Exercise 1.1. (a) Show that the inner product satisfies the following properties: for all $x, y, z \in \mathbb{R}^n$ and $a \in \mathbb{R}$,

$$\left\langle x,y\right\rangle =\left\langle y,x\right\rangle, \qquad \left\langle x+y,z\right\rangle =\left\langle x,z\right\rangle +\left\langle y,z\right\rangle, \qquad \left\langle ax,y\right\rangle =a\left\langle x,y\right\rangle.$$

(b) For $t \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$, show that:

$$\|x + ty\|^{2} = \|x\|^{2} + 2t \langle x, y \rangle + t^{2} \|y\|^{2} \ge 0$$
(1)

(c) By thinking of (1) as a quadratic in t, and considering its possible roots, deduce the *Cauchy-Schwartz* inequality:

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

$$\tag{2}$$

When does equality hold?

- (d) Deduce the triangle inequality for the norm on \mathbb{R}^n .
- (e) Show the reverse triangle inequality:

$$||x|| - ||y||| \le ||x - y||$$

Exercise 1.2. Suppose $x = (x^1, \ldots, x^n) \in \mathbb{R}^n$.

(i) Show that:

$$\max_{k=1,\dots,n} \left| x^k \right| \le \|x\| \,.$$

(ii) Show that:

$$\|x\| \le \sqrt{n} \max_{k=1,\dots,n} \left| x^k \right|.$$

Exercise 1.3. Suppose that $(x_i)_{i=0}^{\infty}$ and $(y_i)_{i=0}^{\infty}$ are two sequences in \mathbb{R}^n with

$$\lim_{i \to \infty} x_i = x, \qquad \lim_{i \to \infty} y_i = y.$$

(a) Show that

$$\lim_{i \to \infty} (x_i + y_i) = x + y.$$

(b) Show that

$$\lim_{i \to \infty} \left\langle x_i, y_i \right\rangle = \left\langle x, y \right\rangle,$$

and deduce that

$$\lim_{i \to \infty} \|x_i\| = \|x\|.$$

(c) Suppose that $(a_i)_{i=0}^{\infty}$ is a sequence of real numbers with $a_i \to a$ as $i \to \infty$. Show that

$$\lim_{i \to \infty} (a_i x_i) = ax.$$

Please send any corrections to d.cheraghi@imperial.ac.uk Questions marked with * are optional

- (a) \mathbb{R}^n ?
- (b) Ø?

(c)
$$\{x = (x^1, \dots, x^n) \in \mathbb{R}^n : x^1 > 0\}$$
?

(d)
$$\{x = (x^1, \dots, x^n) \in \mathbb{R}^n : x^i \in [0, 1)\}$$
?

(e) $\mathbb{Q}^n := \{ x = (x^1, \dots, x^n) \in \mathbb{R}^n : x^i \in \mathbb{Q} \}$?

Exercise 1.5. Let $(x_i)_{i=0}^{\infty}$ be a sequence of vectors $x_i \in \mathbb{R}^n$ with $x_i \to x$. Suppose that the x_i satisfy $||x_i|| < r$ for all i and some r > 0. Show that:

 $||x|| \le r.$

Exercise 1.6. (a) Show that if U_1, U_2 are open in \mathbb{R}^n , then so are the sets

i)
$$U_1 \cup U_2$$
 ii) $U_1 \cap U_2$

(b) Suppose U_{α} , for α in an index set I, is a collection of open sets in \mathbb{R}^n .

- (i) Show that $\bigcup_{\alpha \in I} U_{\alpha}$ is open in \mathbb{R}^n .
- (ii) Give an example showing that $\bigcap_{\alpha \in I} U_{\alpha}$ need not be open.

Exercise 1.7. Suppose $A \subset \mathbb{R}^n$ is an open set and $f : A \to \mathbb{R}^m$. Show that $\lim_{x\to p} f(x) = F$ if and only if for any sequence $(x_i)_{i=0}^{\infty}$ in $A \setminus \{p\}$ which converges to p we have

$$f(x_i) \to F$$
, as $i \to \infty$

Exercise 1.8. (a) Show that the map $f : \mathbb{R} \to \mathbb{R}^n$ defined as $f(x) = (x, 0, \dots, 0)$ is continuous on \mathbb{R} .

(b) Let $A \subset \mathbb{R}^n$ and suppose we are given a map $f: A \to \mathbb{R}^m$ where

$$f(x^1,\ldots,x^n)\mapsto \left(f^1\big((x^1,\ldots,x^n)\big),\ldots,f^m\big((x^1,\ldots,x^n)\big)\right)$$

Show that f is continuous at $p \in A$ if and only if each map $f^k : A \to \mathbb{R}$ is continuous at p, for k = 1, ..., m.

(c) Show that the map $f : \mathbb{R}^n \to \mathbb{R}$ defined as $f((x^1, x^2, \dots, x^n)) = 3x^1(x^2)^5 + 4x^2(x^n)^7$ is continuous on \mathbb{R}^n , ¹.

Exercise 1.9.*

(a) Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous on \mathbb{R}^n , and suppose $U \subset \mathbb{R}^m$ is open. Show that:

$$f^{-1}(U) := \{x \in \mathbb{R}^n : f(x) \in U\}$$

is open.

(b) Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ has the property that $f^{-1}(U) \subset \mathbb{R}^n$ is open for every open $U \subset \mathbb{R}^m$. Show that f is continuous on \mathbb{R}^n .

¹Here, $(x^j)^m$ denotes the coordinate x^j raised to power m.