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Exercise 3.1. Show that f : R? — R is everywhere differentiable, and find the differential
when:

(a) f(l‘,y):x2+y2—ar—xy,

(b) f(xvy) = \/ﬁ,
(©) flz,y) ="y

Solution: (a) Computing the partial derivatives, we have (letting p = (z,y)):

Dif(p) =2 —1—y, Dyf(p) = 2y — =,

Clearly these are continuous at all p € R?, so we deduce from the theorem in the
lecture notes that f is everywhere differentiable and moreover:

Df(p) = (22 —1-y,2y — )

(b) Computing the partial derivatives, we have (letting p = (x,y)):

= Dyfp)=——

le(p) = (1—1—1'2—1—:[/2)%

3
2

(1422 4y?)

Clearly these are continuous at all p € R?, so we deduce by the theorem in the lectures
that that f is everywhere differentiable and moreover:

1
Df(p) = ————= (—2,—y)
(14224 y?)2
(c) Computing the partial derivatives, we have (letting p = (z,y)):

Dif(p) =5z"y*,  Daf(p) = 22y,

Clearly these are continuous at all p € R?, so we deduce from the theorem in the
lectures that f is everywhere differentiable and moreover:

Df(p) = (5a'y?, 22°y)

Exercise 3.2. Suppose A is a symmetric (n x n) matrix. Consider the function:

f: R - R
x +— xzAzxl.

(a) Show that f is differentiable at all points p € R™, with:

Df(p) = 2pA

Please send any corrections to d.cheraghi@imperial.ac.uk
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(b)

Find:
Hess f(p).

Solution: (a) Fix p € R". We compute:

fp+h) = fp) = Dfp)[h] = (p+ h)A(p + h)" — pAp" — 2p AR’
= pAp' + pAR' + hAp' + hAR' — pAp' — 2pAR!
= hAR!,
where we have used that A is symmetric to deduce hAp' = pAht. Now, recall from
an example in the lecture notes that for any matrix A there exists a constant K such

that:
[Az]| < K |l

for all x € R™. Applying the Cauchy-Schwartz inequality we have:
|hARY|| < [|B] ||AR|| < K ||B].
Thus, we conclude:

|f(p+h)— f(p) — Df(p)[h]ll
1Al

< KAl =0,

as h — 0, thus we have that f is differentiable with derivative D f(p) = 2pA.
If we write A = (A;;)7;_, then we can write:
Df(p)h] =Y _Dif(p)h? =2 p'Ayh/
j=1 ij=1

where p = (p!,...p"), h = (h',...,h"). We deduce that:
Dif(p) =2 p'Ay
i=1
Taking a further derivative, we conclude:

DiDjf(p) = 2Aij.

Thus
Hess f(p) = 2A.

Exercise 3.3. Consider the function f : R* — R given by:

(a)

(b)

f(zy,2) =zy® 4+ 2% + z2ev.

Compute the first and second partial derivatives. Observe the properties of the second
partial derivative.

Write the terms of the Taylor expansion of f at zero up to and including the second-
order terms.



(¢) Without computation, write the same Taylor expansion up to and including the fourth-
order terms.

Solution: (a) We have
Dif =vy>+2x+2¢Y, Dof =2y +azeY, Dsf = zeV.

Furthermore,
DiDif =2, DaDif =2y+ze, D3Dif =¢e",

D1Dof =2y +ze¥, DoDsof =2x+ xze¥, D3Dsof = xeY,
D1D3f = ey, D2D3f = xey, D3D3f = 0.

(b) Thus by the general formula for the Taylor expansion, with h; = x, hgy =y, hs = z,

hOL

f(x7y7z)) = Z Daf(())g +R3
a,|al<2
3 3 52 3 ‘
= J(0)+ D Dif(0)h; + D DD f(0) 5 + Y DiDif(0)Wh* + Ry
j=1 j=1 T <k k=1
=2’ + 22+ Ry

()

flz,y,2) = zy? + 22 + z2(1 —|—y+y2/2) + R5

Exercise 3.4 (*). Consider the function f : R? — R given by:

A 3 _ 5(;3
z fﬂfyzy (z,y) # (0,0)
[ ( y ) —
0 (z,) = (0,0).
(a) Show that:
y —32%y 2 (zy’ —a%y)
s (T TS @ (@.9) # (0.,0)
Yy
0 (w7y) = (0,0).
and
32/218 — 3 _ 2y (:L‘y3 _ x?’y)
D2f: < r > — 1'2—|—y2 (;1;2_|_y2)2 ($7y)7£(0’0)
Yy
0 (1:7?/) = (0,0),

and show that these functions are both continuous at (0, 0).



Solution: 1. Let p = (z,y). If p # 0, we can differentiate using the quotient rule to

find . ) ( )
0 — 3z 2z (xy3 — 23y
le(p) = 7f = Y 2 Qy
ox e +y (:c2 +y )
Further, note that f(te;) = 0, so that:
iy £ (te1) = £(0)

t—0 t

=0,

thus Dy f(0) =0
2. Now, note that ‘yQ — 31’2‘ <y?+322< 3(y2 + :):2), thus:

y3 — 3m2y B
22 + 32 =yl

<3
x2 +y2 [l
Also, note that by Young’s inequality }:Ey‘g‘ < ;m2y2 —1— 4 and similarly ’:L‘Sy} <

§x2y2+ 124 so that:

(x2 + y2)2 .

N | =

‘a:y3 - x3y‘ < ‘:z:y?’] + ‘x3y‘ < % (1:4 + 22%y* + y4) =
We deduce:
2x (a;y3 — x3y)
(2 +42)°
so that for p = (z,y)! # 0, we have:
[D1f(p)| <3yl +[z[ =0

< faf,

as p — 0, so that D; f(p) is continuous at p = 0.
3. Similarly, if p # 0, we can differentiate using the quotient rule to find
Bl_ 3y’x — a3 B 2y( xy® —x y)
dy  a*+y? (22 + y2)?
Further, note that f(tez) = 0, so that:
iy 1 (te2) = f(0)

t—0 t

Dyf(p) =

:07

thus Dy f(0) =
4. Now, note that ‘3y2 — 3:2‘ <3y + a2 < 3(y2 + 22), thus:
3y’e — 23
x? + y?

< 3lz|

$2 T2
Recalling that:

‘xy3 — x3y| < % (11:2 + y2)2.
We deduce:
2y (zy° — 2’y)

(2 +42)°

so that for p = (z,y) # 0, we have:

[D2f(p)| <3yl + || =0

<lyl,

as p — 0, so that D; f(p) is continuous at p = 0.



(b) Show that:
1
lim = (D1 f(te2) — D1f(0)) = 1
and )
lim — (Da f(te1) — D2 f(0)) = —1
t—0 ¢
Solution: We have (setting x = 0, y = t in the formula for D f):
Dy f(te2) =t, Dif(0) =0,

so that: .
lim — (D1 f(tez) — D1 £(0)) = 1

Similarly, we have (setting x = ¢, y = 0 in the formula for Dy f):
Dy f(ter) = —t, D1f(0) =0,
so that: )
lim ~ (Daf(ter) ~ Daf(0)) = ~1
(¢) Conclude that both Dy Dy f(0) and D1 D5 f(0) exist, but that:

Dy D1 f(0) # D1D2f(0)
Solution: By definition,

DD f(0) = lim < (D f(tes) — D1 (0))

which certainly exists. Similarly,

Dy D3 f(0) = lim < (D (ter) — Daf(0))

also exists, but as we’ve seen above the two are not equal.

Exercise 3.5. Consider the function f : R? — R defined as f(z,y) = % sin(y).

a) Compute the degree 1 and degree 2 Taylor polynomial of f near the point (xg,yo) =
(0,7/2) and use those to approximate the value of f at (z1,y1) = (0,7/2 + 1/4).
Compare your results with the values you obtain from a calculator.

Solution: For all z,y € R we have

Dif(z,y) = e"sin(y),  DiDif(z,y) = e"sin(y),  DaD1f(z,y) = e” cos(y)
Daf(z,y) =e"cos(y),  DaDaf(z,y) = —€e"sin(y), DiDzf(z,y) = €” cos(y).

Evaluating the above expressions at (zo, o) = (0,7/2) € R?, we get f(z0,y0) = 1 as
well as

le(oaﬂ-/2) = 17 Dlle(Oaﬂ-/2): 17 Dngf(O,Tf/2):O

Dy f(0,7/2) =0, DyDyf(0,7/2) = —1, DiDyf(0,7/2) =0.



The Taylor polynomials 77 f and 15 f of degree 1 and 2, respectively, are therefore

Ty f(z,y) = f(zo,90) + D1f(z0,y0) - (x — 0) + D2f (x0,%0) - (y —v0) =1+ =

and
T2f(x7y) = Tlf('xa y) + % Dlle(ﬂfo,yo) ' (I’ - 1:0)2 + DQDQf(:EO’ yO) ’ (y B y0)2
+2D1Ds f(xo, yo) - (x — 0)(y — Yo)

1 1
= 1+x+§x2—§(y—7r/2)2.

At the point (z1,y1) = (0,7/2 + 1/4), these yield the approximations
Tof(0,m/24+1/4) =1, Tof(0,7/2+1/4) =1 —1/2(1/4)% = 31/32 = 0.96875.

The approximation by 75 is very good as the actual value (using a high precision
calculator) is
f(O,m/2+1/4) ~ 0.96891.

How precise is the degree 1 approximation in the closed ball of radius 1/4 around
(z0,y0). Find a rigorous upper bound for the approximation error.

Solution: Let B denote the ball of radius 1/4 about (z9,y0), that is By /4(z0,y0)-
By Theorem 1.14, the remainder term R; = f — T} f can be expressed as

Ri(z,y) = % D1D1 f(wr,yr) - (x — 20)?

+ D2D2f(xra yr) ' (y - y0)2 + 2D1D2f($rayr) ’ (x - xO)(y - yO)

for some (x,, y,) such that z, lies in the interval [z¢, ] when > ¢ and in the interval
[z, 0] when 2 < x¢, and similarly for y,. In particular, for all (z,y) € By /4(%0, %0),
this gives |z, —xo| < 1/4 and |y, —yo| < 1/4. Moreover, by part a) for all (z,y) € R?
we have |D1D;f(z,y)| < €*, |D1Daf(z,y)| < €®, and |DoDaf(z,y)| < e*, using
|sin(x)| <1 and |cos(z)| < 1. Overall, this gives for all (x,y) € By4(%0,y0),

|Ri(z,y)] <4(Let - (1)?) = Lei ~ 0.1605.

Even the (relatively crude) first-order approximation is off by at most about 16% of
the value at (z9,y0) in By /4(z0,v0)-

Unseen Exercise. Find the minimum of the function f : R? — R given by:

f(z,y,2) = 2 (? + 2%) + 22 — 42

Solution: Computing the partial derivatives, we have (setting p = (x,y, 2))

Dif(p) = 4a”y* + 62° = 2°(4* + 62%)
Daf(p) = 2y
Dsf(p) =2z -4



We see that all partial derivatives are continuous, thus f is everywhere differentiable. If
po = (2o, Yo, 20) is an extremal point, then D f(py) = 0. This implies that either

(.’EQ, Yo, ZO) - (07 07 2)7

or

(3301 Yo, ZO) = (0’ Y, 2)7
for any value of y € R. In either of the above cases f(pg) = —4. To see this is a minimum,
note that

fp) =2’ +2*)+ 2" —dz=2* (P +2)) + (2 —2)* -4 > —4,

since the first two terms are manifestly positive.



