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1. (a) Let F be a field, and let A be the following 4× 4 matrix over F :

A =



0 0 −1 0

0 0 0 −1

1 0 −1 0

0 1 0 −1


.

(i) Find the characteristic polynomial of A. (1 mark)
(ii) Find the minimal polynomial of A. (3 marks)
(iii) For which of the following fields F is A diagonalisable over F :

(α) F = C?
(β) F = R?
(γ) F = F3, the field of 3 elements?
Give your reasoning. (6 marks)

(b) Let B be an n × n matrix over a field F , and suppose that B has minimal polynomial
x2 + x+ 1.
(i) Show that B is invertible. (1 mark)
(ii) Prove that the minimal polynomial of B−1 is also x2 + x+ 1. (3 marks)
(iii) Prove that if F = C and n is odd, then B is not similar to B−1. (3 marks)
(iv) Prove that if F = R and n is even, then B is similar to B−1. (3 marks)

(You may use any results from the course that you require provided you state them clearly.)

(Total: 20 marks)
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2. (a) Let p be a prime number, let Fp denote the field of p elements, and let A be the following
3× 3 matrix over Fp:

A =


0 0 −1

1 0 1

0 1 1

 .

(i) Show that the characteristic polynomial of A factorizes as a product of linear factors.
(ii) Find the Jordan Canonical Form of A (the answer will depend on p).
(iii) Let p = 2, let V be the vector space (F2)3, and let T : V 7→ V be the linear map defined

by T (v) = Av (v ∈ V ). Find a Jordan basis for T . (7 marks)

(b) Let V be a vector space, and let T : V 7→ V be a linear map with the following properties:

(1) the characteristic polynomial cT (x) = x5(x− 1)6,
(2) rank(T ) = 8 and rank(T 2) = 7,
(3) rank(T − I) = 9 and rank(T − I)3 = 6.
Find the Jordan Canonical Form of T . (6 marks)

(c) Let F be a field, let n be a positive integer, and let c(x) ∈ F [x] be a polynomial of degree
n. Let m(x) ∈ F [x] be a polynomial satisfying the following two conditions:

(1) m(x) divides c(x),
(2) if p(x) ∈ F [x] is an irreducible factor of c(x), then p(x) divides m(x).
Decide whether the following statement is true or false: there exists an n× n matrix over F
that has characteristic polynomial c(x) and minimal polynomial m(x). If you think it is true,
give a proof, and if you think it is false, give a counterexample. (7 marks)
(You may use any results from the course that you require provided you state them clearly.)

(Total: 20 marks)
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3. (a) Let V be a finite-dimensional inner product space over C, and let S, T be linear maps V 7→ V .

(i) Define the adjoint map T ∗ : V 7→ V .
(ii) Show that (ST )∗ = T ∗S∗.
(iii) Prove that if T is invertible, then T ∗ is also invertible and (T ∗)−1 = (T−1)∗. (5 marks)

(b) Let V = C2, and for u =

u1

u2

 , v =

v1

v2

 ∈ V , define

(u, v) = u1v̄1 + iu1v̄2 − iu2v̄1 + 2u2v̄2.

(i) Show that this is an inner product on V .
(ii) Find an orthonormal basis of V with respect to this inner product.
(iii) Define a linear map T : V 7→ V by

T (v) =

2 0

0 1

 v (v ∈ V ).

Find a complex 2 × 2 matrix A such that T ∗(v) = Av for all v ∈ V , where T ∗ is the
adjoint of T with respect to the above inner product. (8 marks)

(c) Let V be a finite-dimensional inner product space over C with inner product ( , ), and let
a, b ∈ V \ 0. Define T : V 7→ V by

T (v) = (v, a) b for all v ∈ V.

(i) Show that T is a linear map.
(ii) For v ∈ V , find T ∗(v) in terms of v, a, b.
(iii) Prove that if T = T ∗, then b = λa for some λ ∈ R. (7 marks)

(Total: 20 marks)
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4. (a) Consider the overdetermined linear system Ax = b with A ∈ Rn×1 and b ∈ Rn of n equations
with one unknown, where

A =



1

1
...

1


b =



b1

b2

...

bn


.

Solve the above system as a least squares problem by minimizing the residual. (8 marks)

(b) We try to fit a circle with center (c1, c2) and radius r in a least-squares sense to n given
points (xi, yi), i = 1, . . . , n in the (x, y)-plane, where n ≥ 3.

(i) Derive a system of equations for c1, c2 and r. (4 marks)
(ii) Use the substitution c1 = α/2, c2 = β/2 and r2 = γ + c2

1 + c2
2 to bring the system from

Part (i) into a form Ax = b. State the form of the matrix A and vector b and express
the desired variables (c1, c2, r) in terms of the solution x. (6 marks)

(iii) Comment on why the condition n ≥ 3 is necessary. (2 marks)

(Total: 20 marks)
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5. (a) Let Tk(x) denote the Chebyshev polynomial of degree k. Express the composite polynomial
Tn(Tm(x)) of degree n ·m in terms of Chebyshev polynomials.

(5 marks)

(b) Consider the data f(0) = 5, f(1) = 3, f(3) = 5, f(4) = 12.
(i) Obtain the interpolating polynomial p3(x) in Newton form. (2 marks)
(ii) The data suggest that f has a minimum between x = 1 and x = 3. Find an approximate

value for the location xmin of the minimum by considering the interpolating polynomial.
(3 marks)

(c) Let f(x) = (1 + a)x, |a| < 1. Show that the Newton polynomial pn(x) with interpolation
points 0, . . . , n is the truncation of the binomial series for f to n+ 1 terms, i.e.,

pn(x) =
n∑

k=0

(
x

k

)
ak.

(10 marks)

(Total: 20 marks)
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6. (a) Obtain the three-point Gauss-Hermite quadrature formula∫ ∞
−∞

f(t)e−t2
dt ≈ w0f(t0) + w1f(t1) + w2f(t2).

Derive analytic expressions for the sampling points {t0, t1, t2} and integration weights
{w0, w1, w2}. Use the identity

∫∞
0 t2n exp(−t2) dt =

√
π (2n)!

22n+1n! . (13 marks)

(b) We wish to evaluate the integral
∫ 1
−1 exp(−x) dx using Gauss quadrature (based on Legendre

polynomials). Give an estimate of the number of sampling points until the integration error
reaches machine precision ε ≈ 10−14. Justify your answer. (7 marks)

(Total: 20 marks)
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Linear Algebra and Numerical Analysis MATH 50003/50012/50016
Solutions

1. (a) (i) Characteristic poly is x4 + 2x3 + 3x2 + 2x+ 1 = (x2 + x+ 1)2. (1 mark,
category A)

(ii) Check that A2 + A + I = 0, so the min poly mA(x) divides x2 + x + 1.
The min poly is obviously not linear as A is not a scalar multiple of I, hence
mA(x) = x2 + x+ 1. (3 marks, A)

(iii) (α) Over C, mA(x) factorizes as (x− ω)(x− ω2), where ω = e2πi/3. This is
a product of distinct linear factors, so by a result in lectures, A is diagonalisable.
(2 marks, B)

(β) Over R, mA(x) does not factorize as a product of distinct linear factors, so
by the same result in lectures, A is not diagonalisable. (2 marks, B)

(γ) Over F3, mA(x) = (x− 1)2, which again is not a product of distinct linear
factors, so A is not diagonalisable. (2 marks, B)

(b) (i) As B2 +B+ I = 0 we have B(−B− I) = I, so B is invertible (with inverse
−B − I). (1 mark, A)

(ii) Multiplying through by B−2 we get I + B−1 + B−2 = 0, so B−1 satisfies
x2 + x + 1. The min poly of B−1 is not linear as B−1 is not a scalar mult of I.
Hence the min poly is x2 + x+ 1. (3 marks, A)

(iii) Over C, mB(x) factorizes as (x − ω)(x − ω−1), where ω = e2πi/3. This is
a product of distinct linear factors, so by a result in lectures, B is diagonalisable
and is similar to a diagonal matrix of the form diag(ωIr, ω

−1Is), where r + s = n.
Then B−1 is similar to the inverse of this, which is diag(ω−1Ir, ωIs). As n is odd
we have r 6= s. Hence B and B−1 have different eigenvalue multiplicities, so are
not similar. (3 marks, C)

(iv) Over R, mB(x) = x2 + x + 1 is irreducible, so as the characteristic poly
cB(x) has the same irreducible factors as mB(x), we have cB(x) = (x2 + x + 1)m

for some m, and n = 2m. This means that the Rational Canonical Form of B is

C⊕· · ·⊕C, where C is the companion matrix of x2+x+1, namely C =

(
0 −1
1 −1

)
.

As B−1 also has min poly x2 + x + 1, it has the same RCF as B. Hence by the
RCF theorem, B is similar to B−1. (3 marks, D)



2. (a) (i) The char poly cA(x) = x3 − x2 − x+ 1 = (x− 1)2(x+ 1). (1 mark, A)

(ii) The min poly of A is also (x− 1)2(x + 1). So if p 6= 2, the JCF is J2(1)⊕
J1(−1); and if p = 2 the JCF is J3(1). (3 marks, A)

(iii) For p = 2, T has min poly (x− 1)3. A basis for (T − I)2V is v1 = e1 + e3,
and we have (T − I)(e1 + e2) = v1 and (T − I)(e1) = e1 + e2. So a Jordan basis is

e1 + e3, e1 + e2, e1.

(3 marks, A)

(b) By property (1) we have dimV = 11, so by (2), the geometric mult of the
eigenvalue 0 is g(0) = 3. Hence the JCF has three 0-blocks of sizes adding up
to 5. As T 2 has rank 7, the squares of these blocks have total rank 1, so they
are J3(0), J1(0), J1(0). By (3) we have g(1) = 2 so there are two 1-blocks of sizes
adding to 6. As (T − I)3 has rank 6, the cubes of these blocks have total rank 1,
so they are J4(1), J2(1). Hence the JCF is

J3(0)⊕ J1(0)2 ⊕ J4(1)⊕ J2(1).

(6 marks, B)

(c) This is true. By properties (1) and (2), the factorizations of c(x) and m(x) in
F [x] are

c(x) = p1(x)a1 · · · pr(x)ar , m(x) = p1(x)b1 · · · pr(x)br ,

where each pi(x) is irreducible, and ai ≥ bi > 0 for 1 ≤ i ≤ r. For each i, define
the matrix

Ci = C(pi(x)bi)⊕ C(pi(x))⊕ · · · ⊕ C(pi(x)),

where C(f(x)) is the companion matrix of a polynomial f(x), and there are ai− bi
copies of C(pi(x)). Then by standard results from the lectures, Ci has min poly
pi(x)bi and char poly pi(x)ai . Hence the matrix

C = C1 ⊕ · · · ⊕ Cr

has min poly
∏r

1 pi(x)bi = m(x) and char poly
∏r

1 pi(x)ai = c(x). (7 marks, D)



3. (a) (i) T ∗ : V 7→ V is the map such that (T (v), w) = (v, T ∗(w)) for all v, w,∈ V .
(1 mark, A)

(ii) (ST (v), w) = (T (v), S∗(w)) = (v, T ∗S∗(w) for all v, w. Hence (v, (ST )∗w) =
(v, T ∗S∗(w), which by a standard result implies that (ST )∗(w) = T ∗S∗(w) for all
w ∈ V . (1 mark, A)

(iii) Applying (ii) to the equation TT−1 = I gives (T−1)∗T ∗ = I∗. Since I∗ = I,
this implies that T ∗ has inverse (T−1)∗. (3 marks, B)

(b) (i) The given map ( , ) is left-linear and satisfies (v, u) = (u, v). Also, for u 6= 0,

(u, u) = u1ū1 + iu1ū2 − iu2ū1 + 2u2ū2
= (u1 − iu2)(ū1 + iū2) + u2ū2
= |u1 − iu2|2 + |u2|2 > 0.

Hence ( , ) is an inner product. (2 marks, A)

(ii) To find an orthonormal basis, we apply Gram-Schmidt to the standard basis
e1, e2. Observe that ||e1|| = 1. Now let v2 = e2 − (e2, e1) e1 = e2 + ie1 = (i, 1)T (so
that (v2, e1) = 0). Then ||v2|| = 1 also, so an orthonormal basis is

e1, e2 + ie1.

(2 marks, A)

(iii) Let E = {e1, e2} be the standard basis, and B = {e1, e2 + ie1} the above

orthonormal basis, so the change of basis matrix is P =

(
1 i
0 1

)
. Then [T ]E = A,

so

[T ]B = P−1AP =

(
2 i
0 1

)
:= X.

By a standard result from lectures, [T ∗]B = X̄T , and hence

[T ]E = PX̄TP−1 =

(
1 i
0 1

)(
2 0
−i 1

)(
1 −i
0 1

)
=

(
3 −2i
−i 0

)
.

This is the required matrix A. (4 marks, B)

(c) (i) T is linear since the inner product ( , ) is left-linear. (1 mark, A)

(ii) For v, w ∈ V ,

(T (v), w) = ((v, a)b, w) = (v, a)(b, w) = (v, (b, w)a) = (v, (w, b)a).

This is equal to (v, T ∗(w)), so T ∗(w) = (w, b) a for all w. Or to change the variable
to v,

T ∗(v) = (v, b) a ∀v ∈ V.
(3 marks, C)

(iii) Suppose T = T ∗. Then (v, a) b = (v, b) a for all v ∈ V . Taking v = a gives

b = (a,b)
(a,a)

a. So b = λa, where λ ∈ C, and so

T (v) = λ(v, a) a ∀v ∈ V.

Then (T (a), a) = λ(a, a)2. This is equal to (a, T ∗(a)) = (a, T (a)) = λ̄(a, a)2. So
λ ∈ R. (3 marks, C)



1. (a) The square residual is given as ‖Ax− b‖2
2 which results in

r(x1) =
n∑

i=1
(x1 − bi)2 = nx2

1 − 2x1
∑
i=1

bi + C. (1)

Setting to zero the derivative of the residual with respect to x1 yields 2nx1 = 2∑n
i=1 bi which

results in the solution for x1 as x1 = 1
n

∑n
i=1 bi, i.e. the average of the entries of b. SEEN

A: 6 marks (minimum, final solution), B: 2 marks (residual) (8 marks)
(b) We are given the generally overdetermined system

(xi − c1)2 + (yi − c2)2 = r2, i = 1, ..., n. (2)

We reformulate the square residual by implementing the suggested substitution of variables.
We obtain

0 = (xi − c1)2 + (yi − c2)2 − r2, (3)

=
(
xi −

α

2

)2
+
(
yi −

β

2

)2

− γ −
(
α

2

)2
−
(
β

2

)2

, (4)

= x2
i + y2

i − xiα− yiβ − γ. (5)

The last line represents a linear system in the unknown coefficients α, β, γ. We can cast the
linear system in α, β, γ into matrix form Ax = b as

A =


x1 y1 1
x2 y2 1
... ... ...
xn yn 1

 , b =


x2

1 + y2
1

x2
2 + y2

2
...

x2
n + y2

n

 , x =


α

β

γ

 . (6)

Once we have solved for α, β, γ we can recover the circle parameters as

c1 = α

2 c2 = β

2 r =
√
α2

4 + β2

4 + γ. (7)

The condition n ≥ 3 ensures unique solutions to the least-squares problem. BOOK-
WORKA: 6 marks (nonlinear residual, final solution, comment on condition), C: 3

marks (matrix system), D: 3 marks (transform)
(12 marks)

(Total: 20 marks)

2. (a) We use the substitution x = cos θ. We then have

Tn(Tm(cos θ)) = Tn(cosmθ) = cos(n ·mθ) = Tnm(cos θ). (8)

We therefore have Tn(Tm(x)) = Tnm(x). BOOK-
WORKB: 5 marks (5 marks)



(b) We have the table of divided difference

x f(x)
0 5
1 3 −2
3 5 1 1
4 12 7 2 1

4

(9)

from which we can read off the Newton form of the interpolating polynomial

p3(x) = 5− 2x+ x(x− 1) + 1
4x(x− 1)(x− 3). (10)

In canonical form, we have p3(x) = 5− 9
4x+ 1

4x
3.

For the minimum we have 3x2 = 9 and therefore xmin =
√

3 (for a positive second derivative
p′′3(xmin)). SEEN

A: 3 marks (minimum), B: 2 marks (tableau, polynomial) (5 marks)
(c) We use induction on k to find that

f [i, i+ 1, ..., i+ k] = ak

k! f(i). (11)

Therefore, using this formula for i = 0 we get

pn(x) =
n∑

k=0
f [0, 1, ..., k]

k−1∏
j=0

(x− j) =
n∑

k=0

ak

k!

(
x

k

)
k! =

n∑
k=0

(
x

k

)
ak. (12)

UNSEEN
C: 5 marks (induction), D: 5 marks (final solution) (10 marks)

(Total: 20 marks)

3. (a) The third-order Hermite polynomial isH3(t) = 8t3−12t. The roots of this polynomial provides
the sampling points. We have t1 = 0 and t0,2 = ±

√
3
2 .

For the weights we use the exactness constraint for 1 and t2 and use the symmetry of the
weights, i.e., w0 = w2. Exactness for f(t) = 1 produces

w1 + 2w0 =
√
π. (13)

For exactness for f(t) = t2 we have

w0
3
2 + w2

3
2 =

√
π

2 . (14)

From these two equations we obtain the weights

w0 = w2 =
√
π

6 w1 = 2
3
√
π. (15)

SEEN,
BOOK-
WORK

A: 5 marks (final solution), B: 3 marks (roots), C: 1 mark (symmetry), D: 4
marks (weight system) (13 marks)



(b) We approximate the exponential by a Taylor series. The n-th term is

xn

n! . (16)

This term is approaching machine precision ε = 10−14 at about n = 16 with 16! ≈ 2 · 1013.

In this case, the x16-coefficient is 4.8 · 10−14. Since the Gaussian quadrature is exact for
polynomials up to degree 2n + 1 we reach machine precision at 2n + 1 = 16 or n ≈ 8, i.e.,
with eight sampling points. SEEN

A: 4 marks (Taylor series), B: 3 marks (final value) (7 marks)

(Total: 20 marks)
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ExamModuleCode QuestionNumber Comments for Students

MATH50003 1

The marks on this question were rather low. Many candidates lost marks for the 

straightforward parts on calculating minimal polynomials, because they omitted to prove 

the minimality of the degree. Parts (b)(ii),(iii) were found difficult by most and not well 

answered.

MATH50003 2 The marks for this question were moderate. Part (a) was a standard JCF computation and 

was in general quite well done; part (b) was similar to some exercises and problems covered 

in the lectures and was well done; part (c) was misunderstood by many candidates.

MATH50003 3

The third question had 3 parts. Part (a) was quite easy; two routine questions about adjoints 

and the invertibility of the adjoint of an invertible linear transformation which has a simple 

one line proof. The typical error was an incorrect order of the identities used and a lack of 

an English explanation what the identities meant. Part (b) was about an explicit pairing 

given by a Hermitian matrix. Typical errors were insufficient or incorrect arguments why the 

pairing was positive definite, a sign error in the Gram-Schmidt process caused by confusing 

symmetric pairings with hermitian ones, and confusing the problem of finding an 

orthonormal basis with eigenvectors. Part (iii) could be done without using part (ii), but this 

is quite computational, and many students did not explain what their computations was 

about.  Part (c) was more interesting. Here what was missing typically is using that T is self-

adjoint in part (iii) to show that lambda is real, which cannot be deduced otherwise. A lot of 

computations had no explanations and were going nowhere.

Please record below, some brief but non-trivial comments for students about how well (or otherwise) the questions were answered. 

For example, you may wish to comment on common errors and misconceptions, or areas where students have done well. These 

comments should note any errors in and corrections to the paper. These comments will be made available to students via the 

MathsCentral Blackboard site and should not contain any information which identifies individual candidates. Any comments which 

should be kept confidential should be included as confidential comments for the  Exam Board and Externals. If you would like to add 

formulas, please include a sperate pdf file with your email. 

If your module is taught across multiple year levels, you might have received this form for each level of the module. You are only 

required to fill this out once for each question.
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MATH50003 4

The students have in general done well with the linear-algebra question. In part (a), the 

student often did not attempt to minimize the residual directly via differentiation, but  via a 

QR-decomposition based on Gram-Schmidt or Householder. In part (b), when attempted, 

the students arrived at the correct results. A common mistake in (b) was the incorrect 

formulation of the residual at the beginning, but no points were subtracted, if continued 

correctly. 

MATH50003 5

The question was well done overall. Part a was very easy if you knew what you were trying 

to show. Part b was an exercise in deriving a Newton polynomial. Several students having 

obtained an incorrect polynomial, magically wrote down the correct one. Presumably, they 

obtained it from a calculator or some online resource. This was permitted, but it is always a 

good idea to explain where this has come from, rather than give the impression it follows 

from the line above - otherwise you have made a (further) mathematical mistake. Part c 

was the most challenging. Some students found arguments which are more concise and 

elegant than the intended proof by induction, for example by invoking the uniqueness of 

the polynomial interpolant. Those who used induction often suffered by not knowing in 

advance what initial postulate was best to assume - this led to unstructured answers. But 

overall, the students did well on this question.

MATH50003 6

A mixture of stronger and weaker solutions to this question. Some common pitfalls in part 

(a): (1) many students wasted a lot of time calculating the third Hermite polynomial when 

the question didn't ask to do this, and the intention in open book mode was that it could 

just be retrieved from notes. (2) several students used the general formula for weights and 

consequently lost time and made frequent algebraic errors. It is a simpler calculation to use 

the fact that the integral should be exact for all polynomials of degree 0,1,2, so just make a 

system of equations where each equation comes from integrating 1,t,t^2. (3) several 

students used the integral for polynomials of higher degree than this, which can work if the 

degree is less than 2n+1, but can also result in non-independent systems if not careful. (4) 

several students missed that the provided integral formula had the lower limit as zero, not 

minus infinity, and this introduced errors into the calculation. In part (b) the main problem 

was students seeming to misunderstand what was being asked.
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