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1. (a) Consider two vector fields A and B. The vector field B is solenoidal. Use subscript notation
to simplify

(A×∇)×B−A× curlB.

You may assume the relation εijkεklm = δilδjm − δimδjl. (7 marks)

(b) Determine the constants α, β, γ such that the surfaces

αx2z − xy2 = β, γxz − y2 = 0,

intersect orthogonally at the point (x, y, z) = (−2, 2,−1). (7 marks)

(c) Consider the double integral
I =

∫∫
R

(y − x) dx dy

where the finite region R is bounded by the lines

y = x+ 1, y = x− 3, y = 2− 1
3x, y = 4− 1

3x.

Use the substitution
u = y − x, v = y + 1

3x

to evaluate I. (6 marks)

(Total: 20 marks)
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2. A surface S is described parametrically by

x = h cos θ, y = h sin θ, z = a− h, (0 ≤ h ≤ a, 0 ≤ θ ≤ 2π),

where a is a positive constant.

(a) Express z as a function of x and y. Sketch the surface S. Is this an open or closed surface?
Is it convex? (4 marks)

(b) Show that the unit normal n̂ to S which has n̂ · k > 0 can be written in the form

n̂ = x i + y j√
2(x2 + y2)1/2

+ k√
2
.

(3 marks)

(c) Find the equation of the tangent plane to S at the location where x = a and y = 0.
(3 marks)

(d) If S is projected onto the x− y plane, what is the shape of the resulting projection?
(2 marks)

(e) Suppose A is the vector field
A = x i .

Calculate ∫
S

A · n̂ dS

using the projection theorem. (5 marks)
[You may assume that a small areal element in polar coordinates is given by r dr dθ].

(f) Check your answer to (e) using the divergence theorem. (3 marks)

(Total: 20 marks)
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3. (a) The coordinates (u1, u2, u3) are defined in terms of Cartesian coordinates (x, y, z) by

x = u1u2 cosu3, y = u1u2 sin u3, z = 1
2(u2

1 − u2
2), (u1 ≥ 0, u2 ≥ 0, 0 ≤ u3 ≤ 2π).

(i) By calculating an appropriate Jacobian, find the function F (u1, u2) such that an element
of the surface u3 = constant can be expressed as

dS = F (u1, u2) du1du2.

(3 marks)

(ii) Show that this system is orthogonal, determine the lengthscales h1, h2, h3 and verify that

F (u1, u2) = h1h2.

(6 marks)

(b) A curve y = y(x) joins the points (−a, 0), (a, 0) in the x− y plane where a > 0.
(i) What properties of the curve do the integrals

I =
∫ a

−a
y

1 +
(
dy
dx

)2
1/2

dx, J =
∫ a

−a

1 +
(
dy
dx

)2
1/2

dx

represent? What does the ratio I/J represent physically? (3 marks)
(ii) Using the Euler-Lagrange equation show that the appropriate form of y(x) which renders

I stationary subject to the constraint J = 2 is

y = C
(

cosh
(
x

C

)
− cosh

(
a

C

))
,

where
C sinh

(
a

C

)
= 1.

(6 marks)

(iii) Deduce that solutions can only exist if a < a0 where a0 is a value to be identified.
(2 marks)

(Total: 20 marks)
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4. (a) Consider an initial value problem

ẋ = f(t, x) , x(t0) = x0 ,

where f : R × Rd → Rd is continuous and (t0, x0) ∈ R × Rd is fixed. Let J be an interval
containing t0 in its interior, and consider the Picard iterates {λn : J → Rd}n∈N0 corresponding
to this initial value problem.

(i) Show that λ̇n(t0) = f(t0, λn(t0)) for any n ∈ N. (3 marks)
(ii) What is the maximal (i.e. largest) interval J on which the functions λn : J → Rd can

be defined? Justify your answer. (3 marks)
(iii) Compute λ0, λ1 and λ2 for the one-dimensional initial value problem ẋ = x2 with

x(1) = 1. (6 marks)

(b) Consider an autonomous differential equation

ẋ = f(x) ,

where f : Rd → Rd is locally Lipschitz continuous.

(i) Does this differential equation have unique local solutions for every initial condition of
the form x(0) = x0, where x0 ∈ Rd? Justify your answer. (2 marks)

(ii) Prove that for all y0 ∈ Rd, there exist T > 0 and x0 ∈ Rd such that there exists a
solution λ : I → Rd to this differential equation with λ(0) = x0 and λ(T ) = y0.

(6 marks)

(Total: 20 marks)
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5. Consider the nonlinear differential equationẋ
ẏ

 =

2 −2

1 0


︸ ︷︷ ︸

=:A

x
y

+

−x
(
(x− y)2 + y2

)
−y
(
(x− y)2 + y2

)
 ,

whose right hand side is written as the sum of the linear part with coefficient matrix A and a
nonlinearity.

(i) Show that (x∗, y∗) := (0, 0) is the only equilibrium. (3 marks)

(ii) Calculate the real Jordan normal form of the coefficient matrix A using an invertible
transformation matrix T ∈ R2×2. (4 marks)

(iii) Explain why the equilibrium (x∗, y∗) = (0, 0) is repulsive. (2 marks)

(iv) Show that the set MR := {(x, y) ∈ R2 : (x− y)2 + y2 ≤ R} is positively invariant for some
R > 0. (6 marks)
Hint. Consider the orbital derivative of an appropriate scalar-valued function and note that it
is helpful to preserve/create terms of the form ((x− y)2 + y2) in your calculations.

(v) Prove that there exists a periodic orbit. (5 marks)

(Total: 20 marks)

MATH50004 Multivariable Calculus and Differential Equations (2021) Page 6



6. (a) Decide for each of the following four statements whether it is true or false. All statements
involve omega limit sets ω(x) or alpha limit sets α(x) of a differential equation

ẋ = f(x) ,

where we require that f : Rd → Rd is locally Lipschitz continuous. Justify your answer
by either providing an example (which can also be a picture with short explanation) or an
explanation why such an example does not exist.

(i) There exist f : Rd → Rd and x ∈ Rd such that ω(x) is a singleton. (3 marks)
(ii) There exist f : Rd → Rd, x ∈ Rd and y ∈ ω(x) such that ω(x) is nonempty and

compact and ω(x) ∩ ω(y) = ∅. (3 marks)
(iii) There exist f : Rd → Rd and x ∈ Rd such that ω(x) = α(x). (3 marks)
(iv) There exist f : Rd → Rd and x ∈ Rd such that ω(x) = α(x) and x /∈ ω(x). (3 marks)

(b) Consider an autonomous differential equation

ẋ = f(x) ,

where f : Rd → Rd is locally Lipschitz continuous. The flow of this differential equation is
denoted by ϕ, and let x ∈ Rd such there exists a K > 0 with ‖ϕ(t, x)‖ ≤ K for all t ≥ 0.
(i) Show that ω(x) is nonempty. (2 marks)
(ii) Show that for all ε > 0, there exists a T > 0 such that

ϕ(t, x) ∈ Bε(ω(x)) for all t ≥ T ,

where Bε(ω(x)) := {y ∈ Rd : ‖y − z‖ < ε for some z ∈ ω(x)}. (6 marks)

(Total: 20 marks)
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Imperial College London
MATH 50004 Multivariable Calculus and Differential Equations

May–June 2021
SOLUTIONS

Question One Solution

(a) Considering the ith component:

[(A×∇)×B−A× curlB]i = εijk{(A×∇)jBk −Aj(curlB)k}

= εijk{εjlmAl
∂

∂xm
Bk − εklmAj

∂

∂xl
Bm} [2 marks (A)]

= −εikjεjlmAl
∂Bk
∂xm

− εijkεklmAj
∂Bm

∂xl

= −(δilδkm − δimδkl)Al
∂Bk
∂xm

− (δilδjm − δimδjl)Aj
∂Bm
∂xl

= −Ai
∂Bk
∂xk

+Ak
∂Bk
∂xi
−Aj

∂Bj

∂xi
+Aj

∂Bi

∂xj
[2 marks (A)]

= −Ai divB+ (A ∙ ∇)Bi [2 marks (A)]

= (A ∙ ∇)Bi

since B is solenoidal (i.e. divB = 0) [1 mark (A)]. Therefore the answer is (A ∙ ∇)B.

(b) Firstly the point (−2, 2,−1) needs to be a point on both surfaces: this implies

−4α+ 8 = β, 2γ − 4 = 0

and so we have
γ = 2, β + 4α = 8. [2 marks (D)]

Let φ = αx2z − xy2. Then the normal to the surface φ constant is

∇φ = (2αxz − y2)i− 2xyj+ αx2k = (4α− 4)i+ 8j+ 4αk

at P (−2, 2,−1) [1 mark (C)]. Let ψ = γxz − y2. The corresponding normal is

∇ψ = γzi− 2yj+ γxk = −γi− 4j− 2γk

at P (−2, 2,−1) [1 mark (C)]. It follows that

(∇φ)P ∙ (∇ψ)P = −γ(4α− 4)− 32− 8αγ = −24α− 24,

upon substituting γ = 2 [1 mark (D)].
For the surfaces to intersect orthogonally at P we require (∇φ)P ∙ (∇ψ)P = 0 [1 mark (D)]
and hence α = −1. It then follows from above that β = 8− 4α = 12 [1 mark (D)].

(c) First we see what happens to the boundaries in u− v space. We see that y = x+1 becomes
u = 1 and y = x−3 becomes u = −3 [1 mark (B)]. Similarly the lines y = 2−x/3, y = 4−x/3
become v = 2 and v = 4 respectively [1 mark (B)].
We have

dx dy = |J | du dv, J =

∣
∣
∣
∣
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣
∣
∣
∣ =

∣
∣
∣
∣
∂u/∂x ∂v/∂x

∂u/∂y ∂v/∂y

∣
∣
∣
∣

−1

=

∣
∣
∣
∣
−1 1/3
1 1

∣
∣
∣
∣

−1

= −
3

4

and hence |J | = 3/4 [2 marks (B)]. We therefore have

I =

∫ ∫

R

(y − x) dx dy =
∫ 4

v=2

∫ 1

u=−3

3

4
u du dv = (2)(

3

4
)

[
u2

2

]1

−3
= −6 [2 marks (B)].
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Question Two Solution

(a) We see that x2 + y2 = h2 and hence

z = a− (x2 + y2)1/2 [1 mark (A)]

The surface is a cone with base radius a and height a [1 mark (A)].
The surface is open (there is no circular base) [1 mark (A)] and it is convex [1 mark (A)] (a
straight line intersects S at most twice). Justifications not required.

(b) To find n̂ we first set

φ = z − a+ (x2 + y2)1/2 = 0 [1 mark (A)]

(other definitions of φ possible with φ =constant on S). Then

n̂ = ±∇φ/ |∇φ| = ±(xi/(x2 + y2)1/2 + yj/(x2 + y2)1/2 + k)/(x2/(x2 + y2) + y2/(x2 + y2) + 1)1/2

= ±(
xi+ yj

√
2(x2 + y2)

+
k
√
2
). [1 mark (A)]

We need to take the plus sign so that n̂ ∙ k > 0 [1 mark (A)].

(c) Let xp = a, yp = 0, then the corresponding value of z on S is zp = 0 [1 mark (B)]. The
tangent plane is

(r− rp) ∙ (∇φ)p = 0 [1 mark (B)]

where rp = (a, 0, 0) = a i and
(∇φ)p = i+ k.

Therefore the tangent plane has the equation

((x− a)i+ yj+ zk) ∙ (i+ k) = 0,

i.e.
z = a− x. [1 mark (B)]

(d) If we project onto the x− y plane then we set the z−coordinate to zero, so that

x = h cos θ, y = h sin θ, z = 0, (0 ≤ h ≤ a, 0 ≤ θ ≤ 2π)

⇒ x2 + y2 = h2, (0 ≤ h ≤ a).

The projection is therefore a circular disc of radius a (not a circle!) [2 marks (B): 1 for stating
it is a disc, the other mark for some reasoning along the lines above].

(e) If A = x i then

A ∙ n̂ =
x2

√
2(x2 + y2)1/2

[1 mark (C)]

Then by the projection theorem

∫

S

A ∙ n̂ dS =
∫

disc

x2
√
2(x2 + y2)1/2

dx dy

|n̂ ∙ k|
[1 mark (C)]

with n̂ ∙ k = 1/
√
2 [1 mark (C)]. To evaluate the integral switch to plane polars so that

(x2 + y2)1/2 = r, x = r cos θ, dx dy = r dr dθ, 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π, [1 mark (C)]
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Then

∫

S

A ∙ n̂ dS =

∫ 2π

0

∫ a

0

r2 cos2 θ

r
r drdθ

=

∫ 2π

0
cos2 θ dθ

∫ a

0
r2dr

= πa3/3 [1 mark (C)]

where the trigonometric integral is evaluated using a double angle formula.

(f) To use the divergence theorem we need to include the circular base (D say) with outward
normal n̂ = −k. Then

∫

S

A ∙ n̂ dS +
∫

D

A ∙ (−k) dx dy =
∫

V

divA dV. [1 mark (D)]

But divA = 1 and A ∙ k = 0. [1 mark (D)] Thus:
∫

S

A ∙ n̂ dS = volume of cone = (1/3)πa3,

agreeing with (e) [1 mark (D)].
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Question Three Solution

(a)(i) We consider the vector Jacobian

J(u1, u2, u3) =
∂r

∂u1
×

∂r

∂u2
=

∣
∣
∣
∣
∣
∣

i j k
u2 cosu3 u2 sinu3 u1
u1 cosu3 u1 sinu3 −u2

∣
∣
∣
∣
∣
∣

= −(u21 + u
2
2) sinu3i+ (u

2
1 + u

2
2) cosu3j+ 0k. [2 marks (A)]

Therefore
F (u1, u2) = |J| = u

2
1 + u

2
2. [1 mark (A)]

(a)(ii) To demonstrate orthogonality we calculate

e1 =
∂r

∂u1
= (u2 cosu3, u2 sinu3, u1),

e2 =
∂r

∂u2
= (u1 cosu3, u1 sinu3,−u2),

e3 =
∂r

∂u3
= (−u1u2 sinu3, u1u2 cosu3, 0).

We then see that

e1 ∙ e2 = u1u2 cos
2 u3 + u1u2 sin

2 u3 − u1u2 = 0,

e1 ∙ e3 = −u1u
2
2 sinu3 cosu3 + u1u

2
2 sinu3 cosu3 = 0,

e2 ∙ e3 = −u21u2 sinu3 cosu3 + u
2
1u2 sinu3 cosu3 = 0,

and hence the system is orthogonal [3 marks (A)]. The lengthscales are

h1 = |e1| =
√
u22 cos

2 u3 + u22 sin
2 u3 + u21 =

√
u21 + u

2
2,

h2 = |e2| =
√
u21 cos

2 u3 + u21 sin
2 u3 + u22 =

√
u21 + u

2
2,

h3 = |e3| =
√
u21u

2
2 sin

2 u3 + u21u
2
2 cos

2 u3 = u1u2.

From this we can see that F (u1, u2) = h1h2 as required [3 marks (A)].

(b)(i) I/2π represents the surface area generated by revolving the section of the curve y = y(x)
between x = ±a about the x-axis [1 mark (D)].
J represents the distance along the curve y = y(x) between x = −a and x = a [1 mark (A)].
The ratio I/J gives the y−coordinate of the centre of gravity (or centroid) of the curve y = y(x)
[1 mark (D)].

(b)(ii) We apply the Euler-Lagrange equation to the functional

L = y
(
1 + (y′)2

)1/2
+ λ

(
1 + (y′)2

)1/2
= (y + λ)

(
1 + (y′)2

)1/2
.

Since L is explicitly independent of x the Euler-Lagrange equation reduces to

L− y′
∂L

∂y′
= constant

and so we have

(y + λ)
{(
1 + (y′)2

)1/2
− (y′)2

(
1 + (y′)2

)−1/2}
= constant

⇒ (y + λ)
(
1 + (y′)2

)−1/2
= constant⇒ (y + λ)2 = C2

(
1 + (y′)2

)
[2 marks (B)]
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This can be rearranged to

y′ = ±C−1
√
(y + λ)2 − C2 ⇒ x = ±C

∫
dy

√
(y + λ)2 − C2

= ±C cosh−1
(
y + λ

C

)

+K,

and hence

y = −λ+ C cosh

(
x−K
C

)

.

Applying the end conditions y = 0 at x = ±a we see that

λ = C cosh

(
a−K
C

)

= C cosh

(
a+K

C

)

and hence K = 0 and λ = C cosh(a/C). Hence we have the extremal curve

y = C cosh(x/C)− C cosh(a/C). [2 marks (B)]

Substituting into the integral constraint we have

J = 2 =

∫ a

−a

√
1 + sinh2(x/C) dx = [C sinh(x/C)]a−a = 2C sinh(a/C)⇒ C sinh(a/C) = 1,

as required [2 marks (C)].

(b)(iii) From examination of the integral for J we have J > 2a. Thus it is not possible to keep
J fixed at the value of 2 if a ≥ 1. We therefore have a0 = 1 [2 marks (D)].
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sim. seen ⇓

3, A

4. (a) (i) We have λn+1(t) = x0 +
∫ t
t0
f(s, λn(s)) ds for all n ∈ N0, which implies

λn(t0) = x0 for all n ∈ N, and using this and the fundamental theorem of

calculus, we get λ̇n+1(t0) = f(t0, λn(t0)) = f(t0, x0) = f(t0, λn+1(t0)) for all

n ∈ N0. unseen ⇓

3, A
(ii) The maximal interval on which the Picard iterates can be defined is R.

Iteratively it follows that the functions λn, n ∈ N are differentiable and thus

continuous, and hence, the integrand of the integral
∫ t
t0
f(s, λn(s)) ds is a

continuous function and the integral exists for all t ∈ R.
sim. seen ⇓

6, A
(iii) With f(x) = x2, we get for all t ∈ J that

λ0(t) = 1 ,

λ1(t) = 1 +

∫ t

1
f(λ0(s)) ds = t ,

λ2(t) = 1 +

∫ t

1
f(λ1(s)) ds = 1 +

∫ t

1
s2 ds = 1 +

1

3
s3
∣∣∣s=t

s=1
=

2

3
+

1

3
t3 .

seen ⇓

2, A
(b) (i) The differential equation satisfies the conditions for the local version of the

Picard–Lindelöf theorem, and for this reason, all initial value problems have

local solution that is unique.
unseen ⇓

6, D
(ii) The local version of the Picard–Lindelöf theorem implies that there exist an

h > 0 and a solution µ : [−h, h] → Rd satisfying µ(0) = y0. Define

T := h
2 . Translation invariance implies that the function λ : [−T, 3T ] → Rd,

λ(t) := µ(t − T ), is a solution to the differential equation, and we have

λ(T ) = µ(0) = y0. The function λ satisfies λ(0) = µ(−h
2 ), so the statement

is correct with x0 = µ(−h
2 ).
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meth seen ⇓

3, B

5. (i) ẏ = 0 if and only if x− y((x− y)2 + y2)) = 0. If y = 0, this implies x = 0 (clearly

(0, 0) is a zero of the first equation and thus an equilibrium). To look for more

equilibria, we can assume y 6= 0. Then (x − y)2 + y2 = x
y , and we plug this into

ẋ = 0 to obtain 0 = 2x−2y− x2

y , which implies 0 = 2y2+x2−2xy = y2+(x−y)2.

Since y 6= 0, this is not possible, so there are not more equilibria.
meth seen ⇓

4, B
(ii) The characteristic polynomial reads as λ2 − 2λ+ 2. Its roots, the eigenvalues, are

given by λ1 = 1+ i and λ2 = 1− i, and one computes the (complex) eigenvectors

v1 =

(
1 + i

1

)
and v2 =

(
1− i
1

)
.

Thus, the transformation matrix T and its inverse are given by

T =

(
1 1

1 0

)
and T−1 =

(
0 1

1 −1

)
,

so that the real Jordan normal form is given by

J = T−1AT =

(
1 1

−1 1

)
.

sim. seen ⇓

2, A
(iii) The linearisation in the equilibrium is clearly given by the matrix A. The real parts

of the eigenvalues of the matrix A are positive, which implies that the equilibrium

(x∗, y∗) is repulsive. sim. seen ⇓

6, C
(iv) Consider V (x, y) = (x− y)2 + y2. We obtain

V̇ (x, y) = (2x− 2y,−2x+ 4y)

(
2x− 2y − x((x− y)2 + y2)

x− y((x− y)2 + y2)

)
= 4x2 − 8xy + 4y2 − 2x2 + 4xy

− ((2x− 2y)x+ (4y − 2x)y)((x− y)2 + y2))

= 2x2 − 4xy + 4y2 − ((2x− 2y)x+ (4y − 2x)y)((x− y)2 + y2))

= 2((x− y)2 + y2)− 2(x2 − xy + 2y2 − xy)((x− y)2 + y2))

= ((x− y)2 + y2))(2− 2((x− y)2 + y2)) ,

which is clearly strictly negative whenever (x−y)2+y = R for some R > 1. Hence

MR is positively invariant whenever R > 1. sim. seen ⇓

5, B
(v) The compact set M2 is positively invariant due to (iv). Take some (x, y) ∈

M2 \ {(0, 0)}. Then ω(x, y) must be a periodic orbit, since it cannot contain

the only equilibrium given by {(0, 0)} (it is repulsive), and according to the

Poincaré–Bendixson theorem, all other possible omega limit sets contain at least

an equilibrium.
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sim. seen ⇓

3, A

6. (a) (i) The statement is true: d = 1, f(x) = −x, for all x ∈ R, ω(x) = {0}.

unseen ⇓

3, C

(ii) The statement is false. Since ω(x) is compact and invariant, for any y ∈ ω(x),
O+(y) ⊂ ω(x) is compact, and thus ω(y) is a nonempty subset of ω(x), giving

ω(x) ∩ ω(y) = ω(y) 6= ∅.

sim. seen ⇓

3, A

(iii) The statement is true: d = 1, f(x) = −x, ω(0) = {0} = α(0).

sim. seen ⇓

3, B

(iv) The statement is true: for any homoclinic orbit O(x), there exists an

equilibrium y ∈ Rd such that ω(x) = α(x) = {y}. x is not an equilibrium, so

x /∈ ω(x).

seen ⇓

2, A

(b) (i) This follows from a result proved in the course, since the assumption implies

that O+(x) is a compact subset of the domain Rd.

unseen ⇓

6, D

(ii) Assume to the contrary that there exists an ε > 0 and a sequence {tn}n∈N
converging to ∞ such that

ϕ(tn, x) /∈ Bε(ω(x)) for all n ∈ N .

Since the sequence {ϕ(tn, x)}n∈N is bounded, it has an accumulation point.

This accumulation point is an omega limit point of x, which is bounded away

from ω(x). This is a contradiction and finishes the proof.
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ExamModuleCode QuestionNumber Comments for Students

MATH50004 1

Part (a) on the use of subscript notation in simplifying a vector calculus expression was surprisingly 

poorly done. An alarming error made by some students was to assume that the vector product of a 

vector and a vector operator can be manipulated as if it was the vector product of two vectors.

Part (b) on showing 2 surfaces are othogonal was done very well. A significant number of students 

failed to appreciate that in order to pin down the values of the parameters uniquely one had to 

impose the condition that the point in question was indeed contained in both surfaces.

Part (c) on the use of a Jacobian to solve a 2D integral was also well done. A common error here was 

not taking the absolute value of the Jacobian. There was also a lack of sufficient detail given in some 

of the answers and this was penalized even if the final answer was correct.

MATH50004 2 Most students did v well with many getting 20/20

If your module is taught across multiple year levels, you might have received this form for each level of the module. You are only 

required to fill this out once for each question.
Please record below, some brief but non-trivial comments for students about how well (or otherwise) the questions were answered. 

For example, you may wish to comment on common errors and misconceptions, or areas where students have done well. These 

comments should note any errors in and corrections to the paper. These comments will be made available to students via the 

MathsCentral Blackboard site and should not contain any information which identifies individual candidates. Any comments which 

should be kept confidential should be included as confidential comments for the  Exam Board and Externals. If you would like to add 

formulas, please include a sperate pdf file with your email. 



MATH50004 3

Q3, bi:  asking properties of the integrals caused most problems, nearly all candidates were not  

aware that the equation represented center of gravity.  While integral I too was hard work for 

majority,  Property of J, an arc length was  explained by vast majority. Euler-Lagrange question 

caused many many problems, as quite a few did not use Beltrami Identity, but proceeded with the 

direct initial E-L form  i.e. dL/du - d/dx [DL/du']    ending up with horrible expression and not getting 

anywhere : majority of marks were lost on this part. Those that used Beltrami Identity fared much 

better.

MATH50004 4

This question was not done so well, even though the vast majority got 8 points from the easier parts 

4(a)(iii) and 4(b)(i). Many students forgot to mention some arguments in 4(a)(i), and 4(a)(ii) was 

often confused with the maximal existence interval, but the Picard iterates are independent of this 

and can be defined on the whole real line. Some students found nice (and different) solutions to the 

challenging question 4(b)(ii).

MATH50004 5

This question was well answered in most instances. Parts (i,ii,iii,iv) were nearly always done 

correctly. Part (iv) was the most appealing and insightful part of the question, but most candidates 

seemed not to notice the geometrically meaningful aspects of  this  part of the  question. I expect 

that this  part of the  question should help identify the students who really understood the 

geometrical aspects of the course. 

MATH50004 6

One of the main mistakes was that some students invoked Poincre-Bendixson Theorem (for a 

system on a plane any bounded orbit converges either to a stationary point, or to a periodic orbit, 

or to a connection between saddles) in the general multidimensional case. This is a specifically two-

dimensional result, which does not hold true in higher dimensions where much more complicated 

omega-limit sets are possible and Chaos rules!
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