1. (a) Let V be a finite-dimensional vector space over $\mathbb C$, and suppose $S : V \mapsto V$ and $T : V \mapsto V$ are linear maps that commute with each other (in other words, $ST = TS$).

(i) Let λ be an eigenvalue of T, and let the corresponding eigenspace be

$$
V_{\lambda} = \{ v \in V : T(v) = \lambda v \}.
$$

Prove that V_{λ} is S-invariant.

- (ii) Hence show that S and T have a common eigenvector (i.e. a vector v that is an eigenvector of both S and T).
- (iii) Prove that there is a basis B of V such that both matrices $[S]_B$ and $[T]_B$ are upper triangular.

(b) Let $V = M_n(\mathbb{C})$, the vector space of $n \times n$ matrices over \mathbb{C} . Let B be a fixed matrix in V, and define linear maps $S: V \mapsto V$ and $T: V \mapsto V$ by

$$
S(A) = ABT + BA \quad \text{for all } A \in V,
$$

$$
T(A) = ABT - BA \quad \text{for all } A \in V
$$

(where as usual B^T is the transpose of B).

- (i) Show that S and T commute with each other.
- (ii) In the case where $n = 2$ and $B = \begin{pmatrix} 4 & 1 \\ -1 & 2 \end{pmatrix}$, find a common eigenvector in V for S and T.

Marks for part (a): 3,3,5; for part (b): 3,6

2. (a) For a field F, let $M_n(F)$ be the set of all $n \times n$ matrices over F. Recall that the relation defined on $M_n(F)$ by

 $A \sim B \Leftrightarrow A$ is similar to B

is an equivalence relation, and we call the equivalence classes of this relation the similarity classes in $M_n(F)$.

- (i) Giving your reasoning, calculate the number of similarity classes of matrices in $M_8(\mathbb{C})$ that have minimal polynomial $(x^3 + x + 1)^2$.
- (ii) Calculate the number of similarity classes of matrices in $M_8(\mathbb{R})$ that have minimal polynomial $(x^3 + x + 1)^2$.
- (iii) Calculate the number of similarity classes of matrices in $M_8(\mathbb{F}_2)$ that have minimal polynomial $(x^3 + x + 1)^2$.

(b) Let A be a matrix in $M_4(\mathbb{C})$ such that A is similar to A^2 .

- (i) Find all the possible Jordan Canonical Forms for A if its characteristic polynomial is x^4 .
- (ii) Find all the possible Jordan Canonical Forms for A if its characteristic polynomial is $(x-1)^4$.

Marks for part (a): $4,4,4$; for part (b): $4,4$

1. (a) (i) Let $v \in V_\lambda$. Then $TS(v) = ST(v) = S(\lambda v) = \lambda S(v)$, so $S(v) \in V_\lambda$. Hence V_λ is S-invariant. (3 marks)

(ii) By (i), V_{λ} is S-invariant. As we are over \mathbb{C} , the restriction $S_{V_{\lambda}}$ has an eigenvector. This is a common eigenvector of S and T . (3 marks)

(iii) This just follows the proof of the Triangularisation Theorem in the lectures. Use induction on $n = \dim V$. The result is obvious if $n = 1$. Assume $n \geq 2$. By (ii) there is a common evector v_1 of S and T, so the subspace $W = Sp(v_1)$ is both S- and T-invariant. Therfore we have quotient maps \overline{S} and \overline{T} from $V/W \mapsto V/W$. By induction, there is a basis $W + v_2, \ldots W + v_n$ of V/W with respect to which the matrices of \overline{S} and \overline{T} are both upper triangular. Then $B = \{v_1, v_2, \ldots, v_n\}$ is a basis of V such that $[S]_B$ and $[T]_B$ are both upper triangular. (5 marks)

(b) (i) Check that ST and TS both send $A \mapsto A(B^T)^2 - B^2A$. (3 marks)

(ii) This can be done by a computation finding the matrices of S and T with respect to the standard basis of $M_2(\mathbb{C})$, then computing an eigenspace of T and finding an eigenvector of S inside that. But here is a more cunning method: let v be an eigenvector of B with $Bv = \lambda v$, and let $A = vv^T$, a 2×2 matrix. Then

$$
S(A) = vvTBT + BvvT = \lambda vvT = \lambda A, T(A) = vvTBT - BvvT = 0.
$$

Hence $A = vv^T$ is a common evector of S, T. Compute that $v = (1, -1)^T$ is an evector of B. Hence $A = vv^T = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ is a common evector of S and T. (6 marks)

TOTAL: 20

2. (a) (i) Over C, $(x^3 + x + 1)^2$ factorizes as a product $(x - \alpha)^2(x - \beta)^2(x - \gamma)^2$, where $\alpha, \beta, \gamma \in \mathbb{C}$ are distinct. The possible JCFs in $M_8(\mathbb{C})$ with this min poly have blocks $J_2(\alpha)$, $J_2(\beta)$, $J_2(\gamma)$, and either one more block of size 2 (three possibilities), or two more blocks of size 1 (six possibs – three with identical size 1 blocks, three with different size 1 blocks). So the total number of JCFs is 9. (4 marks)

(ii) Over \mathbb{R} , $x^3 + x + 1$ has one real root and two complex conjugate ones, hence factorizes as $(x-\delta)(x^2+ax+b) = f_1f_2$. The possible RCFs in $M_8(\mathbb{R})$ with min poly $(x^3+x+1)^2 = f_1^2f_2^2$ have blocks $C(f_1^2)$ and $C(f_2^2)$, and either one more block $C(f_2)$ or $C(f_1^2)$ of size 2, or two more blocks $C(f_1)^2$. Hence the total number of RCFs is 3. (4 marks)

(iii) Over \mathbb{F}_2 , $f = x^3 + x + 1$ is irreducible. The RCF of a matrix in $M_8(\mathbb{F}_2)$ with min pol f^2 must have a block $C(f^2)$, which is of size 6. Any further block must be $C(f^i)$ for some i, so have size at least 3. This is not possible, so there are no such matrices in $M_8(\mathbb{F}_2)$. (4 marks)

(b) (i) If the char poly of A is x^4 , its JCF has blocks $J = J_r(0)$. If $r \geq 2$, then J^2 has rank less than J. As A is similar to A^2 , they have the same JCF, so it follows that the only possible Jordan blocks are $J_1(0)$. So the only possible JCF is $J_1(0)^4$, which is the zero matrix. (4 marks)

(ii) If the char poly of A is $(x-1)^4$, its JCF has blocks $J = J_r(1)$. Now J^2 has 1's on the diagonal and 2's above the diagonal, so $\text{rank}(J^2 - I) = r - 1$, and so the JCF of J^2 is also $J_r(1)$. Hence $J^2 \sim J$ for all Jordan blocks $J = J_r(1)$, and so all the 4×4 JCFs with evalue 1 are possible for A. The number of such JCFs is the number of partitions of 4 as a sum of positive integers, which is 5. (4 marks)

TOTAL: 20