
Linear Algebra January Test 2022

1. (a) Let V be a finite-dimensional vector space over C, and suppose S : V 7→ V and T : V 7→ V
are linear maps that commute with each other (in other words, ST = TS).

(i) Let λ be an eigenvalue of T , and let the corresponding eigenspace be

Vλ = {v ∈ V : T (v) = λv}.

Prove that Vλ is S-invariant.

(ii) Hence show that S and T have a common eigenvector (i.e. a vector v that is an eigenvector
of both S and T ).

(iii) Prove that there is a basis B of V such that both matrices [S]B and [T ]B are upper trian-
gular.

(b) Let V = Mn(C), the vector space of n × n matrices over C. Let B be a fixed matrix in V ,
and define linear maps S : V 7→ V and T : V 7→ V by

S(A) = ABT +BA for all A ∈ V,
T (A) = ABT −BA for all A ∈ V

(where as usual BT is the transpose of B).

(i) Show that S and T commute with each other.

(ii) In the case where n = 2 and B =

(
4 1
−1 2

)
, find a common eigenvector in V for S and T .

Marks for part (a): 3,3,5; for part (b): 3,6

2. (a) For a field F , let Mn(F ) be the set of all n× n matrices over F . Recall that the relation
defined on Mn(F ) by

A ∼ B ⇔ A is similar to B

is an equivalence relation, and we call the equivalence classes of this relation the similarity classes
in Mn(F ).

(i) Giving your reasoning, calculate the number of similarity classes of matrices in M8(C) that
have minimal polynomial (x3 + x+ 1)2.

(ii) Calculate the number of similarity classes of matrices in M8(R) that have minimal polyno-
mial (x3 + x+ 1)2.

(iii) Calculate the number of similarity classes of matrices in M8(F2) that have minimal poly-
nomial (x3 + x+ 1)2.

(b) Let A be a matrix in M4(C) such that A is similar to A2.

(i) Find all the possible Jordan Canonical Forms for A if its characteristic polynomial is x4.

(ii) Find all the possible Jordan Canonical Forms for A if its characteristic polynomial is (x−1)4.

Marks for part (a): 4,4,4; for part (b): 4,4



Linear Algebra January Test Solutions 2022

1. (a) (i) Let v ∈ Vλ. Then TS(v) = ST (v) = S(λv) = λS(v), so S(v) ∈ Vλ. Hence Vλ is
S-invariant. (3 marks)

(ii) By (i), Vλ is S-invariant. As we are over C, the restriction SVλ has an eigenvector.
This is a common eigenvector of S and T . (3 marks)

(iii) This just follows the proof of the Triangularisation Theorem in the lectures. Use
induction on n = dimV . The result is obvious if n = 1. Assume n ≥ 2. By (ii) there is
a common evector v1 of S and T , so the subspace W = Sp(v1) is both S- and T -invariant.
Therfore we have quotient maps S̄ and T̄ from V/W 7→ V/W . By induction, there is a basis
W + v2, . . .W + vn of V/W with respect to which the matrices of S̄ and T̄ are both upper
triangular. Then B = {v1, v2, . . . , vn} is a basis of V such that [S]B and [T ]B are both upper
triangular. (5 marks)

(b) (i) Check that ST and TS both send A 7→ A(BT )2 −B2A. (3 marks)

(ii) This can be done by a computation finding the matrices of S and T with respect to the
standard basis of M2(C), then computing an eigenspace of T and finding an eigenvector of S
inside that. But here is a more cunning method: let v be an eigenvector of B with Bv = λv,
and let A = vvT , a 2× 2 matrix. Then

S(A) = vvTBT +BvvT = λvvT = λA, T (A) = vvTBT −BvvT = 0.

Hence A = vvT is a common evector of S, T . Compute that v = (1,−1)T is an evector of B.

Hence A = vvT =

(
1 −1
−1 1

)
is a common evector of S and T . (6 marks)

TOTAL: 20

2. (a) (i) Over C, (x3 + x + 1)2 factorizes as a product (x − α)2(x − β)2(x − γ)2, where
α, β, γ ∈ C are distinct. The possible JCFs in M8(C) with this min poly have blocks J2(α),
J2(β), J2(γ), and either one more block of size 2 (three possibilities), or two more blocks of
size 1 (six possibs – three with identical size 1 blocks, three with different size 1 blocks). So
the total number of JCFs is 9. (4 marks)

(ii) Over R, x3 + x+ 1 has one real root and two complex conjugate ones, hence factorizes
as (x−δ)(x2+ax+b) = f1f2. The possible RCFs in M8(R) with min poly (x3+x+1)2 = f21 f

2
2

have blocks C(f21 ) and C(f22 ), and either one more block C(f2) or C(f21 ) of size 2, or two more
blocks C(f1)

2. Hence the total number of RCFs is 3. (4 marks)

(iii) Over F2, f = x3 + x+ 1 is irreducible. The RCF of a matrix in M8(F2) with min pol
f2 must have a block C(f2), which is of size 6. Any further block must be C(f i) for some i, so
have size at least 3. This is not possible, so there are no such matrices in M8(F2). (4 marks)

(b) (i) If the char poly of A is x4, its JCF has blocks J = Jr(0). If r ≥ 2, then J2 has rank less
than J . As A is similar to A2, they have the same JCF, so it follows that the only possible
Jordan blocks are J1(0). So the only possible JCF is J1(0)4, which is the zero matrix. (4
marks)

(ii) If the char poly of A is (x− 1)4, its JCF has blocks J = Jr(1). Now J2 has 1’s on the
diagonal and 2’s above the diagonal, so rank(J2 − I) = r − 1, and so the JCF of J2 is also
Jr(1). Hence J2 ∼ J for all Jordan blocks J = Jr(1), and so all the 4 × 4 JCFs with evalue
1 are possible for A. The number of such JCFs is the number of partitions of 4 as a sum of
positive integers, which is 5. (4 marks)

TOTAL: 20


