- 1. Let F be a field, and let A be an $n \times n$ matrix over F.
	- (a) Define the minimal polynomial $m_A(x)$ of A. Prove that if $p(x) \in F[x]$ is a polynomial such that $p(A) = 0$, then $p(x)$ is divisible by $m_A(x)$.
	- (b) Suppose $F = \mathbb{R}$, $n \geq 3$ and $A^3 = I$, the identity matrix. Write down all the possible minimal polynomials $m_A(x)$, and give examples of matrices A over R with each of these minimal polynomials.
	- (c) Find all the Rational Canonical Forms of 6×6 matrices A over R such that $A^3 = I$.
	- (d) Now let $F = \mathbb{F}_3$, the field of 3 elements. Giving your reasoning, calculate the number of different Jordan Canonical Forms of 6×6 matrices A over F such that $A^3 = I$.

(Marks for parts a, b, c, d: $3,6,4,7$)

2. Let V be a finite-dimensional inner product space over F, where $F = \mathbb{R}$ or \mathbb{C} , and let $T: V \to V$ be a linear map.

- (a) Define what is meant by the *adjoint* map $T^* : V \to V$.
- (b) Show that $(T^*)^* = T$.
- (c) Prove that T^*T is self-adjoint.
- (d) Show that if λ is an eigenvalue of T^*T , then λ is real and $\lambda \geq 0$.
- (e) Using the Spectral Theorem for T^*T (or otherwise), prove that if λ_{max} is the largest eigenvalue of T^*T , then

$$
||T(v)||^2 \le \lambda_{max} ||v||^2 \quad \text{for all } v \in V.
$$

(f) Now let V be the vector space of polynomials over $\mathbb R$ of degree at most 1, with inner product

$$
(f,g) = \int_{-1}^{1} f(x)g(x) dx \quad \text{for all } f, g \in V.
$$

Let $T: V \to V$ be the linear map defined by

$$
T(f(x)) = f(x) + f'(x) \quad \text{for all } f(x) \in V.
$$

Calculate the largest eigenvalue of T^*T .

(Marks for parts a, b, c, d, e, f: $2, 2, 2, 4, 4, 6$)

1. (a) The min poly of A is the (unique) polynomial $m(x) \in F[x]$ such that $m(A) = 0, m(x)$ is monic, and $deg(m(x))$ is as small as possible. (1 mark)

Suppose $p(x) \in F[x]$ and $p(A) = 0$. There are polys $q, r \in F[x]$ such that $deg(r(x))$ < $deg(m_A(x))$ and

$$
p(x) = q(x)m_A(x) + r(x).
$$

Then $0 = p(A) = q(A)m_A(A) + r(A) = r(A)$. As $deg(r(x)) < deg(m_A(x))$, this implies that $r = 0$, hence m_A divides p. (2 marks, in lec notes)

(b) By (a), $m_A(x)$ divides $x^3 - 1$. Over R, we have $x^3 - 1 = (x - 1)(x^2 + x + 1)$ and $x^2 + x + 1$ is irreducible. Hence the possibilities for $m_A(x)$ are

$$
x-1
$$
, x^2+x+1 , x^3-1 . (3 marks)

Examples of matrices with these respective minimal polys are

$$
I, \quad \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}. \quad \textbf{(3 marks)}
$$

(c) The RCFs are block-diagonal sums of companion matrices $C_1 = (1)$ and $C_2 = C(x^2 +$ $(x+1) = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ 1 −1). The 6×6 RCFs are therefore

 I_6 , $I_4 \oplus C_2$, $I_2 \oplus C_2 \oplus C_2$, $C_2 \oplus C_2 \oplus C_2$. (4 marks)

(d) Over \mathbb{F}_3 , the poly $x^3 - 1$ factorizes as $(x - 1)^3$. (2 marks)

So any matrix A over \mathbb{F}_3 satisfying $A^3 = I$ has min poly $(x - 1)^a$ with $a \leq 3$, hence has a JCF with maximal block size at most 3. (1 mark)

Writing $J_i = J_i(1)$, the possible JCFs are

$$
J_3^2, J_3 \oplus J_2 \oplus J_1, J_3 \oplus J_1^3, J_2^3, J_2^2 \oplus J_1^2, J_2 \oplus J_1^4, J_1^6.
$$

There are 7 of these altogether. (4 marks)

TOTAL: 20

2. (a) The adjoint map $T^* : V \to V$ is the unique linear map such that

 $(T(v), w) = (v, T^*(w))$ for all $v, w \in V$. (2 marks)

(b) From the above equation,

$$
(v, (T^*)^*w) = (T^*(v), w) = \overline{(w, T^*(v))} = \overline{(T(w), v)} = (v, T(w)).
$$

Hence $(T^*)^*(w) = T(w)$ for all $w \in V$, ie. $(T^*)^* = T$. (2 marks, seen)

(c) From the defining equation, for any $v, w \in V$,

$$
(T^*T(v), w) = (T(v), T^{**}(w)) = (T(v), T(w)) = (v, T^*T(w)).
$$

Hence T^*T is self-adjoint. (2 marks)

(d) Let $S = T^*T$, self-adjoint. If λ is an evalue of S, and v an evector such that $S(v) = \lambda v$, then

$$
(S(v), v) = (v, S^*(v)) = (v, S(v)) \Rightarrow (\lambda v, v) = (v, \lambda v) \Rightarrow \lambda(v, v) = \overline{\lambda}(v, v) \Rightarrow \lambda \in \mathbb{R}.
$$

(2 marks, seen)

Also

$$
\lambda(v, v) = (S(v), v) = (T^*T(v), v) = (T(v), T(v)) \ge 0.
$$

Hence $\lambda \geq 0$. (2 marks)

(e) By the Spectral Theorem, there is an orthonormal basis v_1, \ldots, v_n of V consisting of eigenvectors for $S = T^*T$. Say $S(v_i) = \lambda_i v_i$ for $1 \leq i \leq n$. Then for $v = \sum_{i=1}^{n} \alpha_i v_i \in V$, we have $S(v) = \sum_{1}^{n} \lambda_i \alpha_i v_i$, so

$$
||T(v)||^2 = (T(v), T(v))
$$

= $(T^*T(v), v)$
= $(\sum \lambda_i \alpha_i v_i, \sum \alpha_i v_i)$
= $\sum \lambda_i \alpha_i \bar{\alpha}_i$
 $\leq \lambda_{max} \sum \alpha_i \bar{\alpha}_i$
= $\lambda_{max} ||v||^2$. (4 marks)

(f) First need to find an orthonormal basis of V. Check that $B = \{f_1, f_2\}$ is orthormal, where

$$
f_1 = \frac{1}{\sqrt{2}}, f_2 = \sqrt{\frac{3}{2}}x.
$$
 (2 marks)

Then T sends $f_1 \rightarrow f_1, f_2 \rightarrow f_2 +$ $3f_1$, so the matrix of T wrt B is

$$
A = \begin{pmatrix} 1 & \sqrt{3} \\ 0 & 1 \end{pmatrix}.
$$
 (1 mark)

By a result in lectures, the matrix of T^* wrt B is A^T , so the matrix of T^*T is

$$
A^T A = \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 4 \end{pmatrix}.
$$
 (1 mark)

This has characteristic poly $x^2 - 5x + 1$, so the largest eigenvalue is $\frac{1}{2}(5 + \sqrt{21})$. (2 marks)