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Exercise 1.1. (a) Show that the inner product satisfies the following properties: for all
x, y, z ∈ Rn and a ∈ R,

〈x, y〉 = 〈y, x〉 , 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 , 〈ax, y〉 = a 〈x, y〉 .

Solution: These are computations using the definition of the inner product, vector
addition and scalar multiplication, and linearity properties of sums.

〈x, y〉 =
n∑
i=1

xiyi =
n∑
i=1

yixi = 〈y, x〉 .

〈x+ y, z〉 =
n∑
i=1

(x+ y)izi =
n∑
i=1

(xi + yi)zi =
n∑
i=1

(xizi + yizi)

=
n∑
i=1

xizi +
n∑
i=1

yizi = 〈x, z〉+ 〈y, z〉 .

〈ax, y〉 =
n∑
i=1

axiyi = a
n∑
i=1

xiyi = a 〈x, y〉 .

(b) For t ∈ R and x, y ∈ Rn, show that:

‖x+ ty‖2 = ‖x‖2 + 2t 〈x, y〉+ t2 ‖y‖2 ≥ 0 (1)

Solution: We use the properties of the inner product established above to find:

‖x+ ty‖2 = 〈x+ ty, x+ ty〉 = 〈x, x+ ty〉+ 〈ty, x+ ty〉
= 〈x, x〉+ 〈x, ty〉+ 〈ty, x〉+ 〈ty, ty〉
= 〈x, x〉+ 2t 〈x, y〉+ t2 〈y, y〉
= ‖x‖2 + 2t 〈x, y〉+ t2 ‖y‖2 .

Since ‖x+ ty‖2 ≥ 0, we certainly have:

‖x‖2 + 2t 〈x, y〉+ t2 ‖y‖2 ≥ 0.

(c) By thinking of (1) as a quadratic in t, and considering its possible roots, deduce the
Cauchy-Schwartz inequality:

|〈x, y〉| ≤ ‖x‖ ‖y‖ . (2)

When does equality hold?

Please send any corrections to d.cheraghi@imperial.ac.uk
Questions marked with ∗ are optional
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Solution: (1) is a non-negative quadratic in t, so it can have at most one root. Thus
the discriminant (b2 − 4ac with the usual conventions) must be non-positive, i.e.

4 〈x, y〉2 − 4 ‖x‖2 ‖y‖2 ≤ 0,

which gives the result on re-arrangement. Equality holds iff there exists t ∈ R such
that ‖x+ ty‖ = 0, which is the condition that x, y are parallel.

(d) Deduce the triangle inequality for the norm on Rn.

Solution: Returning to (1) and setting t = 1, we have:

‖x+ y‖2 = ‖x‖2 + 2 〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2 ‖x‖ ‖y‖ + ‖y‖2 = (‖x‖ + ‖y‖)2

Since both sides are positive, we deduce that:

‖x+ y‖ ≤ ‖x‖ + ‖y‖ .

(e) Show the reverse triangle inequality:∣∣ ‖x‖ − ‖y‖ ∣∣ ≤ ‖x− y‖
Solution: To see the above inequality, it is enough to show that

‖x‖ − ‖y‖ ≤ ‖x− y‖ and ‖x‖ − ‖y‖ ≥ −‖x− y‖ .

For the first one, we note that

‖x‖ = ‖(x− y) + y‖ ≤ ‖x− y‖ + ‖y‖

which gives is the first inequality. For the second one, we note that

‖y‖ = ‖(y − x) + x‖ ≤ ‖x− y‖ + ‖x‖

which gives the second inequality by rearranging the terms.

Exercise 1.2. Suppose x = (x1, . . . , xn) ∈ Rn.

(i) Show that:
max

k=1,...,n

∣∣∣xk∣∣∣ ≤ ‖x‖ .
Solution: Fix an arbitrary k in {1, 2, . . . , n}. Since y 7→ √y is an increasing map
from [0,+∞) to [0,+∞), we have∣∣xk∣∣ =√(xk)2 ≤

√
(x1)2 + (x2)2 + · · ·+ (xn)2 = ‖x‖ .

This implies that the maximum of all these numbers is bounded by ‖x‖.
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(ii) Show that:
‖x‖ ≤

√
n max
k=1,...,n

∣∣∣xk∣∣∣ .
[Hint: write out ‖x‖2 in coordinates and estimate]

Solution: Writing out ‖x‖2, we have:

‖x‖2 =
n∑
i=1

(xi)2 ≤
n∑
i=1

max
k=1,...,n

(xk)2 =

n∑
i=1

(
max

k=1,...,n

∣∣∣xk∣∣∣)2

= n

(
max

k=1,...,n

∣∣∣xk∣∣∣)2

.

Taking square roots, we have:

‖x‖ ≤
√
n max
k=1,...,n

∣∣∣xk∣∣∣ ,
since both sides are positive.

Exercise 1.3. Suppose that (xi)∞i=0 and (yi)
∞
i=0 are two sequences in Rn with

lim
i→∞

xi = x, lim
i→∞

yi = y.

(a) Show that
lim
i→∞

(xi + yi) = x+ y.

Solution: Fix ε > 0. By the convergence of (xi), (yi) there exists N1, N2 such that
for i ≥ N1 and j ≥ N2 we have:

‖xi − x‖ <
ε

2
, ‖yj − y‖ <

ε

2
.

Set N = max{N1, N2}. Then if i ≥ N we have:

‖xi + yi − (x+ y)‖ ≤ ‖xi − x‖ + ‖yi − y‖ <
ε

2
+
ε

2
= ε.

(b) Show that
lim
i→∞
〈xi, yi〉 = 〈x, y〉 ,

and deduce that
lim
i→∞
‖xi‖ = ‖x‖ .

[Hint: Write 〈xi, yi〉 − 〈x, y〉 = 〈xi − x, yi − y〉 + 〈xi − x, y〉 + 〈x, yi − y〉 and use the
Cauchy-Schwartz inequality (2)]

Solution: Fix ε > 0, and without loss of generality assume ε < 1. By the convergence
of (xi), (yi) there exists N1, N2 such that for i ≥ N1 and j ≥ N2 we have:

‖xi − x‖ <
ε

3(1 + ‖y‖)
, ‖yj − y‖ <

ε

3(1 + ‖x‖)
.

(The reason for the above choices will be clear in a moment.)
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Set N = max{N1, N2}. Then, for all i ≥ N , using the Cauchy-Schwarz inequality, we
have

|〈xi, yi〉 − 〈x, y〉| = |〈xi, yi〉 − 〈xi, y〉+ 〈xi, y〉 − 〈x, y〉|
= |〈xi, yi − y〉+ 〈xi − x, y〉|
≤ |〈xi, yi − y〉|+ |〈xi − x, y〉|
≤ ‖xi‖ ‖yi − y‖ + ‖xi − x‖ ‖y‖
= ‖xi − x+ x‖ ‖yi − y‖ + ‖xi − x‖ ‖y‖
≤ (‖xi − x‖ + ‖x‖) ‖yi − y‖ + ‖xi − x‖ ‖y‖
≤ ‖xi − x‖ ‖yi − y‖ + ‖x‖ ‖yi − y‖ + ‖xi − x‖ ‖y‖

<
ε2

9(1 + ‖y‖)(1 + ‖x‖)
+ ‖x‖ ε

3(1 + ‖x‖)
+ ‖y‖ ε

3(1 + ‖y‖)

<
ε

3
+
ε

3
+
ε

3
= ε.

(c) Suppose that (ai)∞i=0 is a sequence of real numbers with ai → a as i→∞. Show that

lim
i→∞

(aixi) = ax.

[Hint: Write aixi− ax = (ai− a)(xi−x)+ (ai− a)x+ a(xi−x) and use the properties
of the norm.]

Solution: Fix ε > 0, and without loss of generality assume ε < 1. By the convergence
of (ai), (yi) there exists N1, N2 such that for i ≥ N1 and j ≥ N2 we have:

‖xi − x‖ <
ε

3(1 + |a|)
, |aj − a| <

ε

3(1 + ‖x‖)
.

Set N = max{N1, N2}. Then if i ≥ N we have:

‖aixi − ax‖ = ‖(ai − a)(xi − x) + (ai − a)x+ a(xi − x)‖
≤ ‖(ai − a)(xi − x)‖ + ‖(ai − a)x‖ + ‖a(xi − x)‖
= |ai − a| ‖xi − x‖ + |ai − a| ‖x‖ + |a| ‖xi − x‖

<
ε2

9(1 + |a|)(1 + ‖x‖)
+ ε

‖x‖
3(1 + ‖x‖)

+ ε
|a|

3(1 + |a| )

<
ε

3
+
ε

3
+
ε

3
= ε.

Exercise 1.4. Which of the following subsets of Rn is open:

(a) Rn?

(b) ∅?

(c)
{
x = (x1, . . . , xn) ∈ Rn : x1 > 0

}
?

(d)
{
x = (x1, . . . , xn) ∈ Rn : xi ∈ [0, 1)

}
?

(e) Qn :=
{
x = (x1, . . . , xn) ∈ Rn : xi ∈ Q

}
?
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Solution: a) Open, b) Open, c) Open, d) Not open, e) Not Open.

Exercise 1.5. Let (xi)
∞
i=0 be a sequence of vectors xi ∈ Rn with xi → x. Suppose that

the xi satisfy ‖xi‖ < r for all i and some r > 0. Show that:

‖x‖ ≤ r.

[Hint: work by contradiction, assume ‖x‖ > r and show this leads to an absurdity]

Solution: Suppose in the contrary that ‖x‖ = s > r. Let ε = s−r
2 > 0. By the convergence

of (xi), there exists j ∈ N such that:

‖xj − x‖ < ε.

By the reverse triangle inequality we have:∣∣‖x‖ − ‖xj‖∣∣ ≤ ‖xj − x‖ < ε,

however: ∣∣‖x‖ − ‖xj‖∣∣ = s− ‖xj‖ ≥ s− r = 2ε,

so we conclude
2ε < ε

which together with the fact that ε > 0 is a contradiction.

Exercise 1.6. (a) Show that if U1, U2 are open in Rn, then so are the sets

i) U1 ∪ U2 ii) U1 ∩ U2

Solution: Suppose x ∈ U1 ∪ U2. Then either x ∈ U1 or x ∈ U2. WLOG consider the
first possibility. Then since U1 is open, there exists r > 0 such that Br(x) ⊂ U1. But
this implies Br(x) ⊂ U1 ∪ U2, so U1 ∪ U2 is open.

Suppose x ∈ U1 ∩U2. Then there exist r1, r2 such that Br1(x) ⊂ U1 and Br2(x) ⊂ U2.
Taking r = min{r1, r2} we have:

Br(x) ⊂ Br1(x) ⊂ U1, Br(x) ⊂ Br2(x) ⊂ U2,

so that Br(x) ⊂ U1 ∩ U2 and thus U1 ∩ U2 is open.

(b) Suppose Uα, for α in an index set I, is a collection of open sets in Rn.

(i) Show that
⋃
α∈I Uα is open in Rn.

Solution: Suppose x ∈
⋃
α∈I Uα. Then there exists a ∈ I such that x ∈ Ua.

Since Ua is open, there exists r > 0 such that Br(x) ⊂ Ua, which implies Br(x) ⊂⋃
α∈I Uα, hence

⋃
α∈I Uα is open.

(ii) Give an example showing that
⋂
α∈I Uα need not be open.

Solution: Consider:
Ui =

(
−2−i, 2−i

)
, for i ∈ N.

Then,
⋂
i∈N Ui = {0}, which is not open, but each set Ui is an open interval.
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Exercise 1.7. Suppose A ⊂ Rn is an open set and f : A→ Rm. Show that limx→p f(x) =
F if and only if for any sequence (xi)

∞
i=0 in A \ {p} which converges to p we have

f(xi)→ F, as i→∞.

Solution: First suppose that limx→p f(x) = F . Then given ε > 0, there exists δ > 0 such
that for any x ∈ A with 0 < ‖x− p‖ < δ we have:

‖f(x)− F‖ < ε.

Now let (xi)
∞
i=0 be any sequence with xi ∈ A, xi 6= p and xi → p. Since xi → p, there

exists N ∈ N such that for all i ≥ N we have:

0 < ‖xi − p‖ < δ,

so by our assumption we have
‖f(xi)− F‖ < ε,

and thus f(xi)→ F .
Now suppose that for any sequence (xi)

∞
i=0 with xi ∈ A, xi 6= p and xi → p we have:

f(xi)→ F, as i→∞.

Suppose that f(x) 6→ F as x→ p. Then there exists ε > 0 such that for any i ∈ N we can
find xi with:

0 < ‖xi − p‖ < 2−i, ‖f(xi)− F‖ ≥ ε.

Now, clearly the sequence (xi)∞i=0 converges to p, but f(xi) 6→ F , so we have a contradiction.

Exercise 1.8. (a) Show that the map f : R → Rn defined as f(x) = (x, 0, . . . , 0) is
continuous on R.

Solution: Suppose p ∈ R. Fix ε > 0 and suppose x ∈ R satisfies |x− p| < ε. Then:

‖f(x)− f(p)‖ = ‖(x− p, 0, . . . , 0)‖ = |x− p| < ε.

(b) Let A ⊂ Rn and suppose we are given a map f : A→ Rm where

f(x1, . . . , xn) 7→
(
f1
(
(x1, . . . , xn)

)
, . . . , fm

(
(x1, . . . , xn)

))
.

Show that f is continuous at p ∈ A if and only if each map fk : A→ R is continuous
at p, for k = 1, . . . ,m.

Solution: First suppose that each map fk : Rn → R is continuous at p, for k =
1, . . . ,m. Fix ε > 0. Then for each k there exists δk > 0 such that for x ∈ A with
‖x− p‖ < δk we have: ∣∣∣fk(x)− fk(p)∣∣∣ < ε√

n
.

Let δ = mink=1,...,m δk. If x ∈ A, ‖x− p‖ < δ, we have:

‖f(x)− f(p)‖ ≤
√
n max
k=1,...,m

∣∣∣fk(x)− fk(p)∣∣∣ < √n ε√
n
= ε,
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so that f is continuous at p.

Now suppose that f is continuous at p. Fix ε > 0, then there exists δ > 0 such that
for all x ∈ A, 0 < ‖x− p‖ < δ we have:

‖f(x)− f(p)‖ < ε.

Fix j ∈ {1, . . . ,m}. We estimate:∣∣f j(x)− f j(p)∣∣ ≤ max
k=1,...,m

∣∣∣fk(x)− fk(p)∣∣∣ ≤ ‖f(x)− f(p)‖ < ε,

so that f j is continuous at p.

(c) Show that the map f : Rn → R defined as f
(
(x1, x2, . . . , xn)

)
= 3x1(x2)5 + 4x2(xn)7

is continuous on Rn, 1.

Solution: By part a), the map from Rn to each coordinate is continuous, so any finite
combination of sums and products of these functions is continuous.

Exercise 1.9.∗

(a) Suppose f : Rn → Rm is continuous on Rn, and suppose U ⊂ Rm is open. Show that:

f−1(U) := {x ∈ Rn : f(x) ∈ U}

is open.

Solution: Fix x ∈ f−1(U). Since U is open, there exists ε > 0 such that Bε(f(x)) ⊂ U .
Since f is continuous, there exists δ > 0 such that if y ∈ Rn with ‖y − x‖ < δ then
‖f(y)− f(x)‖ < ε. But this implies that f(y) ∈ Bε(f(x)) ⊂ U , so we have that
y ∈ f−1(U) provided ‖y − x‖ < δ. Thus Bδ(x) ⊂ f−1(U) and f−1(U) is indeed open.

(b) Suppose that f : Rn → Rm has the property that f−1(U) ⊂ Rn is open for every open
U ⊂ Rm. Show that f is continuous on Rn.

Solution: Fix x ∈ Rn, and let ε > 0. Since Bε(f(x)) is open, we have that the set
f−1 (Bε(f(x))) is open. We note that x ∈ f−1 (Bε(f(x))), thus there exists δ > 0 such
that Bδ(x) ⊂ f−1 (Bε(f(x))). Now if y ∈ Rn with ‖x− y‖ < δ, then y ∈ Bδ(x) ⊂
f−1 (Bε(f(x))), so that f(y) ∈ Bε(f(x)) and thus ‖f(y)− f(x)‖ < ε, so that f is
indeed continuous at x.

Unseen Exercise. Let α ∈ R be an irrational number, and for n ∈ N let

an =
1

2n
(cos(2πnα), sin(2πnα)) ∈ R2.

(a) Show that an → (0, 0) ∈ R2 as n→∞.

Solution: Let ε > 0 be arbitrary. There is n′ ≥ 1 such that for all n ≥ n′ we have
2−n < ε. For n ≥ n′ we have

‖an − (0, 0)‖ = |2−n| ‖(cos(2πnα), sin(2πnα))‖ = 2−n < ε.
1Here, (xj)m denotes the coordinate xj raised to power m.
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(b) Define the function f : R2 → R according to

f(x) =

{
1 if x = an for some n ∈ N,
0 otherwise.

Show that the map f is not continuous at (0, 0).

Solution: Since an 6= (0, 0) for all n ∈ N, we have f(0, 0) = 0. On the other hand
an → (0, 0) and f(an) ≡ 1 does not converge to 0 = f(0, 0). This shows that the map
f is not continuous at (0, 0).

(c) for every non-zero vector u = (u1, u2) ∈ R2, show that f is continuous in the direction
of u at 0. That is, the map t 7→ f(tu) is continuous at t = 0.

Solution: Let us fix an arbitrary non-zero vector u = (u1, u2) ∈ R2. Consider the line

L = {tu | t ∈ R} ⊂ R2.

We claim that there is at most one integer n ∈ N such that an ∈ L. Assume in the
contrary that there are two such integers, say m and n with m 6= n. Then, there are
tn and tm in R such that am = tmu and an = tnu. Because an and am are non-zero,
tn and tm must be non-zero, so we conclude that

u = am/tm = an/tn,

and then

1

2mtm
(cos(2πmα), sin(2πmα)) =

1

2ntn
(cos(2πnα), sin(2πnα)) .

Since for every γ ∈ R, (cos(γ), sin(γ)) has modulus 1, we conclude that |2ntn| = |2mtm|.
Therefore, either

(cos(2πmα), sin(2πmα)) = (cos(2πnα), sin(2πnα))

or
(cos(2πmα), sin(2πmα)) = − (cos(2πnα), sin(2πnα)) .

Both of these cases imply that cos(2πmα) = cos(2πnα). This implies that there is
k ∈ Z such that 2πnα = 2πmα + 2kπ. Therefore, α = k/(n −m), which contradicts
α being irrational.

Let us define δ as follows. If there is no an in L, we define δ = ‖u‖. If there is an ∈ L,
we let δ = ‖an‖ / ‖u‖. Since there is at most one an in L, this is a well-defined number.

We claim that for every t ∈ R such that |t| < δ, we have f(tu) = 0. That is because
if there is no an in L then f(tu) is constant 0 for every t. If there is an ∈ L, then we
have

‖tu‖ < |t| ‖u‖ < δ ‖‖u = ‖an‖ .

This implies that f(tu) = 0.

Since the map t 7→ f(tu) is constant on the interval (−δ, δ), it is continuous at 0.


