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Exercise 4.1. Consider the function f : R? — R? given by:

F ()~ ()

Determine the set of points in R? such that f is invertible near those points, and
compute the derivative of the inverse map.

(1-y 1-x
Df= < 2x 0 >
We have det Df = 2x(x — 1) which is zero if z = 0 or x = 1 for any y. Thus, for any

(z,y) € R? such that x ¢ {0,1}, the function is invertible on a ball around (z,y) € R?,
and the derivative of the inverse is

_ - 1 0 z-1
Df7t=(Df) 1:233(56—1) <—2x 1—y>'

Solution: The derivative is

Exercise 4.2. (a) Suppose f : R — R is continuously differentiable in a neighbourhood
of the origin, and f/(0) = 0. Give an example to show that f may nevertheless be
bijective.

[Hint: Consider the function f : R — R given by f : x> 23.]

Solution: The function f : z — 2 is strictly monotone increasing and continuous,

hence it is bijective. On the other hand f/(0) = 0.

(b) Suppose f : R™ — R™ is bijective, differentiable at the origin, and det D f(0) = 0.
Show that f~1 is not differentiable at f(0).

[Hint: Assume that f~' is differentiable at f(0) and apply the chain rule to t = f~'o
f=fof~! to derive a contradiction.]

Solution: Assume that f~! is differentiable at f(0) and let us apply the chain rule to
differentiate « = f~' o f at 0. We find

L = Df1(f(0)) 0 DF(0).
Similarly, applying the chain rule to differentiate : = f o f=1 at f(0), we have:
v=Df(fTHf(0))) o DFTH(F(0)) = DF(0) o DFH(£(0)).

We conclude that D f(0) has both a left and right inverse and thus is invertible, however
det Df(0) = 0. This contradicts the assumption that f~! is differentiable at f(0).

Please send any corrections to d.cheraghi@imperial.ac.uk
Questions marked with * are optional



Exercise 4.3. The non-linear system of equations
esin(z? —y? +2) =0
et cos(2? +3?) = 1

admits the solution (z,y) = (0,0). Prove that there exists £ > 0 such that for all (&,n)
with €2 +n? < €2, the perturbed system of equations

e™y sin(:v2 — y2 +x)=¢
ety cos(z® +13°) =147
has a solution (z(&,7n),y(£,n)) which depends continuously on (£, 7).
Solution: Let us define the maps
flay) =eVsin@® —y* +2),  fz,y) = Veos@@? +7),

for (z,y) € R?. Consider the map f : R? — R? defined as

A fMy) \ esin(@? -y + )
fmw‘(f%w>“ e Weos(a? +y7) )
Then we have f(0,0) = (0,1). We aim to employ the Inverse Function Theorem.
We compute the first partial derivatives of F', as

Difl(z,y) = ye™sin(z? — 9 + z) + (2z + 1)e™ cos(z? — 9 + )
Dy f%(z,y) = ze™ sin(z? — y* + ) + 2y cos(z® — y* + )

Dy f%(z,y) = 2ze® *ty cos(z? + %) — 2ze” Sty sin(z? + 3?)

Do f%(z,y) = €” Sty cos(z? 4 3?) — 2ye®” HY cos(z? + 3°)

All these partial derivatives are continuous, so by a theorem in the lectures, f is continu-
ously differentiable. Moreover, we have

Dﬂ&mz(ég),

which is invertible. Thus, by the Inverse Function Theorem, there exists a neighbourhoods
U C R? of (0,0) and a neighbourhood V' C R? of (0, 1) such that f : U — V is a bijection.

Since V' is an open neighbourhood of (0, 1) there is € > 0 such that B.(0,1) C V. It
follows that all the points (&, 1+n) with €2 +7? < €2 are elements of V. Thus, the inverse
map

(&), y(&m) = FH &1+ 1)

is well-defined and solves the perturbed system. The continuity of the map f~' implies
that z(&,n) and y(&,n) each vary continuously in (£,7) (see Exercise 1.8(b) on Problem
Sheet 1).

Exercise 4.4. For each of the following equations determine at which points one cannot
find a function y = f(z) which describes the graph in this neighbourhood. Sketch the
graphs.



1
§y3—2y+x:1

cos2¢ sin’¢ 1 1\ . sin?¢  cos?¢
z? < a2 + b—2> -y <¥ - b_2> sin(2¢) + 4 ( a2 + b2 > =1,
where a > 0, b > 0, 0 < ¢ < 7/2 are fixed parameters. Note the cases a = b, ¢ = 0,

¢ =m/2.

Solution: (a) Let

1
Fz,y) = 3y° =2+ - 1.

The solutions of the equation satisfy F'(x,y) = 0. To employ the Implicit Function
Theorem, we need to identify the solutions (z,y) of F(x,y) = 0 such that %F(m, y) #
0. Solving the equation %F(m,y) = 0 gives y = ++v/2. Substituting y = +v/2 in
F(z,y) =0 we get z = 1 — % 2, and substituting y = —v/2 in F(z,y) = 0 we get
r=1+ %\/ﬁ Thus, the theorem does not apply at the points

(1— 3\/5 V2), 1+ %f, —V2).

Now by the Implicit Function Theorem, for every (x,%) in R?, except the above two
points, the solution of the equation F'(x,y) = 0 near (x,y) is the graph of a function.
That is, given (z,y), there are open sets A containing x and an open set B containing
y, and a function g : A — B such that (2/,y') € A x B is a solution of the equation
F(2',y") = 0 if and only if ¢/ = g(2/).

To see what is happening at the two exceptional points, we may rewriting the equation
in the form )

x:—§y3+2y+1.

We note that the first derivative dix = 0 and the second derivative %x # 0 at any
of the two exceptional points. Thus, those points are either a maximum or minimum
for the graph of the function which gives the solution in terms of y. Thus, y = g(x)
does not exist in any neighbourhood.

As in the previous part, we may write the equation in the form F(z,y) = 0, for
a suitable function F. The candidate points where the Implicit Function Theorem
cannot be applied are the solutions of the equation a%F(m, y) = 0. That gives us

b —a? sin(2¢)
T———s SR i
b2sin® ¢ + a?cos? ¢ 2

y:

If we substitute the above relation in the equation F'(z,y) = 0, we obtain 2 points on
the graph (one for the pluses signs and one for the minuses signs):

b2 — a? sin(2¢)

x:i\/b281n2¢+a20082¢, Y=+
Vb2sin? ¢ + a2cos?2 ¢ 2




Note that the solution of the equation F'(z,y) = 0 is in fact the ellipse

.%'/2 y/2

@t =t

rotated by the angle ¢, using the transformation

'\  [cos¢ —sing T
<y’>_<sin¢ COS¢><y>'

Thus, at the two points we have identified, the solution cannot be written as the graph
of a function. Indeed, for a = b, this problem reduces to the one we considered in the
lectures.

Exercise 4.5. Consider the equation

a)

222 + 4oy + % = 3z + 4y
Show that this system of equations (implicitly) defines a function y = f(z) with
) =1.
Solution: We consider the function F : R? — R defined as
F(z,y) = (22° +day +y%) — 3z + 4y).

We note that F(1,1) = 0, that is, (zo,y0) = (1,1) is a solution of the equation
F(z,y) = 0. We aim to employ the Implicit Function Theorem.

We have
DyF(z,y) =4z + 2y — 4,

which shows that Do F is a continuous function. Moreover, Do F'(1,1) = 2 # 0.

By the (simple version of the) Implicit Function Theorem, there exists a neighbour-
hood U C R of g = 1 and a continuously differentiable function f : U — R satisfying
f() = f(xo) = yo = 1 such that

F(z, f(x))=0forall z € U.

Compute (1) without knowing f explicitly.

Solution: Let us consider the map g(x) = F(z, f(x)), for z € U. We may write this
map as the composition of the maps h(z) = (x, f(z)) followed by the map F(z,y).
That is, g(x) = F o h(z). By the chain rule, we have

Dy(e) = DF(h(a)) 0 Di(a) = (D10, 1) DaF (e f) (o)

= D\F(z, f(z)) + DoF (, f(2)) f'(z).
From the definition of the function F', we have
Dy F(z,y) =4z + 4y — 3,

and hence D1 F(1,1) = 5. On the other hand, since ¢ = 0 on U, we have ¢'(1) = 0.
Therefore, the above equation at x = 1 gives us

0=>5+2f(1),
which implies f/(1) = —5/2.



c¢) Find an explicit formula for f and check your result from b).

Solution: To identify f explicitly, we must solve the equation F(z,y) = 0 for vy,
which is possible here since F' is a quadratic equation. That gives us

y=2—2x+ 222 —5x+4.

Since f(1) = 1 > 0 we must choose the positive sign in the above equation, which

becomes
f(x) =2—2x+ 222 — 5z + 4.

4x — 5
2222 —5x + 4’

It follows that
fll@)=~2+

and hence /(1) = -2—-1/2 = -5/2.

Unseen Exercise. (unseen) Let Q = {(z,y) € R? : # > 0}. Consider the function

f:

(a)

Q) — R? given by:
fi(z,y) = (xsiny,xcosy).

Show that f is differentiable at all p = (£,7n) € Q, with:

Df(p) = ( sinn  £cosn )

cosn —Esinn

Solution: Let f!(x,y) = xsiny and f2(z,y) = zcosy. We can compute the partial
derivatives at p and find

Dif'(p) = sinn, Dy f(p) = Ecosn,

Dy f*(p) = cos, Dy f?(p) = —&sinn.

These are all manifestly continuous functions of p, so we deduce that f is everywhere
differentiable and:
[ sinn  Ecosn
Dfp) = < cosn —Esiny ) ’

by the theorem in the lectures.

Show that D f(p) is invertible for all p € Q.

Solution: We have det Df(p) = —¢ # 0 for p = (§,n) € Q. Thus D f(p) is invertible
for all p € Q.

Show that f : Q — R? is not injective. Deduce that the restriction to open sets U,V
in the inverse function theorem is necessary.

Solution: f is not injective, since (for example) the points (1,0) and (1,27) are both
mapped to (0,1) under f. This shows that even for a function whose derivative is
globally invertible, we can nevertheless have that the function is not globally injective.
Locally (i.e. restricted to small enough open sets) we do recover injectivity.



