Problem Sheet 10	Analysis II
Davoud Cheraghi	Autumn 2021

Exercise 10.1. Show that any convergent sequence in a metric space, is a Cauchy sequence.

Exercise 10.2. Let (X, d) be a metric space, and assume that $(x_n)_{n\geq 1}$ is a Cauchy sequence in X. If there is a subsequence of $(x_n)_{n\geq 1}$ which converges to some $x \in X$, then the sequence $(x_n)_{n\geq 1}$ converges to x.

Exercise 10.3. Let \mathcal{C} be a collection of functions $f : [a, b] \to \mathbb{R}$. Assume that there is K > 0 such that for all $f \in \mathcal{C}$ and all x and y in [a, b], we have

$$|f(x) - f(y)| \le K|x - y|.$$

Show that the family \mathcal{C} is uniformly equi-continuous.

Exercise 10.4. Let $x_1 = \sqrt{2}$, and define the sequence $(x_n)_{n\geq 1}$ according to

$$x_{n+1} = \sqrt{2 + \sqrt{x_n}}.$$

Show that the sequence $(x_n)_{n\geq 1}$ converges to a root of the equation

$$x^4 - 4x^2 - x + 4 = 0$$

which lies in the interval $\sqrt{3}, 2$].

Exercise 10.5. Consider the map $f : (0, 1/3) \to (0, 1/3)$, defined as $f(x) = x^2$. Show that the map f is a contraction with respect to the Euclidean metric d_1 . But, f has no fixed point in (0, 1/3).

Exercise 10.6. Consider the map $f : [1, \infty) \to [1, \infty)$ defined as f(x) = x + 1/x. Show that $([1, +\infty), d_1)$ is a complete metric space, and for all x and y in $[1, \infty)$ we have

$$d_1(f(x), f(y)) \le d(x, y).$$

But, f has no fixed point.

Please send any corrections to d.cheraghi@imperial.ac.uk Questions marked with * are optional