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Question One

Let S be the closed surface defined by the region in the first octant bounded by the surfaces

x2 + y2 = 4, z = 0, z = 3, x = 0, y = 0,

and let n̂ be the unit outward normal to S.

(a) [2 marks] Sketch the surface S.

Consider the vector field
A = A1i + A2j + z k

where A1, A2 are constants.

(b) [5 marks] Let S1 denote the curved part of S. By projecting onto the x − z plane, show
that ∫

S1

A ∙ n̂ dS = 6A1 + 6A2.

(c) [3 marks] Demonstrate that the same answer is obtained by projecting onto the y−z plane.
Why can’t we project onto the x − y plane in this case?

(d) [7 marks] For i = 2, 3, 4, 5 calculate
∫

Si

A ∙ n̂ dS

where the Si are the other four faces of S.

(e) [1 mark] Hence calculate the flux of A across S.

(f) [2 marks] Check your answer by applying the divergence theorem and considering the
appropriate volume integral.

Question Two

(a) [6 marks] Show that the extremal curve y(x) of the integral

I =
∫ π

0
4y2 − (y′)2 dx

subject to the end conditions
y(0) = 1, y′(π) = 0

is given by
y(x) = cos 2x.

(b) [14 marks] If the integral constraint
∫ π

0
y(x) cos 2x dx = π

is added to the problem, find the new extremal curve of I.

1



Imperial College London
MATH 50004 Multivariable Calculus
January Test Date: 10th January 2022

SOLUTIONS

Question One Solution

(a) sketch [2 marks]

Σ S1

(b) The normal to S1 is

∇(x2 + y2)/
∣
∣∇(x2 + y2)

∣
∣ = (2xi+ 2yj)/(4x2 + 4y2)1/2 = (xi+ yj)/2, [1 mark]

and so we have on S1:

A ∙ n̂ =
1

2
(xA1 + yA2). [1 mark]

Projecting onto y = 0:

dS =
dx dz

|n̂ ∙ j|
=
2dx dz

y
.

Then by the projection theorem:

∫

S1

A ∙ n̂ dS =
∫

Σ

1

2
(xA1 + yA2)

2dx dz

y
.

Substituting for y = (4− x2)1/2:

∫

S1

A ∙ n̂ dS =

∫ z=3

z=0

∫ x=2

x=0
[
xA1

(4− x2)1/2
+A2] dx dz

= 6A2 + 3A1

∫ 2

0
x(4− x2)−1/2dx

= 6A2 − 3A1[(4− x
2)1/2]20

= 6A2 + 6A1. [3 marks]

(c) To project onto x = 0 we have

dS =
dy dz

|n̂ ∙ i|
=
2dy dz

x
.
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Substituting x = (4− y2)1/2:

∫

S1

A ∙ n̂ dS =

∫ z=3

z=0

∫ y=2

y=0
[
yA2

(4− y2)1/2
+A1] dy dz

= 6A2 + 6A1

as above [2 marks]. We cannot project onto z = 0 because n̂ ∙ k = 0 (the surface S1 does not
cast a shadow in this direction) [1 mark].

(d) Turning now to the other four faces.

(i) The plane y = 0. Here n̂ = −j⇒ A ∙ n̂ = −A2. The integral is therefore

−
∫ 3

0

∫ 2

0
A2dx dz = −6A2. [2 marks]

(ii) The plane x = 0. Here n̂ = −i⇒ A ∙ n̂ = −A1. The integral is

−
∫ 3

0

∫ 2

0
A1dy dz = −6A1. [2 marks]

(iii) The plane z = 0. Here n̂ = −k⇒ A ∙ n̂ = −z and the region of integration is a quarter disc
D, say. The integral is

−
∫ ∫

D

z dx dy = 0,

since z = 0 on D.[1 mark]

(iv) The plane z = 3. This time n̂ = k and so A ∙ n̂ = z = 3. The integral is

∫ π/2

0

∫ 2

0
3 r dr dθ = 3π. [2 marks]

(It is fine to state that the area of D is one quarter the area of a circle of radius 2 (= π)).

(e) To get the flux we add the five contributions together:

∮

S

A ∙ n̂ dS =
5∑

i=1

∫

Si

A ∙ n̂ dS = 6A1 + 6A2 − 6A2 − 6A1 + 0 + 3π = 3π. [1 mark]

(f) Applying the divergence theorem to the closed surface S (enclosing a volume V ):

∮

S

A ∙ n̂ dS =
∫

V

divA dV =

∫

V

dV = 3π,

since divA = 1 [1 mark] and the volume V is one quarter the volume of a cylinder of radius 2
and height 3 [1 mark].

2



Question Two Solution

(a) Let
L = 4y2 − (y′)2.

Then
∂L

∂y
= 8y,

∂L

∂y′
= −2y′. [1 mark]

The Euler-Lagrange equation is
∂L

∂y
−
d

∂x

(
∂L

∂y′

)

= 0.

Substituting for L we have
8y + 2y′′ = 0 [1 mark]

which has the general solution

y = A cos 2x+B sin 2x. [2 marks]

Applying the end conditions y(0) = 1, y′(π) = 0 we find

A = 1, B = 0

and hence
y = cos 2x,

as required [2 marks].

(b) Now let
g = y cos 2x

and apply the Euler-Lagrange equation to L+ λg:

∂

∂y

(
4y2 − y′2 + λy cos 2x

)
−
d

dx

(
∂

∂y′
(4y2 − y′2 + λy cos 2x)

)

= 0

⇒ 8y + λ cos 2x+ 2y′′

⇒ y′′ + 4y = −
λ

2
cos 2x. [2 marks]

The homogeneous solution (as above) is

yH = A cos 2x+B sin 2x. [1 mark]

For the particular solution we observe that the RHS occurs in yH so we look for

yPS = x(C cos 2x+D sin 2x).

Then, by direct computation

y′′PS = −4yPS + 2(−2C sin 2x+ 2D cos 2x)

and so we require

−4C sin 2x+ 4D cos 2x = −
λ

2
cos 2x

which can only be satisfied provided

C = 0, D = −λ/8.
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We therefore have

y = yH + yPS = A cos 2x+B sin 2x−
1

8
λx sin 2x. [3 marks]

Applying the end conditions y(0) = 1 we find

A = 1,

as before [1 mark]. Applying y′(π) = 0 we have

−2 sin 2π + 2B cos 2π −
1

8
λ sin 2π −

1

4
λπ cos 2π = 0

and hence
B = λπ/8. [1 mark]

To find λ we substitute into the integral constraint

∫ π

0
y cos 2x dx = π

to get ∫ π

0
cos2 2x+

λπ

8
sin 2x cos 2x−

λ

8
x sin 2x cos 2x dx = π. [1 mark]

The second term integrates to zero [1 mark] while the first term is equal to π/2 [1 mark].
In addition we need to integrate by parts on the final term:

∫ π

0
x sin 2x cos 2x dx =

∫ π

0

1

2
x sin 4x dx

=

[

−
1

8
x cos 4x

]π

0

+

∫ π

0

1

8
cos 4x dx

= −
1

8
π cos 4π

= −π/8. [2 marks]

Putting these calculations together:

π/2− (λ/8) (−π/8) = π

⇒ λ = 32.

The constrained extremal curve is therefore

y = cos 2x+ 4π sin 2x− 4x sin 2x. [1 mark].
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