

Exercise 1.1. (a) Show that the inner product satisfies the following properties: for all $x, y, z \in \mathbb{R}^n$ and $a \in \mathbb{R}$,

$$
\langle x, y \rangle = \langle y, x \rangle, \qquad \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle, \qquad \langle ax, y \rangle = a \langle x, y \rangle.
$$

Solution: These are computations using the definition of the inner product, vector addition and scalar multiplication, and linearity properties of sums.

$$
\langle x, y \rangle = \sum_{i=1}^{n} x^{i} y^{i} = \sum_{i=1}^{n} y^{i} x^{i} = \langle y, x \rangle.
$$

$$
\langle x + y, z \rangle = \sum_{i=1}^{n} (x + y)^{i} z^{i} = \sum_{i=1}^{n} (x^{i} + y^{i}) z^{i} = \sum_{i=1}^{n} (x^{i} z^{i} + y^{i} z^{i})
$$

$$
= \sum_{i=1}^{n} x^{i} z^{i} + \sum_{i=1}^{n} y^{i} z^{i} = \langle x, z \rangle + \langle y, z \rangle.
$$

$$
\langle ax, y \rangle = \sum_{i=1}^{n} ax^{i}y^{i} = a \sum_{i=1}^{n} x^{i}y^{i} = a \langle x, y \rangle.
$$

(b) For $t \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$, show that:

$$
||x + ty||^{2} = ||x||^{2} + 2t \langle x, y \rangle + t^{2} ||y||^{2} \ge 0
$$
\n(1)

Solution: We use the properties of the inner product established above to find:

$$
||x + ty||2 = \langle x + ty, x + ty \rangle = \langle x, x + ty \rangle + \langle ty, x + ty \rangle
$$

= $\langle x, x \rangle + \langle x, ty \rangle + \langle ty, x \rangle + \langle ty, ty \rangle$
= $\langle x, x \rangle + 2t \langle x, y \rangle + t^{2} \langle y, y \rangle$
= $||x||^{2} + 2t \langle x, y \rangle + t^{2} ||y||^{2}$.

Since $||x + ty||^2 \geq 0$, we certainly have:

$$
||x||^2 + 2t \langle x, y \rangle + t^2 ||y||^2 \ge 0.
$$

(c) By thinking of (1) as a quadratic in t, and considering its possible roots, deduce the Cauchy-Schwartz inequality:

$$
|\langle x, y \rangle| \le ||x|| \, ||y||. \tag{2}
$$

When does equality hold?

Please send any corrections to d.cheraghi@imperial.ac.uk Questions marked with ∗ are optional

2

Solution: [\(1\)](#page-0-0) is a non-negative quadratic in t , so it can have at most one root. Thus the discriminant $(b^2 - 4ac$ with the usual conventions) must be non-positive, i.e.

$$
4 \langle x, y \rangle^{2} - 4 \|x\|^{2} \|y\|^{2} \leq 0,
$$

which gives the result on re-arrangement. Equality holds iff there exists $t \in \mathbb{R}$ such that $||x + ty|| = 0$, which is the condition that x, y are parallel.

(d) Deduce the triangle inequality for the norm on \mathbb{R}^n .

Solution: Returning to [\(1\)](#page-0-0) and setting $t = 1$, we have:

$$
||x + y||2 = ||x||2 + 2 \langle x, y \rangle + ||y||2
$$

\n
$$
\le ||x||2 + 2 ||x|| ||y|| + ||y||2 = (||x|| + ||y||)2
$$

Since both sides are positive, we deduce that:

$$
||x + y|| \le ||x|| + ||y||.
$$

(e) Show the reverse triangle inequality:

$$
\|x\| - \|y\| \le \|x - y\|
$$

Solution: To see the above inequality, it is enough to show that

$$
||x|| - ||y|| \le ||x - y|| \quad \text{and} \quad ||x|| - ||y|| \ge -||x - y||.
$$

For the first one, we note that

$$
||x|| = ||(x - y) + y|| \le ||x - y|| + ||y||
$$

which gives is the first inequality. For the second one, we note that

 $||y|| = ||(y - x) + x|| \le ||x - y|| + ||x||$

which gives the second inequality by rearranging the terms.

Exercise 1.2. Suppose $x = (x^1, \dots, x^n) \in \mathbb{R}^n$.

(i) Show that:

$$
\max_{k=1,\dots,n} \left| x^k \right| \leq \left\| x \right\|.
$$

Solution: Fix an arbitrary k in $\{1, 2, ..., n\}$. Since $y \mapsto \sqrt{y}$ is an increasing map from $[0, +\infty)$ to $[0, +\infty)$, we have

$$
|x^k| = \sqrt{(x^k)^2} \le \sqrt{(x^1)^2 + (x^2)^2 + \cdots + (x^n)^2} = ||x||.
$$

This implies that the maximum of all these numbers is bounded by $||x||$.

(ii) Show that:

$$
||x||\leq \sqrt{n}\max_{k=1,\ldots,n}\left|x^k\right|.
$$

Hint: write out $||x||^2$ in coordinates and estimate

Solution: Writing out $||x||^2$, we have:

$$
||x||^2 = \sum_{i=1}^n (x^i)^2 \le \sum_{i=1}^n \max_{k=1,\dots,n} (x^k)^2 = \sum_{i=1}^n \left(\max_{k=1,\dots,n} |x^k| \right)^2 = n \left(\max_{k=1,\dots,n} |x^k| \right)^2.
$$

Taking square roots, we have:

$$
\|x\|\leq \sqrt{n}\max_{k=1,\ldots,n}\left|x^k\right|,
$$

since both sides are positive.

Exercise 1.3. Suppose that $(x_i)_{i=0}^{\infty}$ and $(y_i)_{i=0}^{\infty}$ are two sequences in \mathbb{R}^n with

$$
\lim_{i \to \infty} x_i = x, \qquad \lim_{i \to \infty} y_i = y.
$$

(a) Show that

$$
\lim_{i \to \infty} (x_i + y_i) = x + y.
$$

Solution: Fix $\epsilon > 0$. By the convergence of (x_i) , (y_i) there exists N_1, N_2 such that for $i \geq N_1$ and $j \geq N_2$ we have:

$$
||x_i - x|| < \frac{\epsilon}{2}, \qquad ||y_j - y|| < \frac{\epsilon}{2}.
$$

Set $N = \max\{N_1, N_2\}$. Then if $i \geq N$ we have:

$$
||x_i + y_i - (x + y)|| \le ||x_i - x|| + ||y_i - y|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

(b) Show that

$$
\lim_{i \to \infty} \langle x_i, y_i \rangle = \langle x, y \rangle ,
$$

and deduce that

$$
\lim_{i \to \infty} ||x_i|| = ||x||.
$$

[Hint: Write $\langle x_i, y_i \rangle - \langle x, y \rangle = \langle x_i - x, y_i - y \rangle + \langle x_i - x, y \rangle + \langle x, y_i - y \rangle$ and use the Cauchy-Schwartz inequality [\(2\)](#page-0-1)]

Solution: Fix $\epsilon > 0$, and without loss of generality assume $\epsilon < 1$. By the convergence of (x_i) , (y_i) there exists N_1, N_2 such that for $i \geq N_1$ and $j \geq N_2$ we have:

$$
||x_i - x|| < \frac{\epsilon}{3(1 + ||y||)}, \qquad ||y_j - y|| < \frac{\epsilon}{3(1 + ||x||)}.
$$

(The reason for the above choices will be clear in a moment.)

Set $N = \max\{N_1, N_2\}$. Then, for all $i \geq N$, using the Cauchy-Schwarz inequality, we have

$$
|\langle x_i, y_i \rangle - \langle x, y \rangle| = |\langle x_i, y_i \rangle - \langle x_i, y \rangle + \langle x_i, y \rangle - \langle x, y \rangle|
$$

\n
$$
= |\langle x_i, y_i - y \rangle + \langle x_i - x, y \rangle|
$$

\n
$$
\leq |\langle x_i, y_i - y \rangle| + |\langle x_i - x, y \rangle|
$$

\n
$$
\leq ||x_i|| ||y_i - y|| + ||x_i - x|| ||y||
$$

\n
$$
= ||x_i - x + x|| ||y_i - y|| + ||x_i - x|| ||y||
$$

\n
$$
\leq (||x_i - x|| + ||x||) ||y_i - y|| + ||x_i - x|| ||y||
$$

\n
$$
\leq ||x_i - x|| ||y_i - y|| + ||x|| ||y_i - y|| + ||x_i - x|| ||y||
$$

\n
$$
< \frac{\epsilon^2}{9(1 + ||y||)(1 + ||x||)} + ||x|| \frac{\epsilon}{3(1 + ||x||)} + ||y|| \frac{\epsilon}{3(1 + ||y||)}
$$

\n
$$
< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.
$$

(c) Suppose that $(a_i)_{i=0}^{\infty}$ is a sequence of real numbers with $a_i \to a$ as $i \to \infty$. Show that

$$
\lim_{i \to \infty} (a_i x_i) = ax.
$$

[Hint: Write $a_i x_i - ax = (a_i - a)(x_i - x) + (a_i - a)x + a(x_i - x)$ and use the properties of the norm.]

Solution: Fix $\epsilon > 0$, and without loss of generality assume $\epsilon < 1$. By the convergence of (a_i) , (y_i) there exists N_1, N_2 such that for $i \geq N_1$ and $j \geq N_2$ we have:

$$
||x_i - x|| < \frac{\epsilon}{3(1+|a|)},
$$
 $|a_j - a| < \frac{\epsilon}{3(1+||x||)}.$

Set $N = \max\{N_1, N_2\}$. Then if $i \geq N$ we have:

$$
||a_ix_i - ax|| = ||(a_i - a)(x_i - x) + (a_i - a)x + a(x_i - x)||
$$

\n
$$
\le ||(a_i - a)(x_i - x)|| + ||(a_i - a)x|| + ||a(x_i - x)||
$$

\n
$$
= |a_i - a| ||x_i - x|| + |a_i - a| ||x|| + |a| ||x_i - x||
$$

\n
$$
< \frac{\epsilon^2}{9(1 + |a|)(1 + ||x||)} + \epsilon \frac{||x||}{3(1 + ||x||)} + \epsilon \frac{|a|}{3(1 + |a|)}
$$

\n
$$
< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.
$$

Exercise 1.4. Which of the following subsets of \mathbb{R}^n is open:

- (a) \mathbb{R}^n ?
- (b) ∅?
- (c) $\{x = (x^1, \ldots, x^n) \in \mathbb{R}^n : x^1 > 0\}$?
- (d) $\{x = (x^1, \ldots, x^n) \in \mathbb{R}^n : x^i \in [0, 1)\}$?
- (e) $\mathbb{Q}^n := \{x = (x^1, \dots, x^n) \in \mathbb{R}^n : x^i \in \mathbb{Q}\}$?

Solution: a) Open, b) Open, c) Open, d) Not open, e) Not Open.

Exercise 1.5. Let $(x_i)_{i=0}^{\infty}$ be a sequence of vectors $x_i \in \mathbb{R}^n$ with $x_i \to x$. Suppose that the x_i satisfy $||x_i|| < r$ for all i and some $r > 0$. Show that:

 $||x|| < r.$

[Hint: work by contradiction, assume $||x|| > r$ and show this leads to an absurdity]

Solution: Suppose in the contrary that $||x|| = s > r$. Let $\epsilon = \frac{s-r}{2} > 0$. By the convergence of (x_i) , there exists $j \in \mathbb{N}$ such that:

$$
||x_j - x|| < \epsilon.
$$

By the reverse triangle inequality we have:

$$
\|x\| - \|x_j\| \le \|x_j - x\| < \epsilon,
$$

however:

$$
|||x|| - ||x_j||| = s - ||x_j|| \ge s - r = 2\epsilon,
$$

so we conclude

 $2\epsilon < \epsilon$

which together with the fact that $\epsilon > 0$ is a contradiction.

Exercise 1.6. (a) Show that if U_1 , U_2 are open in \mathbb{R}^n , then so are the sets

$$
i) \quad U_1 \cup U_2 \qquad \qquad ii) \quad U_1 \cap U_2
$$

Solution: Suppose $x \in U_1 \cup U_2$. Then either $x \in U_1$ or $x \in U_2$. WLOG consider the first possibility. Then since U_1 is open, there exists $r > 0$ such that $B_r(x) \subset U_1$. But this implies $B_r(x) \subset U_1 \cup U_2$, so $U_1 \cup U_2$ is open.

Suppose $x \in U_1 \cap U_2$. Then there exist r_1, r_2 such that $B_{r_1}(x) \subset U_1$ and $B_{r_2}(x) \subset U_2$. Taking $r = \min\{r_1, r_2\}$ we have:

$$
B_r(x) \subset B_{r_1}(x) \subset U_1, \qquad B_r(x) \subset B_{r_2}(x) \subset U_2,
$$

so that $B_r(x) \subset U_1 \cap U_2$ and thus $U_1 \cap U_2$ is open.

- (b) Suppose U_{α} , for α in an index set I, is a collection of open sets in \mathbb{R}^{n} .
	- (i) Show that $\bigcup_{\alpha \in I} U_{\alpha}$ is open in \mathbb{R}^n .

Solution: Suppose $x \in \bigcup_{\alpha \in I} U_{\alpha}$. Then there exists $a \in I$ such that $x \in U_a$. Since U_a is open, there exists $r > 0$ such that $B_r(x) \subset U_a$, which implies $B_r(x) \subset$ $\bigcup_{\alpha \in I} U_{\alpha}$, hence $\bigcup_{\alpha \in I} U_{\alpha}$ is open.

(ii) Give an example showing that $\bigcap_{\alpha \in I} U_{\alpha}$ need not be open.

Solution: Consider:

$$
U_i = (-2^{-i}, 2^{-i}), \text{ for } i \in \mathbb{N}.
$$

Then, $\bigcap_{i\in\mathbb{N}} U_i = \{0\}$, which is not open, but each set U_i is an open interval.

Exercise 1.7. Suppose $A \subset \mathbb{R}^n$ is an open set and $f : A \to \mathbb{R}^m$. Show that $\lim_{x\to p} f(x) =$ F if and only if for any sequence $(x_i)_{i=0}^{\infty}$ in $A \setminus \{p\}$ which converges to p we have

$$
f(x_i) \to F
$$
, as $i \to \infty$.

Solution: First suppose that $\lim_{x\to p} f(x) = F$. Then given $\epsilon > 0$, there exists $\delta > 0$ such that for any $x \in A$ with $0 < ||x - p|| < \delta$ we have:

$$
||f(x) - F|| < \epsilon.
$$

Now let $(x_i)_{i=0}^{\infty}$ be any sequence with $x_i \in A, x_i \neq p$ and $x_i \to p$. Since $x_i \to p$, there exists $N \in \mathbb{N}$ such that for all $i \geq N$ we have:

$$
0<\|x_i-p\|<\delta,
$$

so by our assumption we have

$$
||f(x_i) - F|| < \epsilon,
$$

and thus $f(x_i) \to F$.

Now suppose that for any sequence $(x_i)_{i=0}^{\infty}$ with $x_i \in A, x_i \neq p$ and $x_i \to p$ we have:

$$
f(x_i) \to F
$$
, as $i \to \infty$.

Suppose that $f(x) \nrightarrow F$ as $x \rightarrow p$. Then there exists $\epsilon > 0$ such that for any $i \in \mathbb{N}$ we can find x_i with:

$$
0 < \|x_i - p\| < 2^{-i}, \qquad \|f(x_i) - F\| \ge \epsilon.
$$

Now, clearly the sequence $(x_i)_{i=0}^{\infty}$ converges to p, but $f(x_i) \nrightarrow F$, so we have a contradiction.

Exercise 1.8. (a) Show that the map $f : \mathbb{R} \to \mathbb{R}^n$ defined as $f(x) = (x, 0, \ldots, 0)$ is continuous on R.

Solution: Suppose $p \in \mathbb{R}$. Fix $\epsilon > 0$ and suppose $x \in \mathbb{R}$ satisfies $|x - p| < \epsilon$. Then:

$$
||f(x) - f(p)|| = ||(x - p, 0, \dots, 0)|| = |x - p| < \epsilon.
$$

(b) Let $A \subset \mathbb{R}^n$ and suppose we are given a map $f : A \to \mathbb{R}^m$ where

$$
f(x^1,...,x^n) \mapsto (f^1((x^1,...,x^n)),...,f^m((x^1,...,x^n)))
$$
.

Show that f is continuous at $p \in A$ if and only if each map $f^k : A \to \mathbb{R}$ is continuous at p, for $k = 1, \ldots, m$.

Solution: First suppose that each map $f^k : \mathbb{R}^n \to \mathbb{R}$ is continuous at p, for $k =$ 1, ..., m. Fix $\epsilon > 0$. Then for each k there exists $\delta_k > 0$ such that for $x \in A$ with $||x - p|| < \delta_k$ we have:

$$
\left| f^k(x) - f^k(p) \right| < \frac{\epsilon}{\sqrt{n}}.
$$

Let $\delta = \min_{k=1,\ldots,m} \delta_k$. If $x \in A$, $||x-p|| < \delta$, we have:

$$
||f(x) - f(p)|| \le \sqrt{n} \max_{k=1,\dots,m} \left| f^k(x) - f^k(p) \right| < \sqrt{n} \frac{\epsilon}{\sqrt{n}} = \epsilon,
$$

so that f is continuous at p .

Now suppose that f is continuous at p. Fix $\epsilon > 0$, then there exists $\delta > 0$ such that for all $x \in A$, $0 < ||x - p|| < \delta$ we have:

$$
||f(x) - f(p)|| < \epsilon.
$$

Fix $j \in \{1, \ldots, m\}$. We estimate:

$$
\left|f^{j}(x) - f^{j}(p)\right| \le \max_{k=1,\dots,m} \left|f^{k}(x) - f^{k}(p)\right| \le \|f(x) - f(p)\| < \epsilon,
$$

so that f^j is continuous at p.

(c) Show that the map $f : \mathbb{R}^n \to \mathbb{R}$ defined as $f((x^1, x^2, \dots, x^n)) = 3x^1(x^2)^5 + 4x^2(x^n)^7$ is continuous on \mathbb{R}^n , ^{[1](#page-6-0)}.

Solution: By part a), the map from \mathbb{R}^n to each coordinate is continuous, so any finite combination of sums and products of these functions is continuous.

Exercise 1.9.[∗]

(a) Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous on \mathbb{R}^n , and suppose $U \subset \mathbb{R}^m$ is open. Show that:

$$
f^{-1}(U) := \{ x \in \mathbb{R}^n : f(x) \in U \}
$$

is open.

Solution: Fix $x \in f^{-1}(U)$. Since U is open, there exists $\epsilon > 0$ such that $B_{\epsilon}(f(x)) \subset U$. Since f is continuous, there exists $\delta > 0$ such that if $y \in \mathbb{R}^n$ with $||y - x|| < \delta$ then $|| f(y) - f(x)|| < \epsilon$. But this implies that $f(y) \in B_{\epsilon}(f(x)) \subset U$, so we have that $y \in f^{-1}(U)$ provided $||y - x|| < \delta$. Thus $B_{\delta}(x) \subset f^{-1}(U)$ and $f^{-1}(U)$ is indeed open.

(b) Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ has the property that $f^{-1}(U) \subset \mathbb{R}^n$ is open for every open $U \subset \mathbb{R}^m$. Show that f is continuous on \mathbb{R}^n .

Solution: Fix $x \in \mathbb{R}^n$, and let $\epsilon > 0$. Since $B_{\epsilon}(f(x))$ is open, we have that the set $f^{-1}(B_{\epsilon}(f(x)))$ is open. We note that $x \in f^{-1}(B_{\epsilon}(f(x)))$, thus there exists $\delta > 0$ such that $B_\delta(x) \subset f^{-1}(B_\epsilon(f(x)))$. Now if $y \in \mathbb{R}^n$ with $||x - y|| < \delta$, then $y \in B_\delta(x)$ $f^{-1}(B_{\epsilon}(f(x)))$, so that $f(y) \in B_{\epsilon}(f(x))$ and thus $||f(y) - f(x)|| < \epsilon$, so that f is indeed continuous at x.

Unseen Exercise. Let $\alpha \in \mathbb{R}$ be an irrational number, and for $n \in \mathbb{N}$ let

$$
a_n = \frac{1}{2^n} (\cos(2\pi n\alpha), \sin(2\pi n\alpha)) \in \mathbb{R}^2.
$$

(a) Show that $a_n \to (0,0) \in \mathbb{R}^2$ as $n \to \infty$.

Solution: Let $\epsilon > 0$ be arbitrary. There is $n' \geq 1$ such that for all $n \geq n'$ we have $2^{-n} < \epsilon$. For $n \geq n'$ we have

$$
||a_n - (0,0)|| = |2^{-n}||\left(\cos(2\pi n\alpha), \sin(2\pi n\alpha)\right)|| = 2^{-n} < \epsilon.
$$

¹Here, $(x^{j})^{m}$ denotes the coordinate x^{j} raised to power m.

(b) Define the function $f : \mathbb{R}^2 \to \mathbb{R}$ according to

$$
f(x) = \begin{cases} 1 & \text{if } x = a_n \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}
$$

Show that the map f is not continuous at $(0, 0)$.

Solution: Since $a_n \neq (0, 0)$ for all $n \in \mathbb{N}$, we have $f(0, 0) = 0$. On the other hand $a_n \to (0,0)$ and $f(a_n) \equiv 1$ does not converge to $0 = f(0,0)$. This shows that the map f is not continuous at $(0, 0)$.

(c) for every non-zero vector $u = (u^1, u^2) \in \mathbb{R}^2$, show that f is continuous in the direction of u at 0. That is, the map $t \mapsto f(tu)$ is continuous at $t = 0$.

Solution: Let us fix an arbitrary non-zero vector $u = (u^1, u^2) \in \mathbb{R}^2$. Consider the line

$$
L = \{ tu \mid t \in \mathbb{R} \} \subset \mathbb{R}^2.
$$

We claim that there is at most one integer $n \in \mathbb{N}$ such that $a_n \in L$. Assume in the contrary that there are two such integers, say m and n with $m \neq n$. Then, there are t_n and t_m in R such that $a_m = t_m u$ and $a_n = t_n u$. Because a_n and a_m are non-zero, t_n and t_m must be non-zero, so we conclude that

$$
u = a_m/t_m = a_n/t_n,
$$

and then

$$
\frac{1}{2^m t_m} \left(\cos(2\pi m\alpha), \sin(2\pi m\alpha)\right) = \frac{1}{2^n t_n} \left(\cos(2\pi n\alpha), \sin(2\pi n\alpha)\right).
$$

Since for every $\gamma \in \mathbb{R}$, $(\cos(\gamma), \sin(\gamma))$ has modulus 1, we conclude that $|2^n t_n| = |2^m t_m|$. Therefore, either

$$
(\cos(2\pi m\alpha), \sin(2\pi m\alpha)) = (\cos(2\pi n\alpha), \sin(2\pi n\alpha))
$$

or

$$
(\cos(2\pi m\alpha), \sin(2\pi m\alpha)) = -(\cos(2\pi n\alpha), \sin(2\pi n\alpha)).
$$

Both of these cases imply that $\cos(2\pi m\alpha) = \cos(2\pi n\alpha)$. This implies that there is $k \in \mathbb{Z}$ such that $2\pi n\alpha = 2\pi m\alpha + 2k\pi$. Therefore, $\alpha = k/(n-m)$, which contradicts α being irrational.

Let us define δ as follows. If there is no a_n in L, we define $\delta = ||u||$. If there is $a_n \in L$, we let $\delta = ||a_n|| / ||u||$. Since there is at most one a_n in L, this is a well-defined number. We claim that for every $t \in \mathbb{R}$ such that $|t| < \delta$, we have $f(tu) = 0$. That is because if there is no a_n in L then $f(tu)$ is constant 0 for every t. If there is $a_n \in L$, then we have

$$
||tu|| < |t| ||u|| < \delta ||||_u = ||a_n||.
$$

This implies that $f(tu) = 0$.

Since the map $t \mapsto f(tu)$ is constant on the interval $(-\delta, \delta)$, it is continuous at 0.