Exercise 1.1. (a) Show that the inner product satisfies the following properties: for all $x, y, z \in \mathbb{R}^n$ and $a \in \mathbb{R}$,

$$
\langle x,y\rangle = \langle y,x\rangle\,,\qquad \langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle\,,\qquad \langle ax,y\rangle = a\,\langle x,y\rangle\,.
$$

(b) For $t \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$, show that:

$$
||x + ty||^{2} = ||x||^{2} + 2t \langle x, y \rangle + t^{2} ||y||^{2} \ge 0
$$
\n(1)

(c) By thinking of (1) as a quadratic in t, and considering its possible roots, deduce the Cauchy-Schwartz inequality:

$$
|\langle x, y \rangle| \le ||x|| \, ||y|| \,.
$$

When does equality hold?

- (d) Deduce the triangle inequality for the norm on \mathbb{R}^n .
- (e) Show the reverse triangle inequality:

$$
\big| \|x\| - \|y\| \big| \le \|x - y\|
$$

Exercise 1.2. Suppose $x = (x^1, \dots, x^n) \in \mathbb{R}^n$.

(i) Show that:

$$
\max_{k=1,\dots,n} \left| x^k \right| \leq \left\| x \right\|.
$$

(ii) Show that:

$$
||x|| \leq \sqrt{n} \max_{k=1,\ldots,n} \left| x^k \right|.
$$

Exercise 1.3. Suppose that $(x_i)_{i=0}^{\infty}$ and $(y_i)_{i=0}^{\infty}$ are two sequences in \mathbb{R}^n with

$$
\lim_{i \to \infty} x_i = x, \qquad \lim_{i \to \infty} y_i = y.
$$

(a) Show that

$$
\lim_{i \to \infty} (x_i + y_i) = x + y.
$$

(b) Show that

$$
\lim_{i \to \infty} \langle x_i, y_i \rangle = \langle x, y \rangle,
$$

and deduce that

$$
\lim_{i\to\infty}||x_i||=||x||.
$$

(c) Suppose that $(a_i)_{i=0}^{\infty}$ is a sequence of real numbers with $a_i \to a$ as $i \to \infty$. Show that

$$
\lim_{i \to \infty} (a_i x_i) = ax.
$$

Please send any corrections to d.cheraghi@imperial.ac.uk Questions marked with ∗ are optional

- (a) \mathbb{R}^n ?
- (b) ∅?
- (c) $\{x = (x^1, \dots, x^n) \in \mathbb{R}^n : x^1 > 0\}$?
- (d) $\{x = (x^1, \ldots, x^n) \in \mathbb{R}^n : x^i \in [0, 1)\}$?
- (e) $\mathbb{Q}^n := \{x = (x^1, \dots, x^n) \in \mathbb{R}^n : x^i \in \mathbb{Q}\}$?

Exercise 1.5. Let $(x_i)_{i=0}^{\infty}$ be a sequence of vectors $x_i \in \mathbb{R}^n$ with $x_i \to x$. Suppose that the x_i satisfy $||x_i|| < r$ for all i and some $r > 0$. Show that:

 $||x|| < r.$

Exercise 1.6. (a) Show that if U_1 , U_2 are open in \mathbb{R}^n , then so are the sets

$$
i) \quad U_1 \cup U_2 \qquad \qquad ii) \quad U_1 \cap U_2
$$

(b) Suppose U_{α} , for α in an index set I, is a collection of open sets in \mathbb{R}^{n} .

- (i) Show that $\bigcup_{\alpha \in I} U_{\alpha}$ is open in \mathbb{R}^n .
- (ii) Give an example showing that $\bigcap_{\alpha \in I} U_{\alpha}$ need not be open.

Exercise 1.7. Suppose $A \subset \mathbb{R}^n$ is an open set and $f : A \to \mathbb{R}^m$. Show that $\lim_{x\to p} f(x) =$ F if and only if for any sequence $(x_i)_{i=0}^{\infty}$ in $A \setminus \{p\}$ which converges to p we have

$$
f(x_i) \to F
$$
, as $i \to \infty$.

- **Exercise 1.8.** (a) Show that the map $f : \mathbb{R} \to \mathbb{R}^n$ defined as $f(x) = (x, 0, \ldots, 0)$ is continuous on R.
- (b) Let $A \subset \mathbb{R}^n$ and suppose we are given a map $f : A \to \mathbb{R}^m$ where

$$
f(x^1,...,x^n) \mapsto (f^1((x^1,...,x^n)),...,f^m((x^1,...,x^n)))
$$
.

Show that f is continuous at $p \in A$ if and only if each map $f^k : A \to \mathbb{R}$ is continuous at p, for $k = 1, \ldots, m$.

(c) Show that the map $f : \mathbb{R}^n \to \mathbb{R}$ defined as $f((x^1, x^2, \dots, x^n)) = 3x^1(x^2)^5 + 4x^2(x^n)^7$ is continuous on \mathbb{R}^n , ^{[1](#page-1-0)}.

Exercise 1.9.[∗]

(a) Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous on \mathbb{R}^n , and suppose $U \subset \mathbb{R}^m$ is open. Show that:

$$
f^{-1}(U) := \{ x \in \mathbb{R}^n : f(x) \in U \}
$$

is open.

(b) Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ has the property that $f^{-1}(U) \subset \mathbb{R}^n$ is open for every open $U \subset \mathbb{R}^m$. Show that f is continuous on \mathbb{R}^n .

¹Here, $(x^{j})^{m}$ denotes the coordinate x^{j} raised to power m.