Problem Sheet 1 Analysis 11
Davoud Cheraghi Autumn 2021

Exercise 1.1. (a) Show that the inner product satisfies the following properties: for all
z,y,2 € R" and a € R,

(z,y) = (y, ), (z+y,2) = (z,2) + (y,2), (az,y) = a(z,y).

Solution: These are computations using the definition of the inner product, vector
addition and scalar multiplication, and linearity properties of sums.

n . . n . .
=> 2y =) ylat = (y,1).
=1 =1

(ax,y) Zaxy—aZ:vy—axy)

b) For t € R and x,y € R", show that:
( y

lz + ty|* = lll|® + 2¢ (2, y) + 6 yl|* = 0 (1)

Solution: We use the properties of the inner product established above to find:

Haz:—nyH2 = (x +ty,z + ty) = (x,z + ty) + (ty,x + ty)
= (z, ) + (z,ty) + (ty, z) + (ty, ty)
= (z,x) + 2t {x,y) + * (y,9)
= [l + 2t (, y) + £ [ly )1

Since ||z + ty||* > 0, we certainly have:
|1 + 2t (z,y) + £ |yl|* > 0.

(c) By thinking of (1) as a quadratic in ¢, and considering its possible roots, deduce the
Cauchy-Schwartz inequality:

[z, y)| < [lf| lyll - (2)
When does equality hold?

Please send any corrections to d.cheraghi@imperial.ac.uk
Questions marked with * are optional



Solution: (1) is a non-negative quadratic in ¢, so it can have at most one root. Thus
the discriminant (b — 4ac with the usual conventions) must be non-positive, i.e.

4(x,y)* — 4z yllI* < 0,

which gives the result on re-arrangement. Equality holds iff there exists ¢ € R such
that ||z + ty|| = 0, which is the condition that z,y are parallel.

Deduce the triangle inequality for the norm on R".

Solution: Returning to (1) and setting ¢t = 1, we have:

2 2 2

Iz + 9" = llz]” + 2z, y) + [yl
2 2 2
<l ll® + 2{ll lyll + lylI” = =l + 1yl

Since both sides are positive, we deduce that:

[+ yll < llz[| + [ly[l -

Show the reverse triangle inequality:

[l = llyll | < lle =yl

Solution: To see the above inequality, it is enough to show that
ol = llyll < fle =yl and | = llyl = —[lz =yl
For the first one, we note that
[zl = lI(z —y) +yll < llz =yl + [yl
which gives is the first inequality. For the second one, we note that
lyll = Iy — ) + 2|l < [lz =yl + [l

which gives the second inequality by rearranging the terms.

Exercise 1.2. Suppose = = (z!,...,2") € R™.

(i) Show that:

max )xk‘ < ||z||
k=1,...,n
Solution: Fix an arbitrary k in {1,2,...,n}. Since y — ,/y is an increasing map

from [0, 400) to [0,400), we have

24 = (@42 < VEPF @+ @ = ol

This implies that the maximum of all these numbers is bounded by ||z]|.




(ii) Show that:

|z]| < +/n max ’mk‘
k=1,..,n

[Hint: write out ||z||* in coordinates and estimate]

Solution: Writing out [|z]|?, we have:

n

lz* = Z(Z‘Z)z < Z max (2¥)? = Z < max ka =n ( max :ka .
=1 =1 k=1,...,n i=1 k=1,..,n k=1,...n

Taking square roots, we have:

z*|,

Joll < v max
k=1,...,n

since both sides are positive.

Exercise 1.3. Suppose that (z;)72, and (y;)72, are two sequences in R" with
lim z; =z, lim y; = y.
1—00 1—00

(a) Show that
lim (z; +y;) =+ y.

1— 00

Solution: Fix ¢ > 0. By the convergence of (x;), (y;) there exists Ny, No such that
for ¢ > Ni and j > Ny we have:

€
27
Set N = max{Ny, No}. Then if i > N we have:

€
|z; — | < ly; — vl < 3

€ €
lzi +yi — (x+ )l < llzi — 2| + lly: — <gtg=e

(b) Show that
lim <xia y2> = <l‘,y> )

1—>00
and deduce that
lim [|zg]| = [|=]| .
71— 00

[Hint: Write (xi,y;) — (x,y) = (xi — 2,y —y) + (x; — x,y) + (x,y; —y) and use the
Cauchy-Schwartz inequality (2)]

Solution: Fix € > 0, and without loss of generality assume € < 1. By the convergence
of (z;), (y;) there exists Ny, No such that for ¢ > Nj and j > N3 we have:

€

|z — 2| < 57—
‘ 3(1+ [yl

€
lyj —yll < o=
’ 3(L+ ()

(The reason for the above choices will be clear in a moment.)



Set N = max{Ny, No}. Then, for all i > N, using the Cauchy-Schwarz inequality, we
have

(i, yi) — (i, y) + (i y) — (2, )]

\(xz‘,yz‘> - <m,y>| \
(@i yi —y) + (zi — 2, 9)|
\
|

(@i, yi — )| + (@i — 2,9)]

|zill lyi = yll + s — 2| ]l

= llzi =2+ 2| lyi =yl + lloi — 2| ||yl

< (s = 2l + =) llye — yll + i — 2| [yl

< lzi = [y = yll + =l v = yll + i = ]| |yl
2
€

<

9L+ [yl (L + [[=[])

L e
37373 ¢

VARPAY
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_
1+ [ly[})

(c) Suppose that (a;):2, is a sequence of real numbers with a; — a as ¢ — co. Show that

lim (a;z;) = ax.

11— 00
[Hint: Write a;x; —ax = (a; —a)(x; —x) + (a; — a)x + a(x; — x) and use the properties
of the norm.|

Solution: Fix € > 0, and without loss of generality assume ¢ < 1. By the convergence
of (a;), (y;) there exists N1, Ny such that for ¢ > Ny and j > Ny we have:

€ | |< €
a; —a
J 3

|z — 2| < Ty
' 3 3 ED

(1+lal)’
Set N = max{Ny, No}. Then if i > N we have:
laiz; — ax| = |[(ai — a)(zi — x) + (a; — a)x + az; — 2)|

< |l(ai = a)(zi = 2)|| + [(a; — a)z| + [a(z: — 2)|

= lai — al |lzi — =[] + |ai — al [lz]| + |af lz; — =]

e el
A+ lal)(X+[lzfl) ~ 3A+zl) 3L+ ]a])
<ttt o=c

37373 ¢

Exercise 1.4. Which of the following subsets of R™ is open:



Solution: a) Open, b) Open, ¢) Open, d) Not open, e¢) Not Open.

Exercise 1.5. Let (z;)7°, be a sequence of vectors x; € R" with x; — x. Suppose that
the z; satisfy ||x;|| < r for all 7 and some r > 0. Show that:
]| <7
[Hint: work by contradiction, assume ||z| > r and show this leads to an absurdity/

Solution: Suppose in the contrary that ||z| = s > r. Let ¢ = *5" > 0. By the convergence
of (x;), there exists j € N such that:

|z; — x| <e.

By the reverse triangle inequality we have:

[l = | < Il — 2]l < e,
however:
]| = [Jz;]|| = s = [lzj]| = s —r =2,
so we conclude
2e < €

which together with the fact that € > 0 is a contradiction.

Exercise 1.6. (a) Show that if U;, Uz are open in R”, then so are the sets

Z) Uy, UUs ZZ) Uy NUy

Solution: Suppose z € U; U Us. Then either z € Uy or x € Us. WLOG consider the
first possibility. Then since U; is open, there exists r > 0 such that B,.(z) C U;. But
this implies B,.(x) C Uy U Us, so Uy U Us is open.

Suppose x € U; N Usy. Then there exist 1, re such that B, (x) C Uy and By, (z) C Us.
Taking r = min{r;, 72} we have:

B,(z) C By, (x) C Uy, B, (z) C By,(z) C Us,

so that B,(x) C Uy NUs and thus U; N Us is open.

(b) Suppose Uy, for a in an index set I, is a collection of open sets in R™.
(i) Show that (J,c; Uq is open in R™.

Solution: Suppose = € |J,c; Us. Then there exists a € I such that z € U,.
Since U, is open, there exists r > 0 such that B,.(z) C U,, which implies B,(z) C
Uaer Uas hence o7 Uy is open.

(ii) Give an example showing that (1 .; Us need not be open.

Solution: Consider: A ,
U= (-27"27"), fori e N.

Then, ;e Ui = {0}, which is not open, but each set U; is an open interval.



Exercise 1.7. Suppose A C R" is an open set and f : A — R"™. Show that lim,_,, f(z) =
F if and only if for any sequence (z;)°, in A\ {p} which converges to p we have

f(zi) = F, asi— oo.

Solution: First suppose that lim,_,, f(xz) = F. Then given € > 0, there exists § > 0 such
that for any € A with 0 < || — p|| < § we have:

If () = FIl <e.

Now let (z;)7°, be any sequence with z; € A, x; # p and z; — p. Since x; — p, there
exists IV € N such that for all 4 > N we have:

0 < lz; —pll <9,

so by our assumption we have
1f (i) = Fll <e,
and thus f(z;) — F.
Now suppose that for any sequence (x;):°, with z; € A, x; # p and z; — p we have:

f(z;)) = F, asi— oc.

Suppose that f(x) /A F as © — p. Then there exists € > 0 such that for any i € N we can
find x; with: ‘
0<[lzi—pll <27 [[f(zi) = Fl ze

Now, clearly the sequence (x;):°, converges to p, but f(z;) /4 F, so we have a contradiction.

Exercise 1.8. (a) Show that the map f : R — R” defined as f(z) = (z,0,...,0) is
continuous on R.

Solution: Suppose p € R. Fix € > 0 and suppose = € R satisfies |z — p| < e. Then:

1f (@) = f@)Il = Iz —p,0,...,0)[ = |z —p| <e.

(b) Let A C R™ and suppose we are given a map f : A — R™ where
flzt,. .. 2" (fl((:cl,...,a:")),...,fm((xl,...,x”))) )

Show that f is continuous at p € A if and only if each map f* : A — R is continuous
at p,fork=1,...,m.

Solution: First suppose that each map f¥ : R® — R is continuous at p, for k =
1,...,m. Fix € > 0. Then for each k there exists J; > 0 such that for x € A with

|z — p|| < 0 we have:
k k €
7@ = )| <

Let 0 = ming—1 0. If z € A, ||z —p|| <9, we have:

19) = f@) < Vi, max | )~ )| < Vi =



so that f is continuous at p.

Now suppose that f is continuous at p. Fix € > 0, then there exists 9 > 0 such that
for all z € A, 0 < ||z — p|| < 0 we have:

1f(z) = f(p)Il <e.

Fix j € {1,...,m}. We estimate:

F@) = Po)] < max | @) - ()| < 1) - F@)] <«

k=1,...,
so that f7 is continuous at p.

Show that the map f : R" — R defined as f((z',2?,...,2")) = 32! (2?)° + 42?(z")"
is continuous on R™, 1.

Solution: By part a), the map from R" to each coordinate is continuous, so any finite
combination of sums and products of these functions is continuous.

Exercise 1.9.*

(a)

Suppose f: R™ — R™ is continuous on R"™, and suppose U C R™ is open. Show that:
fHU) = {z eR": f(z) € U}
is open.

Solution: Fix x € f~1(U). Since U is open, there exists € > 0 such that B.(f(z)) C U.
Since f is continuous, there exists > 0 such that if y € R” with ||y — x| < ¢ then
|f(y) — f(z)|| < e. But this implies that f(y) € B(f(z)) C U, so we have that
y € f~1(U) provided ||y — z|| < . Thus Bs(x) C f~1(U) and f~(U) is indeed open.

Suppose that f : R” — R™ has the property that f~1(U) C R" is open for every open
U C R™. Show that f is continuous on R".

Solution: Fix z € R”, and let ¢ > 0. Since B.(f(x)) is open, we have that the set
f7H(Be(f(x))) is open. We note that x € f=1 (B.(f(x))), thus there exists § > 0 such
that Bs(x) C f~' (B(f(z))). Now if y € R™ with ||z —y|| < §, then y € Bs(z) C
FH(B(f(2))), so that f(y) € Be(f(z)) and thus ||f(y) — f(z)]] < ¢, so that f is

indeed continuous at z.

Unseen Exercise. Let o € R be an irrational number, and for n € N let

(a)

1
an = o (cos(2mna), sin(2mna)) € R2.

Show that a,, — (0,0) € R? as n — oc.

Solution: Let € > 0 be arbitrary. There is n’ > 1 such that for all n > n/ we have
27" < €. For n > n' we have

lan — (0,0)]| = 27" ||(cos(2mna), sin(2mna))|| = 27" < e.

"Here, (7)™ denotes the coordinate 27 raised to power m.



(b)

Define the function f : R? — R according to

fz) =

1 if x =a, for some n € N,
0  otherwise.

Show that the map f is not continuous at (0,0).

Solution: Since a,, # (0,0) for all n € N, we have f(0,0) = 0. On the other hand
an, — (0,0) and f(a,) =1 does not converge to 0 = f(0,0). This shows that the map
f is not continuous at (0, 0).

for every non-zero vector u = (u',u?) € R?, show that f is continuous in the direction

of u at 0. That is, the map ¢ — f(tu) is continuous at t = 0.

Solution: Let us fix an arbitrary non-zero vector v = (u',u?) € R2. Consider the line

L={tu|tecR}CR%.

We claim that there is at most one integer n € N such that a,, € L. Assume in the
contrary that there are two such integers, say m and n with m # n. Then, there are
t, and t,, in R such that a,, = t,,u and a,, = t,u. Because a,, and a,, are non-zero,
t, and t,, must be non-zero, so we conclude that

U= A/t = an/ty,

and then

1
2M

(cos(2mma), sin(2mma)) = (cos(2mna), sin(2mnw)) .

2,

Since for every v € R, (cos(7), sin(y)) has modulus 1, we conclude that |2™t,| = [2™¢,|.
Therefore, either

(cos(2mma), sin(2rma)) = (cos(2mna), sin(2mna))
(cos(2mrma), sin(2rma)) = — (cos(2mna), sin(2rna)) .

Both of these cases imply that cos(2rma) = cos(2mna). This implies that there is
k € Z such that 2rna = 2rma + 2kw. Therefore, a = k/(n — m), which contradicts
« being irrational.

Let us define § as follows. If there is no a, in L, we define 6 = |Ju||. If there is a,, € L,
we let 0 = ||ay,|| / ||u||. Since there is at most one a,, in L, this is a well-defined number.

We claim that for every ¢ € R such that |t| < §, we have f(tu) = 0. That is because
if there is no a, in L then f(tu) is constant 0 for every ¢. If there is a,, € L, then we
have

[twll < [e l[ull < &/l = llanl -
This implies that f(tu) = 0.

Since the map ¢ — f(tu) is constant on the interval (—d,d), it is continuous at 0.



