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Exercise 10.1. Show that any convergent sequence in a metric space, is a Cauchy se-
quence.

Hint: Adapt the proof of the same statement for the sequences of real numbers.

Solution: Let (xn)n≥1 be a sequence in X which converges to x ∈ X. Fix an arbitrary
ε > 0. By the definition of convergence of sequences, there is N ∈ N such that for all
n ≥ N we have d(xn, x) < ε/2. Therefore, by the triangle inequality, for all m,n ≥ N we
obtain

d(xn, xm) ≤ d(xn, x) + d(x, xm) < ε/2 + ε/2 = ε.

As ε > 0 was arbitrary, we conclude that (xn)n≥1 is Cauchy.

Exercise 10.2. Let (X,d) be a metric space, and assume that (xn)n≥1 is a Cauchy se-
quence in X. If there is a subsequence of (xn)n≥1 which converges to some x ∈ X, then
the sequence (xn)n≥1 converges to x.

Hint: Adapt the proof of the same statement for the sequences of real numbers.

Solution: Let (xnk
)k≥1 be a subsequence of (xn)n≥1 which converges to some x ∈ X. Fix

ε > 0. There is N ∈ N such that if k ≥ N we have d(xnk
, x) < ε/2. On the other hand,

there is M ∈ N such that if m,n ≥M , d(xm, xn) < ε/2. For every n ≥M , we may choose
k ≥ N such that nk ≥M . Then, by the triangle inequality,

d(xn, x) ≤ d(xn, xnk
) + d(xnk

, x) < ε/2 + ε/2 = ε.

As ε > 0 was arbitrary, we conclude that (xn)n≥1 converges to x.

Exercise 10.3. Let C be a collection of functions f : [a, b] → R. Assume that there is
K > 0 such that for all f ∈ C and all x and y in [a, b], we have

|f(x)− f(y)| ≤ K|x− y|.

Show that the family C is uniformly equi-continuous.
Hint: Show that for ε one can use δ = ε/K.

Solution: Fix ε > 0. Let δ = ε/K. For all f ∈ C, and all x and y in [a, b], if |x− y| < δ,
we have

|f(x)− f(y)| ≤ K|x− y| < Kδ = ε.

This means that the family C is uniformly equi-continuous.

Exercise 10.4. Let x1 =
√
2, and define the sequence (xn)n≥1 according to

xn+1 =
√
2 +
√
xn.

Show that the sequence (xn)n≥1 converges to a root of the equation

x4 − 4x2 − x+ 4 = 0

which lies in the interval [
√
3, 2].

Hint: Work with the function f(x) =
√
2 +
√
x on the interval [

√
3, 2].
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Solution: Consider the map

f(x) =

√
2 +
√
x, ∀x ∈ [

√
3, 2].

First we note that f maps [
√
3, 2] into [

√
3, 2]. That is because, f(

√
3) ≥

√
3, f(2) ≤ 2,

and f is an increasing function. More precisely, for all t ∈ [
√
3, 2] we have

√
3 ≤ f(

√
3) ≤ f(t) ≤ f(2) ≤ 2,

and hence f(t) ∈ [
√
3, 2].

Now we show that f is contracting on the interval [
√
3, 2]. By a simple calculation we

see that for all x ∈ [
√
3, 2], we have

f ′(x) =
1

4

1√
2 +
√
x

1√
x
≤ 1

4
.

Therefore, for all x and y in [
√
3, 2], we have

|f(x)− f(y)| =
∣∣∣∣∫ y

x
f ′(t) dt

∣∣∣∣ ≤ ∣∣∣∣∫ y

x
|f ′(t)|dt

∣∣∣∣ ≤ 1

4
|x− y|.

This shows that f is uniformly contracting on [
√
3, 2].

By definition, xn+1 = f(xn), the sequence (xn)n≥1 is contained in [
√
3, 2]. Since (R, d1)

is a complete metric space, and [
√
3, 2] is closed in (R, d1), we conclude that [

√
3, 2] is a

complete metric space with respect to the induced metric. By the argument in the proof of
the Banach fixed point theorem, the sequence (xn)n≥1 is a Cauchy sequence. Therefore, it
must converge to some limit in [

√
3, 2]. Moreover, the limit of the sequence, is the unique

fixed point of the function f in [
√
3, 2]. Thus, we must have

x =

√
2 +
√
x

which implies that x2 = 2 +
√
x, and hence (x2 − 2)2 = x, and hence the relation in the

exercise.

Exercise 10.5. Consider the map f : (0, 1/3) → (0, 1/3), defined as f(x) = x2. Show
that the map f is a contraction with respect to the Euclidean metric d1. But, f has no
fixed point in (0, 1/3).

Hint: you may use the formula x2 − y2 = (x− y)(x+ y).

Solution: For all x and y in (0, 1/3), we have

|f(x)− f(y)| = |(x− y)(x+ y)| < 2

3
|x− y|

Thus, f us contracting. However, since for all x ∈ (0, 1/3), f(x) < x, f does not have a
fixed point in (0, 1/3). One cannot apply the Banach Fixed point theorem here since the
interval (0, 1/3) is not complete.

Exercise 10.6. Consider the map f : [1,∞) → [1,∞) defined as f(x) = x + 1/x. Show
that ([1,+∞), d1) is a complete metric space, and for all x and y in [1,∞) we have

d1(f(x), f(y)) ≤ d(x, y).

But, f has no fixed point.
Hint:You may use f ′ < 1 on [1,+∞).
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Solution: Any Cauchy sequence in ([1,+∞), d1) is a Cauchy sequence in (R,d1). But the
latter space is complete so that the sequence converges to some x ∈ (R,d1). This x also
belongs to [1,+∞) since this set is closed. Thus ([1,+∞), d1) is complete.

We note that for all x and y in [1,+∞), we have

|f(x)− f(y)| =
∣∣∣∣x− y + 1

x
− 1

y

∣∣∣∣
=

∣∣∣∣x− y − x− y
xy

∣∣∣∣
≤ |x− y| ·

∣∣∣∣1− 1

xy

∣∣∣∣
≤ |x− y|.

Obviously, f(x) has no fixed point, since for all x in [1,+∞ we have x 6= x + 1/x. Note
that the Banach Fixed Point Theorem cannot be applied here since there is no K ∈ (0, 1)
such that |f(x)− f(y)| ≤ K|x− y|.

Unseen Exercise. (unseen) Let C be a collection of functions f : [a, b] → R. Assume
that there are K > 0 and α > 0 such that for all f ∈ C and all x and y in [a, b], we have

|f(x)− f(y)| ≤ K|x− y|α.

Show that the family C is uniformly equi-continuous. A function f satisfying this inequality
for some K and α, is called a holder function (or an α-holder function).

Hint: Show that for ε one can use δ = (ε/K)1/α.

Solution: Fix ε > 0. Let δ = (ε/K)1/α. For all f ∈ C, and all x and y in [a, b], if
|x− y| < δ, we have

|f(x)− f(y)| ≤ K|x− y|α < Kδα = ε.

This means that the family C is uniformly equi-continuous.


