

Exercise 10.1. Show that any convergent sequence in a metric space, is a Cauchy sequence.

Hint: Adapt the proof of the same statement for the sequences of real numbers.

Solution: Let $(x_n)_{n>1}$ be a sequence in X which converges to $x \in X$. Fix an arbitrary $\epsilon > 0$. By the definition of convergence of sequences, there is $N \in \mathbb{N}$ such that for all $n \geq N$ we have $d(x_n, x) < \epsilon/2$. Therefore, by the triangle inequality, for all $m, n \geq N$ we obtain

 $d(x_n, x_m) \leq d(x_n, x) + d(x, x_m) < \epsilon/2 + \epsilon/2 = \epsilon.$

As $\epsilon > 0$ was arbitrary, we conclude that $(x_n)_{n\geq 1}$ is Cauchy.

Exercise 10.2. Let (X, d) be a metric space, and assume that $(x_n)_{n>1}$ is a Cauchy sequence in X. If there is a subsequence of $(x_n)_{n>1}$ which converges to some $x \in X$, then the sequence $(x_n)_{n\geq 1}$ converges to x.

Hint: Adapt the proof of the same statement for the sequences of real numbers.

Solution: Let $(x_{n_k})_{k\geq 1}$ be a subsequence of $(x_n)_{n\geq 1}$ which converges to some $x \in X$. Fix $\epsilon > 0$. There is $N \in \overline{\mathbb{N}}$ such that if $k \geq N$ we have $d(x_{n_k}, x) < \epsilon/2$. On the other hand, there is $M \in \mathbb{N}$ such that if $m, n \geq M$, $d(x_m, x_n) < \epsilon/2$. For every $n \geq M$, we may choose $k \geq N$ such that $n_k \geq M$. Then, by the triangle inequality,

$$
d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x) < \epsilon/2 + \epsilon/2 = \epsilon.
$$

As $\epsilon > 0$ was arbitrary, we conclude that $(x_n)_{n\geq 1}$ converges to x.

Exercise 10.3. Let C be a collection of functions $f : [a, b] \to \mathbb{R}$. Assume that there is $K > 0$ such that for all $f \in \mathcal{C}$ and all x and y in [a, b], we have

$$
|f(x) - f(y)| \le K|x - y|.
$$

Show that the family $\mathcal C$ is uniformly equi-continuous.

Hint: Show that for ϵ one can use $\delta = \epsilon/K$.

Solution: Fix $\epsilon > 0$. Let $\delta = \epsilon/K$. For all $f \in \mathcal{C}$, and all x and y in [a, b], if $|x - y| < \delta$, we have

$$
|f(x) - f(y)| \le K|x - y| < K\delta = \epsilon.
$$

This means that the family $\mathcal C$ is uniformly equi-continuous.

Exercise 10.4. Let $x_1 =$ √ 2, and define the sequence $(x_n)_{n\geq 1}$ according to

$$
x_{n+1} = \sqrt{2 + \sqrt{x_n}}.
$$

Show that the sequence $(x_n)_{n\geq 1}$ converges to a root of the equation

$$
x^4 - 4x^2 - x + 4 = 0
$$

which lies in the interval [√ $[3, 2]$.

Hint: Work with the function $f(x) = \sqrt{2 + \sqrt{x}}$ on the interval √ $[3, 2]$.

Please send any corrections to d.cheraghi@imperial.ac.uk

Questions marked with ∗ are optional

Solution: Consider the map

$$
f(x) = \sqrt{2 + \sqrt{x}}, \quad \forall x \in [\sqrt{3}, 2].
$$

First we note that f maps $[$ 3, 2] into [$[3, 2]$. That is because, $f(x)$ √ $3)\geq$ √ cause, $f(\sqrt{3}) \ge \sqrt{3}$, $f(2) \le 2$, and f is an increasing function. More precisely, for all $t \in [\sqrt{3}, 2]$ we have

$$
\sqrt{3} \le f(\sqrt{3}) \le f(t) \le f(2) \le 2,
$$

and hence $f(t) \in [$ √ $[3,2].$

Now we show that f is contracting on the interval \lceil √ at f is contracting on the interval [$\sqrt{3}$, 2]. By a simple calculation we see that for all $x \in \left[\sqrt{3}, 2\right]$, we have

$$
f'(x) = \frac{1}{4} \frac{1}{\sqrt{2 + \sqrt{x}}} \frac{1}{\sqrt{x}} \le \frac{1}{4}.
$$

Therefore, for all x and y in [√ $[3, 2]$, we have

$$
|f(x) - f(y)| = \left| \int_x^y f'(t) \, dt \right| \le \left| \int_x^y |f'(t)| \, dt \right| \le \frac{1}{4} |x - y|.
$$

This shows that f is uniformly contracting on \vert $[3,2].$

By definition, $x_{n+1} = f(x_n)$, the sequence $(x_n)_{n \geq 1}$ is contained in [the sequence $(x_n)_{n\geq 1}$ is contained in $[\sqrt{3}, 2]$. Since (\mathbb{R}, d_1) is a complete metric space, and $[\sqrt{3}, 2]$ is closed in (\mathbb{R}, d_1) , we conclude that $[\sqrt{3}, 2]$ is a complete metric space with respect to the induced metric. By the argument in the proof of the Banach fixed point theorem, the sequence $(x_n)_{n\geq 1}$ is a Cauchy sequence. Therefore, it must converge to some limit in $[\sqrt{3}, 2]$. Moreover, the limit of the sequence, is the unique fixed point of the function f in $[\sqrt{3}, 2]$. Thus, we must have

$$
x = \sqrt{2 + \sqrt{x}}
$$

which implies that $x^2 = 2 + \sqrt{x}$, and hence $(x^2 - 2)^2 = x$, and hence the relation in the exercise.

Exercise 10.5. Consider the map $f : (0,1/3) \rightarrow (0,1/3)$, defined as $f(x) = x^2$. Show that the map f is a contraction with respect to the Euclidean metric d_1 . But, f has no fixed point in $(0, 1/3)$.

Hint: you may use the formula $x^2 - y^2 = (x - y)(x + y)$.

Solution: For all x and y in $(0, 1/3)$, we have

$$
|f(x) - f(y)| = |(x - y)(x + y)| < \frac{2}{3}|x - y|
$$

Thus, f us contracting. However, since for all $x \in (0,1/3)$, $f(x) < x$, f does not have a fixed point in $(0, 1/3)$. One cannot apply the Banach Fixed point theorem here since the interval $(0, 1/3)$ is not complete.

Exercise 10.6. Consider the map $f : [1, \infty) \to [1, \infty)$ defined as $f(x) = x + 1/x$. Show that $([1, +\infty), d_1)$ is a complete metric space, and for all x and y in $[1, \infty)$ we have

$$
d_1(f(x), f(y)) \le d(x, y).
$$

But, f has no fixed point.

Hint: You may use $f' < 1$ on $[1, +\infty)$.

Solution: Any Cauchy sequence in $([1, +\infty), d_1)$ is a Cauchy sequence in (\mathbb{R}, d_1) . But the latter space is complete so that the sequence converges to some $x \in (\mathbb{R}, d_1)$. This x also belongs to $[1, +\infty)$ since this set is closed. Thus $([1, +\infty), d_1)$ is complete.

We note that for all x and y in $[1, +\infty)$, we have

$$
|f(x) - f(y)| = \left| x - y + \frac{1}{x} - \frac{1}{y} \right|
$$

$$
= \left| x - y - \frac{x - y}{xy} \right|
$$

$$
\leq |x - y| \cdot \left| 1 - \frac{1}{xy} \right|
$$

$$
\leq |x - y|.
$$

Obviously, $f(x)$ has no fixed point, since for all x in $[1, +\infty$ we have $x \neq x + 1/x$. Note that the Banach Fixed Point Theorem cannot be applied here since there is no $K \in (0,1)$ such that $|f(x) - f(y)| \leq K|x - y|$.

Unseen Exercise. (unseen) Let C be a collection of functions $f : [a, b] \to \mathbb{R}$. Assume that there are $K > 0$ and $\alpha > 0$ such that for all $f \in \mathcal{C}$ and all x and y in [a, b], we have

$$
|f(x) - f(y)| \le K|x - y|^{\alpha}.
$$

Show that the family $\mathcal C$ is uniformly equi-continuous. A function f satisfying this inequality for some K and α , is called a holder function (or an α -holder function).

Hint: Show that for ϵ one can use $\delta = (\epsilon/K)^{1/\alpha}$.

Solution: Fix $\epsilon > 0$. Let $\delta = (\epsilon/K)^{1/\alpha}$. For all $f \in C$, and all x and y in [a, b], if $|x - y| < \delta$, we have

$$
|f(x) - f(y)| \le K|x - y|^{\alpha} < K\delta^{\alpha} = \epsilon.
$$

This means that the family $\mathcal C$ is uniformly equi-continuous.