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Exercise 4.1. Consider the function f : R2 → R
2 given by:

f :

(

x
y

)

7→
(

x+ y − xy
x2

)

Determine the set of points in R
2 such that f is invertible near those points, and

compute the derivative of the inverse map.

Solution: The derivative is

Df =

(

1− y 1− x
2x 0

)

.

We have detDf = 2x(x − 1) which is zero if x = 0 or x = 1 for any y. Thus, for any
(x, y) ∈ R

2 such that x /∈ {0, 1}, the function is invertible on a ball around (x, y) ∈ R
2,

and the derivative of the inverse is

Df−1 = (Df)−1 =
1

2x(x− 1)

(

0 x− 1
−2x 1− y

)

.

Exercise 4.2. (a) Suppose f : R → R is continuously differentiable in a neighbourhood
of the origin, and f ′(0) = 0. Give an example to show that f may nevertheless be
bijective.

[Hint: Consider the function f : R → R given by f : x 7→ x3.]

Solution: The function f : x 7→ x3 is strictly monotone increasing and continuous,
hence it is bijective. On the other hand f ′(0) = 0.

(b) Suppose f : Rn → R
n is bijective, differentiable at the origin, and detDf(0) = 0.

Show that f−1 is not differentiable at f(0).

[Hint: Assume that f−1 is differentiable at f(0) and apply the chain rule to ι = f−1 ◦
f = f ◦ f−1 to derive a contradiction.]

Solution: Assume that f−1 is differentiable at f(0) and let us apply the chain rule to
differentiate ι = f−1 ◦ f at 0. We find

ι = Df−1(f(0)) ◦Df(0).

Similarly, applying the chain rule to differentiate ι = f ◦ f−1 at f(0), we have:

ι = Df(f−1(f(0))) ◦Df−1(f(0)) = Df(0) ◦Df−1(f(0)).

We conclude that Df(0) has both a left and right inverse and thus is invertible, however
detDf(0) = 0. This contradicts the assumption that f−1 is differentiable at f(0).

Please send any corrections to d.cheraghi@imperial.ac.uk

Questions marked with ∗ are optional
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Exercise 4.3. The non-linear system of equations

exy sin(x2 − y2 + x) = 0

ex
2+y cos(x2 + y2) = 1

admits the solution (x, y) = (0, 0). Prove that there exists ε > 0 such that for all (ξ, η)
with ξ2 + η2 < ε2, the perturbed system of equations

exy sin(x2 − y2 + x) = ξ

ex
2+y cos(x2 + y2) = 1 + η

has a solution (x(ξ, η), y(ξ, η)) which depends continuously on (ξ, η).

Solution: Let us define the maps

f1(x, y) = exy sin(x2 − y2 + x), f2(x, y) = ex
2+y cos(x2 + y2),

for (x, y) ∈ R
2. Consider the map f : R2 → R

2 defined as

f(x, y) =

(

f1(x, y)
f2(x, y)

)

=

(

exy sin(x2 − y2 + x)

ex
2+y cos(x2 + y2)

)

.

Then we have f(0, 0) = (0, 1). We aim to employ the Inverse Function Theorem.
We compute the first partial derivatives of F , as

D1f
1(x, y) = yexy sin(x2 − y2 + x) + (2x+ 1)exy cos(x2 − y2 + x)

D2f
2(x, y) = xexy sin(x2 − y2 + x) + 2yexy cos(x2 − y2 + x)

D1f
2(x, y) = 2xex

2+y cos(x2 + y2)− 2xex
2+y sin(x2 + y2)

D2f
2(x, y) = ex

2+y cos(x2 + y2)− 2yex
2+y cos(x2 + y2)

All these partial derivatives are continuous, so by a theorem in the lectures, f is continu-
ously differentiable. Moreover, we have

Df(0, 0) =

(

1 0
0 1

)

,

which is invertible. Thus, by the Inverse Function Theorem, there exists a neighbourhoods
U ⊂ R

2 of (0, 0) and a neighbourhood V ⊂ R
2 of (0, 1) such that f : U → V is a bijection.

Since V is an open neighbourhood of (0, 1), there is ǫ > 0 such that Bǫ(0, 1) ⊆ V . It
follows that all the points (ξ, 1+ η) with ξ2+ η2 < ε2 are elements of V . Thus, the inverse
map

(x(ξ, η), y(ξ, η)) = f−1(ξ, 1 + η)

is well-defined and solves the perturbed system. The continuity of the map f−1 implies
that x(ξ, η) and y(ξ, η) each vary continuously in (ξ, η) (see Exercise 1.8(b) on Problem
Sheet 1).

Exercise 4.4. For each of the following equations determine at which points one cannot
find a function y = f(x) which describes the graph in this neighbourhood. Sketch the
graphs.
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(a)
1

3
y3 − 2y + x = 1

(b)

x2
(

cos2 φ

a2
+

sin2 φ

b2

)

− xy

(

1

a2
− 1

b2

)

sin(2φ) + y2
(

sin2 φ

a2
+

cos2 φ

b2

)

= 1,

where a > 0, b > 0, 0 ≤ φ ≤ π/2 are fixed parameters. Note the cases a = b, φ = 0,
φ = π/2.

Solution: (a) Let

F (x, y) =
1

3
y3 − 2y + x− 1.

The solutions of the equation satisfy F (x, y) = 0. To employ the Implicit Function
Theorem, we need to identify the solutions (x, y) of F (x, y) = 0 such that ∂

∂y
F (x, y) 6=

0. Solving the equation ∂
∂y
F (x, y) = 0 gives y = ±

√
2. Substituting y = +

√
2 in

F (x, y) = 0 we get x = 1 − 4

3

√
2, and substituting y = −

√
2 in F (x, y) = 0 we get

x = 1 + 4

3

√
2. Thus, the theorem does not apply at the points

(1− 4

3

√
2,
√
2), (1 +

4

3

√
2,−

√
2).

Now by the Implicit Function Theorem, for every (x, y) in R
2, except the above two

points, the solution of the equation F (x, y) = 0 near (x, y) is the graph of a function.
That is, given (x, y), there are open sets A containing x and an open set B containing
y, and a function g : A → B such that (x′, y′) ∈ A × B is a solution of the equation
F (x′, y′) = 0 if and only if y′ = g(x′).

To see what is happening at the two exceptional points, we may rewriting the equation
in the form

x = −1

3
y3 + 2y + 1.

We note that the first derivative d
dy
x = 0 and the second derivative d2

dy2
x 6= 0 at any

of the two exceptional points. Thus, those points are either a maximum or minimum
for the graph of the function which gives the solution in terms of y. Thus, y = g(x)
does not exist in any neighbourhood.

(b) As in the previous part, we may write the equation in the form F (x, y) = 0, for
a suitable function F . The candidate points where the Implicit Function Theorem
cannot be applied are the solutions of the equation ∂

∂y
F (x, y) = 0. That gives us

y = x
b2 − a2

b2 sin2 φ+ a2 cos2 φ

sin(2φ)

2
.

If we substitute the above relation in the equation F (x, y) = 0, we obtain 2 points on
the graph (one for the pluses signs and one for the minuses signs):

x = ±
√

b2 sin2 φ+ a2 cos2 φ, y = ± b2 − a2
√

b2 sin2 φ+ a2 cos2 φ

sin(2φ)

2
.
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Note that the solution of the equation F (x, y) = 0 is in fact the ellipse

x′2

a2
+

y′2

b2
= 1

rotated by the angle φ, using the transformation
(

x′

y′

)

=

(

cosφ − sinφ
sinφ cosφ

)(

x
y

)

.

Thus, at the two points we have identified, the solution cannot be written as the graph
of a function. Indeed, for a = b, this problem reduces to the one we considered in the
lectures.

Exercise 4.5. Consider the equation

2x2 + 4xy + y2 = 3x+ 4y

a) Show that this system of equations (implicitly) defines a function y = f(x) with
f(1) = 1.

Solution: We consider the function F : R2 → R defined as

F (x, y) = (2x2 + 4xy + y2)− (3x+ 4y).

We note that F (1, 1) = 0, that is, (x0, y0) = (1, 1) is a solution of the equation
F (x, y) = 0. We aim to employ the Implicit Function Theorem.

We have
D2F (x, y) = 4x+ 2y − 4,

which shows that D2F is a continuous function. Moreover, D2F (1, 1) = 2 6= 0.

By the (simple version of the) Implicit Function Theorem, there exists a neighbour-
hood U ⊂ R of x0 = 1 and a continuously differentiable function f : U → R satisfying
f(1) = f(x0) = y0 = 1 such that

F (x, f(x)) = 0 for all x ∈ U.

b) Compute f ′(1) without knowing f explicitly.

Solution: Let us consider the map g(x) = F (x, f(x)), for x ∈ U . We may write this
map as the composition of the maps h(x) = (x, f(x)) followed by the map F (x, y).
That is, g(x) = F ◦ h(x). By the chain rule, we have

Dg(x) = DF (h(x)) ◦Dh(x) =
(

D1F (x, f(x)) D2F (x, f(x))
)

(

1
f ′(x)

)

= D1F (x, f(x)) +D2F (x, f(x))f ′(x).

From the definition of the function F , we have

D1F (x, y) = 4x+ 4y − 3,

and hence D1F (1, 1) = 5. On the other hand, since g ≡ 0 on U , we have g′(1) = 0.
Therefore, the above equation at x = 1 gives us

0 = 5 + 2f ′(1),

which implies f ′(1) = −5/2.
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c) Find an explicit formula for f and check your result from b).

Solution: To identify f explicitly, we must solve the equation F (x, y) = 0 for y,
which is possible here since F is a quadratic equation. That gives us

y = 2− 2x±
√

2x2 − 5x+ 4.

Since f(1) = 1 > 0 we must choose the positive sign in the above equation, which
becomes

f(x) = 2− 2x+
√

2x2 − 5x+ 4.

It follows that

f ′(x) = −2 +
4x− 5

2
√
2x2 − 5x+ 4

,

and hence f ′(1) = −2− 1/2 = −5/2.

Unseen Exercise. (unseen) Let Ω = {(x, y) ∈ R
2 : x > 0}. Consider the function

f : Ω → R
2 given by:

f : (x, y) = (x sin y, x cos y).

(a) Show that f is differentiable at all p = (ξ, η) ∈ Ω, with:

Df(p) =

(

sin η ξ cos η
cos η −ξ sin η

)

.

Solution: Let f1(x, y) = x sin y and f2(x, y) = x cos y. We can compute the partial
derivatives at p and find

D1f
1(p) = sin η, D2f

1(p) = ξ cos η,

D1f
2(p) = cos η, D2f

2(p) = −ξ sin η.

These are all manifestly continuous functions of p, so we deduce that f is everywhere
differentiable and:

Df(p) =

(

sin η ξ cos η
cos η −ξ sin η

)

,

by the theorem in the lectures.

(b) Show that Df(p) is invertible for all p ∈ Ω.

Solution: We have detDf(p) = −ξ 6= 0 for p = (ξ, η) ∈ Ω. Thus Df(p) is invertible
for all p ∈ Ω.

(c) Show that f : Ω → R
2 is not injective. Deduce that the restriction to open sets U, V

in the inverse function theorem is necessary.

Solution: f is not injective, since (for example) the points (1, 0) and (1, 2π) are both
mapped to (0, 1) under f . This shows that even for a function whose derivative is
globally invertible, we can nevertheless have that the function is not globally injective.
Locally (i.e. restricted to small enough open sets) we do recover injectivity.


