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Question One

A surface S is described parametrically by

x = r cos θ, y = r sin θ, z = r2, (0 ≤ r ≤ a, 0 ≤ θ ≤ 2π),

where a is a fixed positive constant, and the vector field A is given by

A = y i− z j+ xk.

(a) [3 marks] What shape is the surface S? Is it open or closed?

(b) [3 marks] Find the unit normal n̂ to S which has n̂ ∙ k < 0.

(c) [3 marks] Calculate divA and curlA. What type of vector field is A?

(d) Evaluate

I =

∫

S

(curlA) ∙ n̂ dS

(i) [4 marks] by using the given parameterization of S and an appropriate Jacobian;

(ii) [4 marks] by using Stokes theorem and converting to an equivalent path integral;

(iii) [3 marks] by using the divergence theorem applied to a suitably chosen closed surface.

Question Two

(a) [5 marks] Show that the extremal curves y = y(x) of the integral

I =

∫ π

0
{r(x)(y′(x))2 − q(x)(y(x))2} dx

satisfying the end conditions
y(0) = y(π) = 0

and the constraint

J =

∫ π

0
p(x)(y(x))2 dx = 1

are solutions of the equation

(r(x)y′(x))′ + (q(x)− λp(x))y = 0, (1)

where ′ denotes d/dx and λ is the Lagrange multiplier.

(b) [5 marks] By multiplying (1) by y and integrating from 0 to π, show that

λ+ I = 0. (2)

(c) [10 marks] Determine the extremal curves and stationary values of I for the special case

p(x) = q(x) = r(x) = 1.

Show that there are an infinite number of possible values for λ and verify that your solutions
satisfy relation (2).
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SOLUTIONS

Question One Solution

(a) The surface is a paraboloid of circular cross-section. It is open with boundary curve a circle
of radius a. [3 marks]

(b) The surface S is given by z = x2 + y2. Let φ = z − x2 − y2 so that φ = 0 on S [1 mark].
Then the unit normal to S is

±∇φ/ |∇φ| = ±(−2xi− 2yj+ k)/
√
4x2 + 4y2 + 1. [1 mark]

We then take the − sign so that n̂ ∙ k < 0. This gives

n̂ = (2xi+ 2yj− k)/
√
4x2 + 4y2 + 1. [1 mark]

(c)

divA =
∂

∂x
(y) +

∂

∂y
(−z) +

∂

∂z
(x) = 0. [1 mark]

curlA =

∣
∣
∣
∣
∣
∣

i j k
∂/∂x ∂/∂y ∂/∂z

y −z x

∣
∣
∣
∣
∣
∣
= i− j− k. [1 mark]

We have divA = 0 so A is a solenoidal vector field [1 mark].

(d) (i) Firstly

(curlA) ∙ n̂ =
2x− 2y + 1

√
4x2 + 4y2 + 1

=
2x− 2y + 1
√
4r2 + 1

. [1 mark]

The appropriate Jacobian is

J =

∣
∣
∣
∣
∣
∣

i j k
∂x/∂r ∂y/∂r ∂z/∂r

∂x/∂θ ∂y/∂θ ∂z/∂θ

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

i j k
cos θ sin θ 2r
−r sin θ r cos θ 0

∣
∣
∣
∣
∣
∣
= (−2r2 cos θ)i− (2r2 sin θ)j+ rk

Hence
|J| =

√
4r4 cos2 θ + 4r4 sin2 θ + r2 = r

√
1 + 4r2. [2 marks]

Then

I =

∫ 2π

0

∫ a

0
(curlA) ∙ n̂ |J| dr dθ

=

∫ 2π

0

∫ a

0
(2x− 2y + 1) r dr dθ

=

∫ 2π

0

∫ a

0
(2r2 cos θ − 2r2 sin θ + r) dr dθ

The first two terms integrate to zero, leaving

I = 2π
[
r2/2

]a
0
= πa2. [1 mark]
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(d)(ii) Using Stokes theorem we have

I =

∮

γ

A ∙ dr [1 mark]

where γ is the boundary of S, i.e. a circle of radius a located at z = a2. Since the normal to S
has n̂ ∙ k < 0, by the right hand rule we should traverse γ clockwise [1 mark]. Now on γ :

A ∙ dr = y dx− z dy + x dz

= a sin θ d(a cos θ)− a2 d(a sin θ) + 0 [1 mark]

since dz = 0 on γ. We therefore have

I =

∫ 0

2π
(−a2 sin2 θ − a3 cos θ) dθ.

The second term integrates to zero, leaving

I =

∫ 2π

0
a2 sin2 θ dθ = πa2, [1 mark]

where the result
∫ 2π
0 sin

2 θ dθ = π can just be quoted.

(d)(iii) First we need to close the paraboloid by putting a circular lid on it at z = a2. Call the
lid SL. Then by the divergence theorem

I +

∫

SL

(curlA) ∙ n̂ dS =
∫

V

div (curlA) dV = 0, [2 marks]

where V is the volume enclosed by the (now) closed surface. The outward normal to SL is n̂ = k,
and so

I = −
∫

SL

(curlA) ∙ k dS = −
∫ 2π

θ=0

∫ a

r=0
(−1) r dr dθ = πa2. [1 mark]
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Question Two Solution

(a) We take
L = r(y′)2 − qy2, g = py2 [1 mark]

and consider the Euler-Lagrange equation applied to L + λg where λ is a Lagrange multiplier
to be found as part of the solution. We therefore have

∂

∂y
(r(y′)2 − qy2 + λpy2)−

d

dx

(
∂

∂y′
(r(y′)2 − qy2 + λpy2)

)

= 0 [1 mark]

=⇒ 2(λp− q)y −
d

dx
(2ry′) = 0, [2 marks]

which (after dividing by two) is the equation given in the question [1 mark].

(b) Multiplying by y and integrating:
∫ π

0
(λp− q)y2 dx =

∫ π

0
y
d

dx
(ry′) dx =

[
yry′

]π
0
−
∫ π

0
r(y′)2dx, [2 marks]

after integrating by parts on the right hand side. The integrated term vanishes since y(0) =
y(π) = 0 and so

λ

∫ π

0
py2dx =

∫ π

0
qy2 − r(y′)2 dx. [1 mark]

The integral on the left hand side is just the constraint J which has value unity (from the
question) [1 mark], while the integral on the right hand side is −I. We therefore have

λ = −I, [1 mark]

as required.

(c) Now set p = q = r = 1 so that the ODE calculated above reduces to

y′′ + (1− λ)y = 0. [1 mark]

If we let β2 = 1− λ then we can write the solutions as

y = A cosβx+B sinβx. [2 marks]

Applying the end conditions y(0) = y(π) = 0 we see that

A = 0, β = ±1,±2,±3, . . . [2 marks]

and hence we have an infinite number of possible values for λ :

λ = 1− β2 = 0,−3,−8, . . . . [1 mark]

To find B we need to substitute into the integral constraint
∫ π

0
y2 dx = 1,

which gives ∫ π

0
B2 sin2 βx dx = B2

π

2
= 1,

since β is an integer. Thus B =
√
2/π and the extremal curves are

y =

√
2

π
sinβx, β = ±1,±2,±3, . . . . [1 mark]

The corresponding stationary values of I are

I =

∫ π

0
[(y′)2−y2] dx =

2

π

∫ π

0
(β2 cos2 βx−sin2 βx) dx =

2

π

(π
2
β2 −

π

2

)
= β2−1 = −λ, [2 marks]

and so indeed I + λ = 0 as found earlier in the more general setting [1 mark].
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