function FX and probability density function fX. It is
common to report summaries of the data that relate to the ordering
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of the sample, such as min Xi, max Xi and the sample median, which
is either the middle ordered value (for n odd) or the average of the
two middle values (for n even).

This suggests that we should investigate the joint distribution of or-
dered samples from a distribution. We let Y1 be the smallest amongst
sampled variables, Y2 the next smallest etc. Since we assume the ran-
dom variable has a continuous distribution, we neglect the possibility
of ties. The notation X(k) for Yk is common in statistics. (Y1, . . . , Yn) is
the vector of order statistics of the random vector (X1, X2, . . . Xn).

By symmetry, and independence, the joint density of the order statis-
tics is

f (y1, . . . , yn) =

n! ∏n
i=1 fX(yi), y1 < y2 < . . . < yn

0 otherwise.

The marginal density of Yk, for k ∈ {1, . . . n} is given by

fk(y) = k
(

n
k

)
fX(y)FX(y)k−1 (1− FX(y))

n−k .

To derive the marginal density, note that the event {Yk ≤ y} occurs if
and only if the event {Ny ≥ k} occurs, where Ny counts the number
of the Xi that are at most y.

Since Ny ∼ Bin(n, FX(y)), we can determine the CDF of Yk as

Fk(y) = Pr(Ny ≥ k) =
n

∑
j=k

(
n
j

)
FX(y)j (1− FX(y))

n−j .

The density now follows on differentiating this expression. (Exercise).

Example 3.18. Maximum and minimum

These two particular cases of the general order statistics result are often
useful, and easy to interpret. The minimum of n values is greater than y if

and only if they are all greater than y, so that we have the equality of events

{Y1 > y} =
n⋂

i=1

{Xi > y},

so that by independence of the Xi,

Pr(Y1 ≤ y) = 1− Pr(X > y)n = 1− (1− FX(y))n.

The maximum of n values is smaller than y if and only if they are all smaller
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than y, so we have a similar equality of events

{Yn ≤ y} =
n⋂

i=1

{Xi ≤ y},

so that again by independence,

Pr(Yn ≤ y) = Pr(X ≤ y)n = (FX(y))n.

Example 3.19. Suppose X1, X2, . . . , Xn ∼ Exp(λ) are a random sample,
and λ is the rate parameter. Then for each i,

FXi (x) = 1− exp(−λx), x > 0,

so Y1 = min Xi has distribution

Pr(Y1 ≤ y) = 1−Pr(Y1 > y) = 1−Pr(Xi > y)n = 1− exp(−nλy), y > 0.

Hence Y1 ∼ Exp(nλ). This is often a useful result.



4
Convergence of Random Variables

Motivation

In statistics, we are often interested in evaluating the uncertainty
associated with an estimate. For example, we might be interested in
evaluating the prevalence p of a disease in a population. To do this,
we might take a random sample of n individuals and estimate p by
the proportion of individuals in the sample who have the disease.
More formally, if X1, . . . Xn are independent Bernoulli random vari-
ables with success probability p, then the maximum likelihood
estimator of p is

p̂ = X̄ =
1
n

n

∑
i=1

Xi.

Then by linearity

E( p̂) =
1
n

E

(
(

n

∑
i=1

Xi

)
= p

and since the observations in a random sample are independent,

Var ( p̂) =
1
n2 Var(

n

∑
i=1

Xi) =
1
n2

n

∑
i=1

Var(Xi) =
p(1− p)

n
.

Note then that our estimator has desirable properties. As n becomes
large, the distribution of the estimator becomes concentrated around
its expectation, which is the true value, with ever smaller variance.
We can imagine taking a sequence ( p̂n)n≥1 with the nth element of
the sequence based on a sample of size n. Note that each element of
the sequence is a random variable.

The aim of this chapter is to build up a framework for talking about
the convergence properties of such sequences. As random variables
are functions, there are several different senses in which they can be
said to converge. As well as the example discussed above, where n
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represented a notional sample size, questions of convergence also
frequently arise for stochastic processes, the subject of the final
chapter. In this setting, n is most usually interpreted as a discrete
time variable.

Convergence in probability

Definition 4.1. A sequence X1, X2, . . . of random variables is said to

converge in probability to a random variable X, written Xn
P−→ X if for

all ε > 0,
lim

n→∞
Pr (|Xn − X| ≥ ε) = 0.

Example 4.2. The random variables in the sequence (Xn)n≥1 have probabil-
ity distribution

Pr(Xn = k) =

1− 1
n k = 0

1
n k = n.

Then Xn
P−→ 0, since for any ε > 0

Pr(|Xn| ≥ ε) = Pr(Xn = n)→ 0.

Note here that Xn converges in probability to a degenerate random variable,
i.e. the constant X = 0.

Example 4.3. Let U1, U2, . . . be a sequence of independent Unif(0, 1)
random variables. For each n ≥ 1, define

Mn = max
1≤i≤n

Ui.

Then Mn
P−→ 1.

Proof Note that Mn ≤ 1 so that |Mn − 1| = 1−Mn. Let ε > 0

Pr (1−Mn ≥ ε) = Pr(Mn ≤ 1− ε).

Recalling the previous section on order statistics, we see that for 0 < ε < 1,

Pr(Mn ≤ 1− ε) =
n

∏
i=1

Pr(Ui ≤ 1− ε) = (1− ε)n.

Then Pr(Mn ≤ 1− ε)→ 0 as n→ ∞ and so Mn
P−→ 1.

We will return to this example to study the fluctuations around the limit
once we have developed the concept of convergence in distribution.

Proposition 4.4. Markov’s inequality. Let X be a random variable taking
only non-negative values and let a > 0 be a constant. Then

Pr(X ≥ a) ≤ E(X)

a
.
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Proof. Let A = [a, ∞) and define the indicator

IA(x) =

1 x ∈ A

0 x /∈ A

Certainly X ≥ aIA(X), so that

E(X) ≥ aE(IA(X)) = a Pr(X ≥ a).

The result follows.

We apply Markov’s inequality to deduce Chebychev’s inequality.

Proposition 4.5. Let X be a random variable with finite mean E(X) = µ

and finite variance Var(X) = σ2. Then for any ε > 0,

Pr(|X− µ| ≥ ε) ≤ σ2

ε2 .

Proof. Define the non-negative random variable Y = (X− µ)2.

Pr(|X− µ| ≥ ε) = Pr((X− µ)2 ≥ ε2) = Pr(Y ≥ ε2).

Applying Markov’s inequality to Y with a = ε2 gives

Pr(Y ≥ ε2) ≤ E(X− µ)2

ε2 =
σ2

ε2 .

Definition 4.6. For a sequence of random variables X1, X2, . . ., we define

X̄n =
1
n

n

∑
i=1

Xn,

the sample mean of the first n variables.

Proposition 4.7. Weak Law of Large Numbers. Let X1, X2, . . . be a
sequence of independent and identically distributed random variables with

finite mean µ and finite variance σ2. Then X̄n
P−→ µ.

Proof. First note that, E(X̄n) = µ, by linearity of expectation. Then using
the independence of the Xi,

Var(X̄n) = Var
(

∑n
i=1 Xi

n

)
=

1
n2

n

∑
i=1

Var(Xi) =
σ2

n
.

We now apply Chebychev’s inequality to see that for any ε > 0,

Pr (|X̄n − µ| ≥ ε) ≤ Var(X̄n)

ε2 =
σ2

nε2 .

The right hand side clearly tends to zero as n → ∞, and so we have estab-

lished X̄n
P−→ µ.

Remark 4.8. Note that Var(X̄n) =
σ2

n holds provided the variables Xi are
uncorrelated, a strictly weaker condition than the independence we have
assumed.
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Convergence in distribution

Definition 4.9. A sequence of random variables X1, X2, . . . with CDFs
F1, F2, . . . is said to converge in distribution to a random variable X with

CDF FX , written Xn
D−→ X if

lim
n→∞

Fn(x) = FX(x)

at all points x ∈ R for which FX is continuous.

Example 4.10. We saw that the maximum of n independent uniform

variables, Mn
P−→ 1. We will now examine the random variable describing

the fluctuations around this limit.

Let Yn = n(1−Mn) be the scaled difference between Mn and its limit. We
scale up by n to ‘zoom in’, since we know the difference between Mn and 1
diminishes as n→ ∞. Then for y ∈ (0, n),

Pr(Yn ≤ y) = Pr
(

1−Mn ≤
y
n

)
= Pr

(
Mn ≥ 1− y

n

)
= 1−

(
1− y

n

)n
.

Hence we see that for any y > 0,

lim
n→∞

Pr(Yn ≤ y) = 1− lim
n→∞

(
1− y

n

)n
= 1− exp(−y).

It follows that Yn
D−→ Y, where Y ∼ Exp(1)

Example 4.11. Let Xn ∼ Unif(− 1
n , 1

n ), with CDF

Fn(x) =


0 x < − 1

n
nx+1

2 − 1
n ≤ x < 1

n

1 x ≥ 1
n .

For each x < 0, clearly Fn(x) → 0 and for each x > 0, Fn(x) → 1. Hence

we see that Xn
D−→ X, the constant random variable taking the value 0 with

probability 1.

Note however that Fn(0) = 1
2 for all n ≥ 1, although FX(0) = 1. This is

consistent with the definition of convergence in distribution, because FX is
not (left) continuous at 0: FX(h) = 0 for any h < 0.

Proposition 4.12. Convergence in probability implies convergence in
distribution.

Proof. Let X1, X2, . . . be a sequence of random variables with CDFs

F1, F2, . . .. Suppose that Xn
P−→ X, a random variable with CDF F. We will

show that Fn(x)→ F(x) at all continuity points of F.
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Let x be any continuity point of F, and let ε > 0. We begin by observing
that if Xn ≤ x, then either X ≤ x + ε, or Xn and X are separated by more
than ε. Hence

{Xn ≤ x} ⊆ {X ≤ x + ε} ∪ {|Xn − X| > ε}.

To see this formally, note that if Xn ≤ x but |Xn − X| ≤ ε then

−ε ≤ Xn − X ≤ ε.

so that by considering the left-hand inequality,

X ≤ Xn + ε ≤ x + ε.

Then by a union bound, we must have

Fn(x) = Pr(Xn ≤ x) ≤ Pr(X ≤ x + ε) + Pr(|Xn − X| > ε).

A similar argument yields a lower bound for Fn(x): if X ≤ x− ε, then either
Xn ≤ x or Xn and X are separated by more than ε, so

Pr(X ≤ x− ε) ≤ Pr(Xn ≤ x) + Pr(|Xn − X| > ε).

Combining these two inequalities gives a two-sided bound for Fn(x):

Pr(X ≤ x− ε)−Pr(|Xn−X| > ε) ≤ Pr(Xn ≤ x) ≤ Pr(X ≤ x+ ε)+Pr(|Xn−X| > ε).

Passing to the limit n → ∞, the term Pr(|Xn − X| > ε) → 0, since

Xn
P−→ X, so that

FX(x− ε) ≤ lim
n→∞

Pr(Xn ≤ x) ≤ FX(x + ε).

Noting now that FX is continuous at x, and that ε > 0 is arbitrary, we see

that Fn(x)→ FX(x) as n→ ∞, and so Xn
D−→ X.

Convergence in distribution is strictly weaker than convergence in
probability, as the following example shows.

Example 4.13. Let U ∼ Unif(−1, 1) and for n ≥ 1, define Un = −U.

Then U and Un are identically distributed, so trivially Un
D−→ U. However,

taking ε = 1
2 ,

Pr
(
|Un −U| ≥ 1

2

)
= Pr

(
|2U| ≥ 1

2

)
=

3
4

.

While convergence in distribution is weaker in general than conver-
gence in probability, they are equivalent in an important special case.

We are often interested in cases where Xn
D−→ c, where c ∈ R is a

constant. In this case, we do indeed have that Xn
P−→ c.
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Proposition 4.14. Suppose (Xn)n≥1 is a sequence of random variables such

that Xn
D−→ c for c ∈ R. Then Xn

P−→ c.

Proof. The constant random variable X = c has as its cdf the point
mass at c:

F(x) =

0 x < c

1 x ≥ c.

Let Fn be the cdf of Xn. Since F is continuous at all points except c,
we see that for any ε > 0,

lim
n→∞

Fn(c− ε) = 0, lim
n→∞

Fn(c + ε) = 1.

To demonstrate convergence in probability, note that we have the
bound

Pr(|Xn − c| ≥ ε) = Pr(Xn ≤ c− ε) + Pr(Xn ≥ c + ε)

≤ Pr(Xn ≤ c− ε) + Pr
(

Xn > c +
ε

2

)
= Fn(c− ε) + 1− Fn

(
c +

ε

2

)
.

So that when n→ ∞,

0 ≤ lim
n→∞

Pr(|Xn − c| ≥ ε) ≤ lim
n→∞

Fn(c− ε) + 1− Fn

(
c +

ε

2

)
= 0,

which establishes the result.

Limit events

If (Ω,F , Pr) is a probability space, and A1, A2, . . . is a sequence of
events, then we have seen that F contains events such as

⋃∞
n=1 An,

the event that at least one of the An occur, and
⋂∞

n=1 An, the event
that all of the An occur.

We are often interested in understanding whether or not infinitely
many of the An occur, often written {An i.o.}, for An infinitely often.
Closely related is the event that all but finitely many of the An occur,
written {An a.a.}, for An almost always. Clearly {An a.a.} ⊆ {An i.o.}.
To study these events, we need to introduce a new concept. As a
motivation, we recall the lim sup and lim inf of a real sequence (an).

For each n ≥ 1, define the sequences

bn = inf
m≥n

am, cn = sup
m≥n

am.

Note that (bn) is an increasing sequence and (cn) is a decreasing se-
quence, as depicted in Figure 4.1. As these sequences are monotonic,
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they either tend to a limit or to ±∞. Hence we can unambiguously
define

lim inf
n→∞

an = lim
n→∞

bn, lim sup
n→∞

an = lim
n→∞

cn.

Moreover, because bn and cn are monotonic, we see that these limits
are in fact given by

lim inf
n→∞

an = lim
n→∞

bn = sup
n≥1

bn = sup
n≥1

inf
m≥n

am

and
lim sup

n→∞
an = lim

n→∞
cn = inf

n≥1
cn = inf

n≥1
sup
m≥n

am.

You may recall from analysis that (an) converges if and only if
lim infn→∞ an = lim supn→∞ an.

We now consider an analogous construction for sets, in which the
≤ relation for real numbers corresponds to the inclusion relation, ⊆.
Suppose we have a sequence of sets (An). We can manufacture an
increasing and a decreasing sequence of sets from An by

Bn =
∞⋂

m=n
Am, Cn =

∞⋃
m=n

Am.

Note how ∩ and ∪ act as lower and upper bounds, respectively. We
then define

lim inf
n→∞

An =
∞⋃

n=1

⋂
m≥n

Am, lim sup
n→∞

An =
∞⋂

n=1

⋃
m≥n

Am.

Our next result gives the probabilistic interpretation of these limit
events.

Proposition 4.15.

{An i.o.} = lim sup
N→∞

AN =
∞⋂

N=1

∞⋃
n=N

An ∈ F ,

{An a.a.} = lim inf
N→∞

AN =
∞⋃

N=1

∞⋂
n=N

An ∈ F .

Proof. ω ∈ Ω lies in infinitely many of the events An if and only if, for any
N ∈ N, ω ∈ An for some n ≥ N. So for each N ∈ N, ω ∈ ⋃∞

n=N An. This
then says that

{An i.o.} =
∞⋂

N=1

∞⋃
n=N

An.

Since we have written {An i.o.} as a countable intersection of countable
unions of events, {An i.o.} ∈ F .
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Figure 4.1: For the sequence (an) in
black, the sequence bn = infm≥n am is
shown in blue and the sequence cn =
supm≥n am is shown in orange. Note
that both sequences are monotonic. The
dotted line is the limit of the sequence.
The original sequence an has a limit
if and only if bn and cn approach the
same limit.

Similarly, ω ∈ Ω lies in all but finitely many of the events An if and only
if there exists N ∈ N such that for all n ≥ N, ω ∈ An. For such an N, we
then have ω ∈ ⋂∞

n=N An. This then says that

{An a.a.} =
∞⋃

N=1

∞⋂
n=N

An.

We have expressed {An a.a.} as a countable union of countable intersections
of events, so {An a.a.} ∈ F

Remark 4.16. The complement of {An i.o.} is the event that only finitely
many of the An occur. By de Morgan’s law, this is

{An i.o.}c =
∞⋃

N=1

∞⋂
n=N

Ac
n.

This says that ω ∈ {An i.o.}c if and only if there exists N ∈ N such that,
for all n ≥ N, ω ∈ Ac

n.

Hence
{An i.o.}c = {Ac

n a.a.}.

Borel-Cantelli lemmas

Proposition 4.17. Let (Ω,F , Pr) be a probability space and let A1, A2, . . .
be a sequence of events. Then

1. if ∑∞
n=1 Pr(An) < ∞ then Pr({An i.o.}) = 0.

2. if ∑∞
n=1 Pr(An) = ∞ and A1, A2, . . . are independent events, then

Pr({An i.o.}) = 1.
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Proof.

1. Define BN =
⋃∞

n=N An. Then B1 ⊇ B2 ⊇ . . . is a decreasing se-
quence of sets. We see that by continuity applied to the decreasing
sequence (BN),

Pr({An i.o.}) = Pr

(
∞⋂

N=1

BN

)
= lim

N→∞
Pr(BN).

But

0 ≤ Pr(BN) ≤
∞

∑
n=N

Pr(An)→ 0,

since ∑∞
n=1 Pr(An) < ∞.

2.

Pr({An i.o.}c) = Pr ({Ac
n a.a.}) = Pr

(
∞⋃

N=1

∞⋂
N=n

Ac
n

)
.

If now CN =
⋂∞

N=n Ac
n, then C1 ⊆ C2 ⊆ . . . is an increasing

sequence of sets.

Further,

Pr(CN) = lim
m→∞

Pr

(
m⋂

n=N
Ac

n

)
= lim

m→∞

m

∏
n=N

(1− Pr(An)) ,

where we have used independence in forming the product. But
now, since 1− x ≤ exp(−x) for all x ≥ 0, we see that

0 ≤ Pr(CN) ≤ lim
m→∞

m

∏
n=N

exp(−Pr(An)) = lim
m→∞

exp

(
−

m

∑
n=N

Pr(An)

)
= 0,

because ∑∞
n=1 Pr(An) = ∞.

Hence then by continuity applied to the increasing sequence (CN),

Pr ({Ac
n a.a.}) = Pr

(
∞⋃

N=1

CN

)
= lim

N→∞
Pr(CN) = 0,

So that Pr({An i.o.}) = 1.

Convergence almost surely (for interest: non-examinable)

Proposition 4.18. Let (Ω,F , Pr) be a probability space, and suppose
X1, X2, . . . and X are random variables. We can show that the set

{Xn → X} = {ω ∈ Ω : Xn(ω)→ X(ω)} ∈ F ,

i.e. {Xn → X} is an event.
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Proof. Recall the definition of convergence for real numbers: xn → x means
that for all ε > 0, there exists N(ε) ≥ 1 such that whenever n ≥ N(ε),
|xn − x| < ε. Equivalently, for all m ≥ 1 there exists N(m) ≥ 1 such that
whenever n ≥ N(m), |xn − x| < 1

m . This formulation is preferable here, as it
allows us to work with countable unions and intersections.

So then ω ∈ {Xn → X} if and only if for all m ≥ 1 there exists an N(m)

such that

ω ∈
∞⋂

n=N(m)

{
|Xn(ω)− X(ω)| < 1

m

}
.

Translating the quantifiers into statements about subsets gives

{Xn → X} =
∞⋂

m=1

∞⋃
N(m)=1

∞⋂
n=N(m)

{
|Xn(ω)− X(ω)| < 1

m

}
.

By construction, this is an event.

Definition 4.19. We say that Xn converges to X almost surely (or with
probability 1), written Xn

a.s.−→ X, if

Pr(Xn → X) = 1.

Remark 4.20. Almost sure convergence can be quite a subtle concept, and it
is included here only to give a sense of more advanced ideas. Convergence in
probability and convergence in distribution will be our focus in this module.

Proposition 4.21. If Xn
a.s.−→ X then Xn

P−→ X.

Proof. By the definition of convergence, if Xn(ω) → X(ω) then for all
ε > 0, there exists N ∈ N such that |Xn(ω)− X(ω)| < ε for any n ≥ N.

So if Xn
a.s.−→ X, then for any ε > 0, we define the increasing sequence of

events (AN(ε)) by

AN(ε) = {ω ∈ Ω : |Xn(ω)− X(ω)| < ε for all n ≥ N}.

Hence by the definition of convergence, {Xn → X} ⊆ ⋃∞
N=1 AN(ε), so

1 = Pr(Xn → X) ≤ Pr

(
∞⋃

N=1

AN(ε)

)
≤ 1.

Hence, by continuity applied to the increasing sequence (AN(ε)),

lim
N→∞

Pr(AN(ε)) = 1.

But now AN(ε) ⊆ {|XN − X| < ε}, so

lim
n→∞

Pr(|XN − X| < ε) = 1,

which says that XN
P−→ X.
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The strong law of large numbers (for interest: non-examinable)

Proposition 4.22. Let (Xn)n≥1 be a sequence of independent and identically
distributed random variables such that E(X4

i ) < ∞ and E(Xi) = µ. Then

Pr (X̄n → µ) = 1.

Proof First, we show that there exists a constant C > 0 such that

E
(
(X̄− µ)4

)
≤ c

n2 .

To see this, define Zi = Xi − µ, Sn = ∑n
i=1 Xi, and consider

E
(
(Sn − nµ)4

)
= E

( n

∑
i=1

Zi

)4
 = nE(Z4

1) + 3n(n− 1)E(Z2
1 Z2

2),

since all other terms in the expansion are zero, e.g.

E(Z1Z3
2) = E(Z1)E(Z2

2) = 0.

Now we can choose e.g. C = 4 max
{

E(Z4
1), E(Z2

1)
2}. Then

nE(Z4
1) + 3n(n− 1)E(Z2

1 Z2
2) = n2

(
C
4n

+
3C(n− 1)

4n

)
≤ Cn2,

so that
E
(
(X̄− µ)4

)
=

1
n4 E

(
(Sn − nµ)4

)
≤ C

n2 .

Now we use the first Borel-Cantelli lemma to deduce the strong law of large
numbers. For γ > 0, define the event

An =
{
|X̄n − µ| ≥ n−γ

}
.

Then by Markov’s inequality,

Pr(|X̄n − µ| ≥ n−γ) ≤ E(X̄n − µ)4

n−4γ
≤ Cn4γ−2.

Note that for γ < 1
4 we have that ∑∞

n=1 Pr(An) converges, so that by the
first Borel-Cantelli lemma, we get that

Pr ({An i.o.}) = Pr

(
∞⋂

m=1

⋃
n≥m

An

)
= 0.

So then we see

Pr ({Ac
n a.a.}) = Pr

(
∞⋃

m=1

⋂
n≥m

{
|X̄n − µ| < n−γ

})
= 1.
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We now simply note that if ω ∈ {Ac
n a.a.} then there exists m ≥ 1 such

that for all n ≥ m, ω ∈ {|X̄n − µ| < n−γ}. Hence {Ac
n a.a.} ⊆ {X̄n → µ},

and so we see that

Pr ({X̄n → µ}) = 1.

This is the strong law of large numbers. The conditions can be weakened
somewhat, but the argument becomes rather more involved.



5
Central Limit Theorem

The central limit theorem is a result that holds in very wide general-
ity, and this generality underpins its importance in applications. It
can be thought of as a sharpening of the weak law of large numbers.
As we have seen, the probability distribution of the sample mean
X̄n of a random sample becomes concentrated around the constant
value µ, in the limit as n → ∞. This says that, from the point of view
of probability, X̄n becomes quite uninteresting - its distribution is
essentially a point mass, apart from small fluctuations. The central
limit theorem ‘zooms in’, magnifying the fluctuations around the
limit by a factor of

√
n so that they become visible as a probability

distribution with a well-defined density function. Remarkably, the
scaled limiting distribution of the fluctuations around µ is essen-
tially the same, regardless of the shape of the distribution of the
random variables from which the original sample was taken. When-
ever this parent distribution has a finite variance σ2, we will see that
the rescaled fluctuations

√
n (X̄n − µ) are normally distributed with

variance σ2. This approach to normality can be seen in Figure 5.1.
The figure shows the distribution of the sample mean X̄n for four
different parent distributions, and sample size n ∈ {1, 2, 5, 25}.

Our approach to the central limit theorem will use moment generat-
ing functions, which we will review below. More general proofs can
be given that use characteristic functions. See e.g. Billingsley (ch 27).

Moment Generating Functions

Definition 5.1. The moment generating function of a random variable X
is

MX(t) = E(exp(tX)).

Note that this expectation is not necessarily finite.

We note the following results for MGFs.
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Figure 5.1: Sampling distributions of
X̄n = 1

n ∑n
i=1 where the Xi are inde-

pendent and identically distributed
random variables drawn from the nor-
mal, uniform, exponential and arcsine
distributions. Note the convergence, in
each case, of the sampling distribution
to a normal distribution.
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Proposition 5.2. If Y = aX + b then MY(t) = exp(bt)MX(at).

(Exercise.)

Proposition 5.3. If X and Y are independent random variables and Z =

X + Y, then
MZ(t) = MX(t)MY(t).

Proof.

MZ(t) = E(exp(t(X + Y)) = E(exp(tX) exp(tY)).

Now, since X and Y are independent, and exp is a continuous (and therefore
measurable) function, exp(tX) and exp(tY) are independent too. It then
follows that

MZ(t) = E(exp(tX))E(exp(tY)).

Proposition 5.4. Suppose there exists t0 > 0 such that MX(t) < ∞
whenever |t| < t0. Then

MX(t) =
∞

∑
k=0

E(Xk)
tk

k!
,

and for any k ≥ 0,
dk

dtk MX(t) |t=0 = E(Xk).

Proof. We expand the exponential function as a power series

MX(t) = E(exp(tX)). = E

(
∞

∑
n=0

(tX)n

n!

)
=

∞

∑
n=0

E (Xn)
tn

n!
,

assuming that we may interchange the infinite summation with integration
(which we can - see Billingsley, section 21). Then differentiate k times and
evaluate at t = 0.

We note without proof the following results from analysis.

Proposition 5.5. Uniqueness Suppose X and Y are random variables with
common moment generating function M(t), which is finite for |t| < t0 for
some t0 > 0. Then X and Y are identically distributed.

Continuity Suppose X is a random variable with moment generating
function MX(t), and (Xn)n≥1 is a sequence of random variables, with
respective moment generating functions MXi (t). If

MXi (t)→ MX(t) < ∞

as n→ ∞ for all |t| ≤ t0 for some t0 > 0, then Xn
D−→ X.



66 probability for statistics

Example 5.6. Suppose X ∼ Γ(α, λ), where for ease of notation λ is the rate
parameter. Then we obtain the MGF of X to be

MX(t) =
∫ ∞

0
exp(tx)

λαxα−1

Γ(α)
exp(−λx) dx

=
∫ ∞

0

λαxα−1

Γ(α)
exp(−(λ− t)x) dx

=
λα

(λ− t)α

∫ ∞

0

(λ− t)αxα−1

Γ(α)
exp(−(λ− t)x) dx =

(
λ

λ− t

)α

t < λ.

Note the use of the standard trick - rewriting the integrand to take the form
of a PDF, so that the integral evaluates to 1.

Remark 5.7. In the particular case where α = 1, we obtain the MGF for
Y ∼ Exp(λ) as

MY(t) =
λ

λ− t
t < λ.

More generally, if α = n is a positive integer and Y1, Y2, . . . Yn ∼ Exp(λ)
are independent, then Y = ∑n

i=1 Yi has MGF

MY(t) =
n

∏
i=1

λ

λ− t
=

(
λ

λ− t

)n
t < λ,

so by the uniqueness theorem, Y ∼ Γ(n, λ).

Example 5.8. Let Z ∼ N(0, 1). Then we determine MZ(t) as

MZ(t) =
∫ ∞

−∞
exp(tz)

1√
2π

exp(−1
2

z2) dz

=
∫ ∞

−∞

1√
2π

exp(−1
2

z2 + tz) dz

Now complete the square in the exponent

−1
2

z2 + tz = −1
2

(
z2 − 2tz

)
= −1

2
(z− t)2 +

1
2

t2,

and write the integrand so that we can identify a PDF.

MZ(t) =
∫ ∞

−∞

1√
2π

exp
(
−1

2
(z− t)2 +

1
2

t2
)

dz

= exp
(

1
2

t2
) ∫ ∞

−∞

1√
2π

exp
(
−1

2
(z− t)2

)
dz = exp

(
1
2

t2
)

.

Remark 5.9. The moment generating function is only really useful in
the setting where the tails of the distribution decay at least as fast as an
exponential. In this case, the conditions of the result above are satisfied, and
we can use the MGF to determine the moments. More generally, we can use
the characteristic function φX(t) = E(exp(itX)), which always exists.
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Remark 5.10. An example of a heavy-tailed distribution where M(t) does
not exist is the Cauchy distribution with probability density function

fX(x) =
1

π(1 + x2)
x ∈ R.

The Cauchy distribution does not have moments of any order. Recall that we
define the expectation only where E|X| < ∞. This condition is not satisfied
here.

Behaviour of sample means of independent, identically distributed ran-
dom variables

As a warm-up, we obtain another derivation of the weak law of
large numbers in the case where the MGF is finite in some interval
around zero. First, recall a useful definition for limiting behaviour of
functions.

Definition 5.11. We say f (x) = o(g(x)) in the limit as x→ ∞ if

lim
x→∞

f (x)
g(x)

= 0;

a similar definition is also used in the x→ 0 limit.

Proposition 5.12. Suppose X1, X2, . . . is a sequence of independent and
identically distributed random variables with common moment generating
function M(t), which exists in some open interval containing zero. If µ

is the common expectation of the random variables, we will show that

X̄n
P−→ µ.

Proof. If Mn(t) is the MGF of X̄n and M(t) is the common MGF of the Xi,
then by independence of the Xi,

Mn(t) = E
(

exp
(

t ∑n
i=1 Xi

n

))
=

n

∏
i=1

E
(

exp
(

tXi
n

))
= M

(
t
n

)n
.

Now, under the assumption that the MGF is finite in some interval around
the origin, by Taylor’s theorem, as t→ 0, we can write

M(t) = 1 + µt + o (t) ,

so that

Mn(t) =
(

1 +
tµ
n

+ o
(

t
n

))n
→ exp(µt)

as n→ ∞.
Note that exp(µt) is the moment generating function for the constant
random variable X with Pr(X = µ) = 1. Hence by continuity of moment

generating functions, X̄n
D−→ µ. When the limit random variable is simply

a constant, convergence in distribution and convergence in probability are

equivalent, as shown in 4.14. Hence X̄n
P−→ µ.
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Remark 5.13. For a more detailed demonstration, which will also be useful
in the proof of the central theorem, note that if

φ(t) =
(

1 +
αt
n

+ o
(

t
n

))n

then consider

log φ(t) = n log
(

1 +
αt
n

+ o
(

t
n

))
.

For x ≤ 1
2 we have | log(1 + x)− x| ≤ x2, so that as n→ ∞

log φ(t) = n
(

αt
n

+ o
(

t
n

))
→ αt.

Then φ(t)→ exp(αt).

The central limit theorem

Proposition 5.14. Suppose X1, X2, . . . is a sequence of independent,
identically distributed random variables with common moment generating
function M(t), which exists in some open interval containing zero. Let µ

and σ2 be the common mean and variance of the Xi, respectively. Then
√

n(X̄n − µ)

σ

D−→ Z ∼ N(0, 1).

Proof. Let M(t) be the common MGF of the centred random variables
Xi − µ, and Mn(t) be the MGF of the standardized sample mean Zn =√

n(X̄n−µ)
σ .

Then

Mn(t) = E(exp(tZn))

= E
(

exp
(
(t
√

n ∑n
i=1(Xi − µ)

σn

))
=

n

∏
i=1

E
(

exp
(

t(Xi − µ)

σ
√

n

))
= M

(
t

σ
√

n

)n
.

In the limit t→ 0, we expand M(t)

M(t) = M(0) + tM′(0) +
M′′(0)t2

2
+ o

(
t2
)

= M(0) + tE(Xi − µ) +
E
[
(Xi − µ)2

]
t2

2
+ o

(
t2
)

= 1 +
σ2t2

2
+ o

(
t2
)

,

since E(Xi − µ) = 0 and E((Xi − µ)2) = σ2.
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This then gives

Mn(t) =
(

1 +
t2

2n
+ o

(
t2

n

))n

,

so that Mn(t)→ exp( t2

2 ) as n→ ∞.

This last expression is the MGF of a standard normal variable, so that by
continuity, the standardized sample mean satisfies

√
n(X̄n − µ)

σ

D−→ Z ∼ N(0, 1).





6
Stochastic Processes

Motivation

Many of the problems we have considered in probability involve
sequences of independent trials. In such cases, the outcomes of
earlier trials do not influence our beliefs about the outcome of later
trials. There are many interesting and practically important problems
that can be described as a sequence of random trials, but for which
the independence assumption is not reasonable: knowing something
about earlier trials changes what we believe is likely to happen next.

As a first example, we consider a simple model for the inheritance of
DNA. In living organisms, genetic information is encoded in DNA as
long sequences of nucleotide bases A, G, C and T. In the vast majority
of sequence positions, all individuals of a species have the same
base. At some sequence positions, variant bases may be introduced
by mutation when the DNA is copied. If we follow a small piece
of DNA as it is passed through several generations, we might see a
pattern such as that below.

generation 0 AGTTCTGTATC

generation 1 AGTTCTGTATC

generation 2 AGTTCTGTATC

generation 3 AGTTCTGTATC

generation 4 AGTTCTGTATC

generation 5 AGTTCAGTATC

generation 6 AGTTCAGTATC

Note that the central position has experienced a mutation. Let Xn ∈
{A, G, C, T} be the base in the central position in generation n ≥ 0.
Since mutations are typically rare, it will almost always be true that



72 probability for statistics

Xn = Xn−1. An independent trials model would not respect this
important feature of the data.

What would a simple model look like? The important property
to capture is that with high probability, Xn is a copy of Xn−1, but
just occasionally a copying error occurs. We can express this by
specifying the conditional probability distribution of Xn given Xn−1

in terms of the probability α� 1:

Pr(Xn = j|Xn−1 = i) =

1− α i = j
α
3 otherwise.

This says that with probability 1− α, no mutation occurs, so that Xn

is the same as Xn−1, but with probability α a mutation occurs, after
which each of the three other bases is equally likely.

We can represent this model graphically as in Figure 6.1, in which the
nodes represents possible states of the process and edges represent
transitions between states. We think of the process as a particle that
jumps randomly from state to state, according to the probabilities
associated to each edge. Note the edges leaving any given node have
probabilities that sum to 1.

C T

A G

α
3

1-α Figure 6.1: A simple model for inher-
itance and mutation. Orange arrows
correspond to events with probability α

3
and blue arrows correspond to events
with probability 1− α. Note that the
total flow of probability out of each
node is 1.

What does this model say about the long-term behaviour of the pro-
cess? Intuitively, we might think that as time passes, mutations are
bound to occur, so that if we allow the process enough time, the four
bases should all be equally likely. It seems that the process should
eventually forget its initial state. How can we make this precise?
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Suppose the base in the initial generation X0 = T. We’re interested in

pn = Pr(Xn = T|X0 = T).

Certainly p0 = 1, and p1 = 1− α. For n ≥ 1, we can condition on
whether or not Xn−1 = T:

pn = Pr(Xn = T, Xn−1 = T|X0 = T) + Pr(Xn = T, Xn−1 6= T|X0 = T)

= Pr(Xn = T|Xn−1 = T, X0 = T)Pr(Xn−1 = T|X0 = T) + Pr(Xn = T, |Xn−1 6= T, X0 = T)Pr(Xn−1 6= T|X0 = T)

= Pr(Xn = T|Xn−1 = T, X0 = T)pn−1 + Pr(Xn = T, |Xn−1 6= T, X0 = T)(1− pn−1)

So we can write pn in terms of pn−1. It remains to find expressions
for the probabilities multiplying pn−1 and 1− pn−1.

To do this, we employ a key assumption about the process. The state
of the process at generation n depends only on whether or not a
mutation has occured in generation n− 1. For this process, it is clear
that Pr(Xn = T|Xn−1 = T, X0 = T) = Pr(Xn = T|Xn−1 = T):
if we know its state in generation n − 1, then knowing the state in
generation 0 tells us nothing more about generation n.

We can now use the probabilities of no mutation, or of a mutation to
T, to simplify the expression for pn to

pn = (1− α)pn−1 +
α

3
(1− pn−1) = (1− 4α

3
)pn−1 +

α

3
.

This now has the form of a difference equation, which we could
solve by standard methods. In this simple case, we can determine the
solution explicitly.

Our initial intuition was that all bases should eventually become
equally likely, so that we would expect pn → 1

4 as n → ∞. Can we
see this? Suppose that pn has a limit p (which remains to be shown).
What is p? Substituting the limit value in the difference equation, we
must have

p = (1− 4α

3
)p +

α

3
,

so that indeed if pn → p, we must have p = 1
4 . Of course this does

not establish the limiting behaviour of pn, but it does give us a clue
about where to look. Let’s consider the difference between pn and its
supposed limit. Using the difference equation, this is

pn −
1
4
= (1− 4α

3
)pn−1 +

α

3
− 1

4
=

(
pn−1 −

1
4

)(
1− 4α

3

)
.

This says that the difference between pn and 1
4 decreases by a factor

of 1− 4α
3 in each generation. (What happens if α ≥ 3

4 ?) Moreover, it
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gives us an explicit form for pn, for

pn−
1
4
=

(
pn−1 −

1
4

)(
1− 4α

3

)
=

(
pn−2 −

1
4

)(
1− 4α

3

)2
= . . . =

(
1− 1

4

)(
1− 4α

3

)n
,

where we have used the fact that p0 = 1. Hence

pn =
1
4
+

3
4

(
1− 4α

3

)n
,

from which we see pn → 1
4 as n→ ∞. Note that the rate at which the

limit is approached is governed by the quantity 1− 4α
3 , which is close

to 1 if mutation is assumed to be very infrequent.

We have seen how, in this fairly simple model, the long-term dynam-
ics can be determined explicitly. In what follows, we will consider
models for a variety of random processes structured in time. The key
property that these models will share with the example above is their
lack of memory. We will seek answers to the following questions:

• Does the tendency of the process to forget its initial starting point
hold more generally, and if so, how quickly does this forgetting
occur?

• How to determine the long-term behaviour of more general mod-
els?

• What is the long-run proportion of the time spent in each state?

• How long does the process take to reach state a particular state?
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Introduction

In this section, we will consider random processes on a state space E ,
which will be a finite or countably infinite set. A random process is
a sequence of E -valued random variables X0, X1, X2, . . . . The process
can be thought of as the sequence of states of a particle at the discrete
times 0, 1, 2, . . . .

The processes we consider will all be Markov chains. The defining
property of a Markov chain is that the particle has no memory of
where it has been. The probability distribution of Xn+1, the particle’s
next state, depends on the value of Xn, its current state, and only on
its current state, in the sense that conditioning on its more distant
history does not change the distribution of the next step.

Time homogeneous Markov chains

Definition 6.1. A stochastic process on the state space E is a collection of
E -valued random variables (Xt)t∈T indexed by a set T .

The index set T should be thought of as a marker of time. We work
exclusively with the discrete time case, in which T = N0 = N∪ {0} =
{0, 1, . . .}.

Definition 6.2. The discrete time stochastic process (Xn)n∈N0 on E is said
to be a Markov chain if

Pr(Xn = xn|Xn−1 = xn−1, . . . , X0 = x0) = Pr(Xn = xn|Xn−1 = xn−1),

for all n ∈ N and all xn, xn−1, . . . , x0 ∈ E .

We can summarize the defining property of a Markov chain as saying
that the future is conditionally independent of the past, given the
present.

For many systems of practical interest, the Markov property arises as
a commonly used modelling assumption.

• In finance, it is related to the efficient markets hypothesis. This
says that the current price of an asset reflects all information
known to the market.

• In physics, the future motion of a particle is determined by its cur-
rent state (its position and velocity), through the laws of motion.
The Markov property is a natural generalization of this assump-
tion: we assume that the probability distribution of a particle’s
future motions is determined by its current state.
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Definition 6.3. A Markov chain is time homogeneous if

Pr(Xn+1 = j|Xn = i) = Pr(X1 = j|X0 = i)

for all n ∈ N0 and all i, j ∈ E.

All of the Markov chains we work with will be time homogeneous.

Definition 6.4. The matrix P = (pij)i,j∈E , where pij = Pr(X1 = j|X0 = i)
is the transition matrix for the time homogeneous Markov chain (Xn).

Note that the transition matrix of a Markov chain is a stochastic
matrix: all entries are non-negative, and the entries of each row sum
to 1.

1 2 3 4
1
2

1
2

1 1

1
2

1
2

Example 6.5. The simple random walk on E = {1, 2, 3, 4} with absorbing
boundaries at both ends. The transition matrix for this chain is

P =


1 0 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 0 1



The initial distribution

The transition matrix specifies how the chain moves from one state to
another. To specify the stochastic process fully, we must also specify
its initial distribution λ = (λj)j∈E , where λj = Pr(X0 = j).

Once the initial distribution and transition matrix of the chain have
been specified, the distribution of the process is specified for all
future times. For example, the marginal distribution of X1 is de-
termined by the initial distribution λ and P. Using the law of total
probability,

Pr(X1 = j) = ∑
i∈E

Pr(X1 = j|X0 = i)Pr(X0 = i) = ∑
i∈E

pijλi.

Similarly, the joint distribution of (X2, X1) is given by

Pr(X2 = k, X1 = j) = Pr(X2 = k|X1 = j)Pr(X1 = j) = pjk ∑
i∈E

pijλi.
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Independence versus conditional independence

The Markov assumption relates to conditional independence. It
is true to say that that if (Xn) is a Markov chain then Xn is condi-
tionally independent of Xn−2, given Xn−1. This means that for all
x, y, z ∈ E

Pr(Xn = z, Xn−2 = x|Xn−1 = y) = Pr(Xn = z|Xn−1 = y)Pr(Xn−2 = x|Xn−1 = y).

However, in general X2 and X0 are not independent. We can see this
by considering the absorbing random walk above.

Suppose the initial distribution of the chain is λ =
(

1
2 , 0, 0, 1

2

)
. We

will show that X2 and X0 are not independent, by showing that

Pr(X2 = 4, X0 = 1) = 0 6= Pr(X2 = 4)Pr(X0 = 1).

It is clear that Pr(X2 = 4, X0 = 1) = 0, because the probability of ever
leaving the state 1 is zero. To see this formally,

Pr(X2 = 4, X0 = 1) = Pr(X2 = 4|X0 = 1)Pr(X0 = 1)

= ∑
j∈E

Pr(X2 = 4, X1 = j|X0 = 1)Pr(X0 = 1).

Now consider the terms of the sum. Using the definition of condi-
tional probability and the Markov property,

Pr(X2 = 4, X1 = j|X0 = 1) = Pr(X2 = 4|X1 = j, X0 = 1)Pr(X1 = j|X0 = 1)

= Pr(X2 = 4|X1 = j)Pr(X1 = j|X0 = 1).

If j = 1 then the first expression is zero, whereas if j 6= 1, the second
expression is zero. Hence Pr(X2 = 4, X0 = 1) = 0.

We now compute the marginal probabilities.

Pr(X2 = 4) = ∑
j∈E

∑
i∈E

Pr(X2 = 4, X1 = j, X0 = i).

Again considering each term and applying the Markov property,

Pr(X2 = 4, X1 = j, X0 = i) = Pr(X2 = 4|X1 = j, X0 = i)Pr(X1 = j|X0 = i)Pr(X0 = i)

= Pr(X2 = 4|X1 = j)Pr(X1 = j|X0 = i)Pr(X0 = i)

=

 1
2 i = j = 4

0 otherwise.
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Hence Pr(X2 = 4) = 1
2 . We see immediately from the initial distribu-

tion that Pr(X0 = 1) = 1
2 , and so

Pr(X2 = 4, X0 = 1) 6= Pr(X2 = 4)Pr(X0 = 1).

We conclude that X0 and X2 are not independent, even though they
are conditionally independent given X1.

Simple random walk

Example 6.6. The simple random walk . Let E = Z and define the Markov
chain (Xn)n∈N0 by X0 = 0 and

pij =


p if j = i + 1

1− p if j = i− 1

0 otherwise.

Realizations from the simple random walk are plotted in Figure 6.3.

How far will the chain have moved after n time points? We seek the prob-
ability Pr(Xn = j|X0 = 0). In this case, note that Xn can be written
as

Xn =
n

∑
i=1

Zi,

where the random variables Zi are independent and identically distributed,
with

Pr(Zi = k) =


p if k = 1

1− p if k = −1

0 otherwise.

Suppose that u of the Zi take the value 1 and the remaining d = n− u take
the value −1. Note that Xn = j if and only if j = u− d. Solving for u and d
in terms of n and j gives

u =
n + j

2
and d =

n− j
2

.

Hence we see that

Pr(Xn = j|X0 = 0) =

(
n

n+j
2
)p

n+j
2 (1− p)

n−j
2 n + j even

0 otherwise.
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ii-1 i+1. . . . . .

p

1− p

p

1− p1− p

pp

1− p

Figure 6.2: The simple random walk on
Z.

n-step transition probabilities

Definition 6.7. For a Markov chain (Xn)n∈N0 , the matrix P(n) with entries

pij(n) = Pr(Xn = j|X0 = i)

is the matrix of n-step transition probabilities.

Remark 6.8. Clearly P(1) = P, the transition matrix of the chain, and
P(0) = I, the identity matrix.

Proposition 6.9. The Chapman-Kolmogorov equations. Suppose m ≥ 0 and
n ≥ 1, then

pij(m + n) = ∑
l∈E

pil(m)pl j(n).

As matrices,
P(m + n) = P(m)P(n),

from which we deduce that P(m) = Pm, the mth power of the transition
matrix.

To prove this, we first use the law of total probability.

pij(m + n) = Pr(Xm+n = j|X0 = i) = ∑
l∈E

Pr(Xm+n = j, Xm = l|X0 = i).

By a standard property of conditional probability, we have

pij(m + n) = ∑
l∈E

Pr(Xm+n = j|Xm = l, X0 = i)Pr(Xm = l|X0 = i).

Now by the Markov property,

Pr(Xm+n = j|Xm = l, X0 = i) = Pr(Xm+n = j|Xm = l).

Further, using time homogeneity we see that

Pr(Xm+n = j|Xm = l) = Pr(Xn = j|X0 = l),

giving

pij(m + n) = ∑
l∈E

Pr(Xn = j|X0 = l)Pr(Xm = l|X0 = i)

= ∑
l∈E

pl j(n)pil(m),
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Figure 6.3: (Top) One realization of the
simple random walk Xn for n = 0 to 10.
(Centre) Many realizations of Xn started
from X0 = 0. (Bottom) The marginal
distributions of the realizations for
n = 10, 100 and 500.
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as required.

Suppose |E | = K (with the obvious extension if E is countably infinite).
Recalling the definition of matrix multiplication, we see that the (i, j)th
entry of the matrix P2 is

K

∑
l=1

pil pl j = pij(2).

This argument extends immediately by induction to show that the (i, j)th
element of Pn is pij(n) for any n ≥ 1. Note also that P0 = I, by the
definition of conditional probability.

Example 6.10. The two-state Markov chain. The transition diagram of the
most general two-state Markov chain is shown in Figure 6.4. Its transition
matrix is (

1− α α

β 1− β

)
.

1 21− α

α

β

1− β

Figure 6.4: The general two-state
Markov chain with Pr(X1 = 1|X0 =
2) = β and Pr(X1 = 2|X0 = 1) = α

We can compute pij(n) explicitly for this model. From the matrix formula-
tion of the Chapman-Kolmogorov equations, we know that Pn+1 = PnP.
Considering individual entries,

p(n+1)
11 = p(n)12 β + p(n)11 (1− α),

and since p(n)11 + p(n)12 = 1, elimination gives a recurrence relation satisfied by

p(n)11 :

p(n+1)
11 = (1− p(n)11 )β + p(n)11 (1− α) = β + (1− α− β)p(n)11 .

This recurrence relation has a unique solution subject to the condition that
p0

11 = 1, given by

p11(n) =
β

α + β
+

α

α + β
(1− α− β)n.

Then it follows by symmetry that

p22(n) =
α

α + β
+

β

α + β
(1− α− β)n,

and the off-diagonal entries of Pn can be computed as complementary
probabilities.

An alternative approach proceeds via computation of the eigenvectors of P:
see problem sheet.
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Class structure

1 2 3

4

5

2
3

1
2

1
2

1
2

2
3

1
2

1
3

1
3

1
2

1
2

Figure 6.5: A five-state Markov chain.

As soon as we get beyond two states, the behaviour of a Markov
chain can become difficult to describe explicitly. We will see in this
section that the chain itself suggests a natural decomposition of the
state space into components, on which its behaviour is more easily
understood.

Consider the Markov chain whose transition diagram is shown in
Figure 6.5. Its transition matrix is

1
2

1
2 0 0 0

2
3

1
3 0 0 0

0 1
2 0 1

2 0
0 0 0 1

2
1
2

0 0 2
3

1
3 0

 .

Note that while transitions from state 3 to state 2 are possible, it is
not possible to make a transition in the reverse direction. If the chain
starts in one of the states 3, 4, 5, eventually - if we wait long enough
- it will end up jumping via state 3 into state 2. Once this transition
has happened, the chain is stuck on the left hand side: it moves
between states 1 and 2 forever.

Definition 6.11. The state j is said to be accessible from the state i, written
i → j, if there exists n ≥ 0 such that pij(n) > 0. So j is accessible from i
when there is positive probability that, starting at i, the chain ever reaches j.
Note that it is often easier to read i→ j as i leads to j.
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Example 6.12. In Figure 6.5, all states are accessible from state 3. Only
states 1 and 2 are accessible from state 2.

Definition 6.13. The states i and j are said to communicate, written i↔ j
if i→ j and j→ i.

Example 6.14. In Figure 6.5, state 3 communicates with states 4 and 5;
these two states also communicate with each other. States 1 and 2 communi-
cate.

Proposition 6.15. The binary relation i↔ j is an equivalence relation on E .

Proof. The relation is immediately seen to be reflexive, since for any i ∈ E ,
we have that

pii(0) = Pr(X0 = i|X0 = 0) = 1 > 0.

The relation is clearly symmetric from its definition in terms of i → j and
j→ i.

To see that the relation is transitive, suppose that i, j, k ∈ E are distinct
states such that i ↔ j and j ↔ k. Then there exist m, n ≥ 0 such that
pij(m) > 0 and pjk(n) > 0.

Since the states are distinct, m and n are strictly positive and by the
Chapman-Kolmogorov equations,

pik(m + n) = ∑
l∈E

pil(m)plk(n) ≥ pij(m)pjk(n) > 0

Remark 6.16. The equivalence relation↔ partitions the sample space E into
communicating classes .

Definition 6.17. A set of states C is closed if pij = 0 for all i ∈ C and
j /∈ C.

Remark 6.18. Informally, a closed class is one from which the chain cannot
escape.

Definition 6.19. A set of states C is said to be irreducible if i ↔ j for all
i, j ∈ C. A Markov chain the state space E is irreducible if its entire state
space E is irreducible.

Periodicity

Recall the simple random walk on the integers: a chain with state
space E = Z which jumps from i to i + 1 with probability p and
to i − 1 with probability 1− p. Note that this chain must move at
each time step - it cannot stay where it is. This gives us quite a bit
of information about where the chain can be at future times. For
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instance, suppose we start the chain in state X0 = i. At what future
times is it possible for the chain to return to its starting point?

We have seen that the random walk can be written as a sum of inde-
pendent, identically distributed increments

Xn = i +
n

∑
k=1

Zk, Zk ∈ {−1, 1}.

If Xn = i, then the increments must sum to zero: there must be
as many 1s as −1s in the sequence, so n must be an even number.
The chain has zero probability of returning to its starting point at
odd-numbered times. This is quite a restriction on its behaviour.

We can observe similar behaviour in a degenerate case of the two-
state chain of Figure 6.4 if we take α = 1 = β, so that the transition
matrix is

P =

(
0 1
1 0

)
.

Again, the chain must jump at each step. What does this say about
the n− step transition probabilities?

If n = 2k is even, then (as you can check),

Pn =
(

P2
)k

=

(
1 0
0 1

)k

=

(
1 0
0 1

)
,

but if n = 2k + 1 is odd, then

Pn = P2kP =

(
0 1
1 0

)
.

So again in this example, we see that the chain can only return to its
starting point at even times (in fact in this case, it always returns to its
starting point at even times).

In larger chains, more complex behaviour is possible. Consider the
seven-state chain in Figure 6.6. If the chain starts in state 7, at what
future times can it return to its starting point? What about state 4?

Definition 6.20. The period of the state i is d(i) = gcd{n > 0 :
pii(n) > 0}, the greatest common divisor of the times at which a return to
i is possible. If d(i) = 1, the state i is said to be aperiodic, and periodic if
d(i) > 1.

Example 6.21. In Figure 6.6, states 1 to 4 have period 2. To see this, suppose
that X0 = 4. At the next time step, the chain is equally likely to be in states
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1 or 3. By symmetry, in either case, X2 is either in states 2 or 4, and these
must have equal probability. So p44(2) = 1

2 . Arguing by induction, we can
see that in fact

p44(n) =

 1
2 n even

0 n odd.

The same result can be obtained for states 1, 2 and 3. The remaining states
have period 3, e.g. for state 7, the only path back to itself with non-zero
probability is 7→ 6→ 5→ 7. Hence only if 3|n can we have p77(n) > 0.

Proposition 6.22. All states in the same communicating class have the same
periodicity.

Proof. Suppose that i↔ j and d|n whenever pii(n) > 0. We want to show
that if pjj(m) > 0 for some m > 0, then d|m.

Since i ↔ j, we can find a, b ≥ 0 such that pij(a) > 0 and pji(b) > 0.
But this then gives a path from i to itself in a + b steps: by the Chapman-
Kolmogorov equations,

pii(a + b) = ∑
l∈E

pil(a)pli(b) ≥ pij(a)pji(b) > 0,

so that we must have d|a + b.

Now since pjj(m) > 0, we can travel from i back to itself in a + m + b steps:

i a−→ j m−→ j b−→ i,

so that we must have pii(a + m + b) > 0, and so we see that d|a + m + b.
Since we know already that d|a + b, we must also have that d|m.

We have shown that the sets {n : pii(n) > 0} and {m : pjj(m) > 0} share
the same divisors, and so must share the same greatest common divisor.

Remark 6.23. Periodicity and irreducibility are said to be structural
properties i of the chain. They depend only on how the chain is connected,
i.e. on which transitions have strictly positive probability.
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Figure 6.6: A seven-state Markov chain.

Classification of States

Consider again the seven-state chain in Figure 6.6. The elements
of the two communicating classes are different from each other in
several ways. As we have already seen, the four states on the left all
have period 2, whereas the three on the right have period 3.

Apart from this, there is another fundamental difference between
the elements of the two classes, in terms of the chain’s behviour at
arbitrarily long times.

To see this, first suppose the chain starts in state 7. Whatever hap-
pens, we know it moves to a different state at the next time step. Is
the chain guaranteeed to return to state 7? It is by no means certain.
In fact, if any of the following transitions occur:

7→ 6→ 1, 7→ 6→ 5→ 4, 7→ 3,

then the chain can never return to its starting point. Since each of
these transitions has positive probability, we see that the probability
of ever returning to state 7 is strictly smaller than 1.

If we instead start the chain in state 4, the situation is rather different.
The only way that the chain could avoid returning to its starting
point is by alternately jumping between the set {1, 3} at odd times
and the state 2 at even times. This means it is guaranteed to return to
state 4 eventually, with probability 1.
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Let’s argue more formally. For n ≥ 1, let An be the event that the
chain returns to state 4 at or before time n. Note that (An) is an
increasing sequence of events. We’re interested in

pn = Pr(An|X0 = 4).

Certainly p1 = 0 and for k ≥ 0, p2k+1 = p2k, because the chain can
only visit state 4 at even times.

We now determine p2k, for k ≥ 1 by considering the complementary
event. If A2k has not occurred, then the path of the chain starting at
time 0 must be

4→ {1, 3} → 2→ {1, 3} → . . .→ 2.

We can use the Markov property to determine the required probabil-
ity. Note that all of the transitions 2→ {1, 3} have probability 1, and
each of the k transitions from {1, 3} to 2 has probability 1

2 .

This then gives

p2k = 1− 1
2k .

Now let A be the event that the chain ever reaches state 4, so that

A =
∞⋃

n=1

An.

Then as (An) is an increasing sequence, we see that

Pr(A|X0 = 4) = lim
n→∞

Pr(An|X0 = 4) = 1.

Hence if the chain starts in state 4, it returns to its original state with
probability 1. Such states are said to be recurrent.

Definition 6.24. A state i ∈ E is said to be recurrent for the Markov chain
Xn if the probability that the chain, having started in state i, ever returns to
i, is equal to 1:

Pr(Xn = i, for some n ≥ 1|X0 = i) = Pr

(
∞⋃

n=1

{Xn = i}|X0 = i

)
= 1,

and transient if this probability is smaller than one,

Pr

(
∞⋃

n=1

{Xn = i}|X0 = i

)
< 1.

Definition 6.25. The first passage time of the state j ∈ E is

Tj = min{n ≥ 1 : Xn = j},

the first n such that Xn = j.
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Remark 6.26. The first passage time is not necessarily finite: Tj = ∞ if the
chain never visits state j. This means that it is not strictly correct to refer
to Tj as a random variable - it is not necessarily real-valued. We will only
really use Tj in that we consider {Tj = n} to be shorthand for the event

{Xn = j, Xn−1 6= j, . . . , X1 6= j}.

Remark 6.27. For states i, j ∈ E , we denote the probability of the event
{Tj = n}, conditional on starting in state i, as

fij(n) := Pr
(
Tj = n|X0 = i

)
= Pr(Xn = j, Xn−1 6= j, . . . , X1 6= j|X0 = i),

and similarly fij = Pr(Tj < ∞|X0 = i).

Noting that the events {Tj = n} are disjoint, we have that

fij = Pr

(
∞⋃

n=1

{Tj = n}|X0 = i

)
=

∞

∑
n=1

fij(n).

This is the probability that the chain ever hits the state j given that it starts
from state i.

Remark 6.28. Note that the state i is recurrent if and only if fii = 1, and
transient if and only if fii < 1. A Markov chain must in fact visit each
recurrent state i infinitely often, because once it reaches i, as it must, it is
just as if the process restarts, starting from i.

What happens if i is a transient state? Once again, if the chain hits i, then
it is as if the process begins anew, starting from i. But for a transient state,
there is a probability 1− fii that it will never return. Since the chain has no
memory of its prior visits, the random variable Ni, which counts the chain’s
visits to the state i, has a geometric distribution with success probability
1− fii. In particular, Ni is finite with probability 1.

Proposition 6.29. For states i, j ∈ E and n ≥ 1,

pij(n) =
n

∑
l=1

fij(l)pjj(n− l).

In particular, pij = pij(1) = fij(1).

Proof Note first that the event {Xn = j} can be decomposed into the
disjoint union

{Xn = j} =
n⋃

l=1

{Xn = j, Tj = l},

The law of total probability then gives

Pr(Xn = j|X0 = i) =
n

∑
l=1

Pr(Xn = j, Tj = l|X0 = i) =
n

∑
l=1

Pr(Xn = j|Tj = l, X0 = i)Pr(Tj = l|X0 = i).
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We now apply the definition of Tj and then use the Markov property:

Pr(Xn = j|Tj = l, X0 = i) = Pr(Xn = j|Xl = j, Xl−1 6= j, . . . , X1 6= j, X0 = i) = Pr(Xn = j|Xl = j).

This then gives

Pr(Xn = j|X0 = i) =
n

∑
l=1

Pr(Xn = j|Xl = j)Pr(Tj = l|X0 = i) =
n

∑
l=1

pjj(n− l) fij(l).

Proposition 6.30. The state i is recurrent if and only if ∑∞
n=1 pii(n) = ∞;

equivalently, the state i is transient if and only if ∑∞
n=1 pii(n) < ∞.

Proof. Let I(A) be the indicator random variable for the event A, i.e. the
random variable taking values 1 and 0 according to whether or not the event
A occurs.

Then the random variable

Ni =
∞

∑
n=1

I{Xn = i}

counts the number of visits of the Markov chain (Xn)n∈N0 to the state i.

E(Ni|X0 = i) =
∞

∑
n=1

E (I{Xn = i}|X0 = i) =
∞

∑
n=1

pii(n).

By the earlier remark, if i is recurrent then the chain returns to i infinitely
often with probability 1, so that E(Ni|X0 = i) is infinite.

In contrast, if i is transient, then Ni follows a geometric distribution, so that

Pr(Ni = k|X0 = i) = f k
ii(1− fii), k ≥ 0,

and so

E(Ni|X0 = i) =
∞

∑
k=0

k Pr(Ni = k|X0 = i) =
∞

∑
k=0

k f k
ii(1− fii) =

fii
1− fii

< ∞.

Remark 6.31. The last equality follows on using the expectation of a
geometric random variable.

Note that we condition on X0 = i in all probabilities. So we could have
defined the number of visits to state i including the visit at time 0. In
this case, Ni takes values k ≥ 1, and has a shifted geometric probability
distribution. Recall that there are two forms for the geometric distribution:
one that counts the number of trials before a success, and the other that
counts the total number of trials. The two corresponding random variables
are different by 1.
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Proposition 6.32. For states i↔ j, either i and j are both recurrent, or they
are both transient.

Proof. Suppose i ↔ j. Then there exist m, n ≥ 0 such that pij(m) > 0 and
pji(n) > 0.

For any l ≥ 0, the Chapman-Kolmorogorov equations give

pjj(m + l + n) = ∑
k∈E

pjk(m + l)pkj(n) ≥ pji(m + l)pij(n).

Using the Chapman-Kolmogorov equations again, we get

pji(m + l) = ∑
k∈E

pjk(m)pki(l) ≥ pji(m)pii(l),

giving

pjj(m + l + n) ≥ pji(m)pii(l)pij(n).

So now we see that

∞

∑
l=1

pjj(l) ≥
∞

∑
l=1

pjj(m + l + n) ≥ pji(m)pij(n)
∞

∑
l=1

pii(l).

If now i is a recurrent state, then the sum on the right hand side diverges.
Hence the sum on the left must also diverge, so that j is also recurrent. i and
j are symmetrical in the argument above, so this completes the proof.

Proposition 6.33. Let C be a recurrent communicating class. Then C is
closed: for i ∈ C and j /∈ C, we must have pij = 0.

Proof. Suppose for contradiction that pij > 0.

Since j /∈ C, j 9 i, so that we have the inclusion of events

{X1 = j} ⊆
∞⋂

n=1

{Xn 6= i}.

This says that if X1 = j then the chain never reaches state i. So then
conditioning on starting in state i,

0 < Pr(X1 = j|X0 = i) ≤ Pr

(
∞⋂

n=1

{Xn 6= i}|X0 = i

)
.

But this contradicts the recurrence of state i, since now

Pr(Xn = i, for some n ≥ 1|X0 = i) = 1−Pr

(
∞⋂

n=1

{Xn 6= i}|X0 = i

)
< 1.

we now have a useful result as a corollary.
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Proposition 6.34. The state space decomposes uniquely as

E = T ∪ C1 ∪ C2 ∪ . . . ,

where T is the set of transient states, and C1, C2, . . . are irreducible, closed
sets of recurrent states.

Remark 6.35. This last result is very useful in simplifying the dynamics
of a Markov chain. For, if the chain starts in one of the sets Ci, then it stays
there forever, so we may as well take this set to be the entire state space. If
the chain starts in T, then either it stays in T forever, or it jumps at some
point to one of the Ci, and remains in Ci for evermore. Where the state space
E is finite, the chain can only spend a finite amount of time in the set T of
transient states.

Definition 6.36. The mean recurrence time of the state i ∈ E is
µi = E(Ti|X0 = i).

Remark 6.37. For transient states, Pr(Ti = ∞|X0 = i) > 0, so that for
such states, necessarily µi = ∞.

For recurrent states, Pr(Ti < ∞|X0 = i) = 1, however, the expectation

E(Ti|X0 = i) =
∞

∑
n=1

n fii(n)

may be finite or infinite in general.

Definition 6.38. The recurrent state i ∈ E is said to be null recurrent if
µi = ∞ and positive recurrent if µi < ∞.
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Hitting times

Definition 6.39. If (Xn) is a Markov chain on E , then the hitting time of a
set A ⊆ E is the random variable

HA = min{n ≥ 0 : Xn ∈ A}.

We take the min of the empty set to be ∞; this corresponds to a chain that
never reaches A.

If the chain (Xn)n∈N0 starts at i ∈ E , then we define the hitting probability

hA
i = Pr(HA < ∞|X0 = i).

Remark 6.40. We will often be interested in quantities hA
i where A = {j} -

the probability that a chain starting in state i ∈ E reaches a state j ∈ E . To
simplify notation, we denote this by hj

i .

1 2 3 4

α

1− α

β

1− β1 1

Figure 6.7: A four-state Markov chain in
which 1 and 4 are absorbing states.

Example 6.41. Consider the Markov chain with E = {1, 2, 3, 4} shown in
Figure 6.7, which has the transition matrix

P =


1 0 0 0
α 0 1− α 0
0 β 0 1− β

0 0 0 1

 .

Clearly states 1 and 4 are absorbing - once the chain reaches such a state, it
never leaves.

Suppose the chain starts at X0 = 2. What is the probability of absorption at
4?

We consider the first step of the chain after it starts. With probability α it
moves to 1, and with probability 1− α it moves to 3. Using the law of total
probability, we can write

h4
2 = Pr(H4 < ∞, X1 = 1|X0 = 2) + Pr(H4 < ∞, X1 = 3|X0 = 2)

= Pr(H4 < ∞|X1 = 1, X0 = 2)Pr(X1 = 1|X0 = 2) + Pr(H4 < ∞|X1 = 3, X0 = 2)Pr(X1 = 3|X0 = 2)
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By the Markov property, this simplifies to

h4
2 = Pr(H4 < ∞|X1 = 1)Pr(X1 = 1|X0 = 2) + Pr(H4 < ∞|X1 = 3)Pr(X1 = 3|X0 = 2)

= αh4
1 + (1− α)h4

3 = (1− α)h4
3,

where the last equality holds because 1 is an absorbing state.

With a similar argument, we now determine

h4
3 = βh4

2 + (1− β)h4
4 = βh4

2 + (1− β).

Combining these, we get

h4
2 = (1− α)

(
βh4

2 + (1− β)
)

,

so that

h4
2 =

(1− α)(1− β)

1− (1− α)β
.

Remark 6.42. This answer has a suggestive form - it looks like the infinite
sum of a geometric series.

h4
2 = (1− α)(1− β)

∞

∑
k=0

((1− α)β)k

This makes sense - h4
2 is the probability of the event that the chain starts in

state 2 and ends up in state 4, which we write as {2  4}. This event can
be expressed as a disjoint union

{2 4} = {(2→ 3→ 4)} from 2 to 4 via 3

∪ {(2→ 3→ 2→ 3→ 4)} once around the 2→ 3→ 2 loop

∪ {(2→ 3→ 2→ 3→ 2→ 3→ 4)} twice around the 2→ 3→ 2 loop

∪ . . .

=
∞⋃

n=0
{2→ 3→ [2↔ 3]n → 4}

Proposition 6.43. If A ⊆ E , the vector hA = (hA
i )i∈E solves the system of

linear equations

hA
i =

1 i ∈ A

∑j∈E pijhA
j i /∈ A

.

Moreover, hA is the minimal solution, in the sense that if x = (xi)i∈E is
another non-negative solution, then hA

i ≤ xi for all i.

Proof. Note that if X0 = i ∈ A, then certainly HA = 0, so that hA
i = 1.

Now if i /∈ A, then necessarily HA ≥ 1, so that we can condition on X1:

Pr(HA < ∞|X0 = i) = ∑
j∈E

Pr(HA < ∞|X0 = i, X1 = j)Pr(X1 = j|X0 = i).
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By the Markov property, this is just

∑
j∈E

Pr(HA < ∞|X1 = j)Pr(X1 = j|X0 = i) = ∑
j∈E

Pr(HA < ∞|X1 = j)pij = ∑
j∈E

pijhA
j .

We now show minimality. Suppose x = (xi)i∈E is another non-negative
solution of the linear system. We begin by showing that

xi ≥ Pr

(
N⋃

n=0
{Xn ∈ A}|X0 = i

)
, N ∈ N0.

Certainly this is true for N = 0, because if i ∈ A, both sides are 1 and if
i /∈ A, the right hand expression is 0 and xi ≥ 0.

Suppose now that the result holds for N ≥ 0. The relation clearly holds for
i ∈ A. For i /∈ A, we use the law of total probability to write

Pr

(
N+1⋃
n=0
{Xn ∈ A}|X0 = i

)
= ∑

j∈E
Pr

(
N+1⋃
n=0
{Xn ∈ A}, X1 = j|X0 = i

)

= ∑
j∈E

Pr

(
N+1⋃
n=0
{Xn ∈ A}|X1 = j, X0 = i

)
pij

= ∑
j∈E

Pr

(
N+1⋃
n=1

{Xn ∈ A}|X1 = j

)
pij

= ∑
j∈E

Pr

(
N⋃

n=0
{Xn ∈ A}|X0 = j

)
pij.

≤ ∑
j∈E

pijxj = xi.

Hence the result holds for all N ∈ N0. It must therefore hold for the limit:

xi ≥ lim
N→∞

Pr

(
N⋃

n=0
{Xn ∈ A}|X0 = i

)
.

But since the unions considered form an increasing sequence, this gives that

xi ≥ Pr
(

HA < ∞|X0 = i
)
= hA

i .

Stationary Distributions

Thinking back to our initial genetic example, we saw that the chain
tended to forget its initial state: whatever the chain’s initial state,
after a long enough time, the marginal probability of being in any
of the four states converged to 1

4 . The random fluctuations induced
by mutation at each time step mean that there is no hope that the
chain will settle down to a a definite state, nevertheless, the probability
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distribution of being in any state does converge to a limit. This is true
of Markov chains more generally, subject only to mild conditions on
the transition matrix. We will explore this behaviour informally in
this final section.

Explicitly, recall from the genetic example that for a state i ∈
{A, G, C, T}, we found that

pii(n) =
1
4
+

3
4

(
1− 4α

3

)n
,

so that for i 6= j, by symmetry of the mutation process,

pij(n) =
1
3
(1− pii) =

1
4
− 1

4

(
1− 4α

3

)n
.

In matrix form

Pn =
1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

+
1
4

(
1− 4α

3

)n


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 .

In the earlier example, we started the chain in the state X0 = T. More
generally, we might not know the initial state, and so instead we have
an initial distribution λ0, say.

The distribution in the next generation is given by λ1 = λ0P, and
more generally the distribution in generation n is given by λn = λ0Pn.
Since λ is a probability distribution, multiplication by the first matrix
term just gives

λ∞ =
(

1
4

1
4

1
4

1
4

)
so the only dependency on λ0 is through the second matrix term,
which vanishes as n→ ∞.

Note an interesting property of λ∞ as defined above: λ∞P = λ∞. We
say that λ∞ is stationary for the chain (Xn).

Definition 6.44. A vector π = (πj)j∈E is said to be a stationary distribu-
tion for the Markov chain (Xn) if

1. πj ≥ 0 for all j ∈ E and ∑j∈E πj = 1 (so π is a probability distribution
on E )

2. πP = π.

Proposition 6.45. If the distribution of Xn is π and π is stationary for the
chain (Xn), then the distribution of Xn+1 is also π.
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Proof

Pr(Xn = j) = ∑
i∈E

Pr(Xn = j|Xn−1 = i)Pr(Xn−1 = i) = ∑
i∈E

pijπi.

But this is just (πP)j = πj, since π is stationary for (Xn).

Proposition 6.46. (Non-examinable - see Grimmett and Stirzaker) An
irreducible chain has a stationary distribution if and only if all states are
positive recurrent. In this case πj =

1
µj

, where µj is the mean recurrence
time, hence the stationary distribution is unique.

Informal justification.

We take as a hopefully plausible starting point the Ergodic theorem
(below). This says that almost surely, the long-run proportion of the time
spent in state i is 1

µi
.

At every visit to state i, the chain has a probability pij of moving to state j.
This gives the long-run proportion of jumps from i to j as 1

µi
pij. Then (at

least when E is finite), the total long-run proportion of jumps into state j is
then just ∑i∈E

1
µi

pij.

But this is just the long-run proportion of time spent in state j, which is 1
µj

,

by the ergodic theorem. This says that the vector with entries πj =
1
µj

is a
stationary distribution for the chain.

Proposition 6.47. (Non-examinable - see Grimmett and Stirzaker) If
(Xn)n∈N0 is an irreducible, aperiodic Markov chain with stationary distribu-
tion π, then, for any initial distribution λ and for any j ∈ E ,

lim
n→∞

Pr(Xn = j) = πj,

in particular, for all i ∈ E , the limiting probability

lim
n→∞

Pr(Xn = j|X0 = i) = πj

is independent of i.

Proposition 6.48. The Ergodic theorem. (Non-examinable - see Grimmett
and Stirzaker) Let (Xn)n∈N0 be an irreducible Markov chain. For any state
i ∈ E , let

Vi(n) =
n

∑
r=0

I(Xr = i)

count the number of visits to i before time n. Then for any initial distribu-
tion and and i ∈ E ,

Pr
(

Vi(n)
n
→ πi as n→ ∞

)
= 1,

i.e. Vi(n)
n converges almost surely to πi.
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Example 6.49. The two state chain. We ignore degenerate cases for which
α = β = 0 and α = β = 0. We solve for πP = π

(
π1 π2

)(1− α α

β 1− β

)
=
(

π1 π2

)
,

so that
π1(1− α) + π2β = π1,

giving
π2β = π1α.

For a normalizable distribution, we must have π2 = 1− π1, so that

π1 =
β

α + β
π2 =

α

α + β
,

limiting probabilities that we have already established by explicitly comput-
ing the n-step transition probabilities.

Example 6.50. Let E = {1, 2, . . . N}, where N is odd. Suppose (Xn)n∈N0

is the symmetrical random walk on the polygon with vertices labelled by
elements of E . The condition for stationarity in this case is

πi =
1
2

πi−1 +
1
2

πi+1.

It is immediate from symmetry that πi =
1
N , and pii(n)→ 1

N as n→ ∞.

(What happens when N is even?)

Example 6.51. Consider Figure 6.8. Note that this is just a random walk on
the graph defined by the five vertices: the chain chooses uniformly from the
options available to it at each point. To find the stationary distribution, we
have five unknowns to solve for. However, the problem has some symmetry:
clearly π1 = π2 and π3 = π4, so we have only three unknowns, and, since
the entries of π sum to one, the problem is simpler still.

We solve for πP = π. From the first column:

1
2

π2 +
1
3

π4 = π1,

so that, since π2 = π1, we have 1
2 π2 = 1

3 π4.

Now from the fifth column:

1
3

π3 +
1
3

π4 = π5,

so that, since π3 = π4, we have 2
3 π4 = π5.
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We now have all we need. The vector π =
( 2

3 π4, 2
3 π4, π4, π4, 2

3 π4
)

.

Hence

π4

(
2
3
+

2
3
+ 1 + 1 +

2
3

)
= 1,

so that π4 = 1
4 and

π =

(
1
6

,
1
6

,
1
4

,
1
4

,
1
6

)
.

This is in fact an instance of a more general result. For a symmetrical
random walk on a finite graph, if the state i is connected to di other states,
then πi =

di
∑j∈E dj

.

1 2

34
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Figure 6.8: A random walk on a graph
with five vertices.
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